Skip to main content
. 2024 Mar 4;15(4):2014–2047. doi: 10.1364/BOE.514079

Table 6. Performance of machine learning models in OVCAR-4 MCTS classifications with 2-ME inhibitor treatment. DT, decision tree. GB, gradient boosting. kNN, k nearest neighbor. LG, logistics. NB, naïve bayes. SVM, support vector machine. AH, agglomerative hierarchical. BC, birch. GM, Gaussian mixture. KM, k means. MBK, mini batch k-means. ST, spectral.

Supervised Unsupervised

Models DT GB kNN LG NB SVM AH BC GM KM MBK ST
Cross_Statistical

Accuracy 0.77 0.91 0.83 0.97 0.63 0.99 0.56 0.56 0.58 0.62 0.70 0.31
Precision 0.80 0.92 0.86 0.97 0.66 0.99 / / / / / /
Recall 0.77 0.91 0.83 0.97 0.63 0.99 / / / / / /
F1-score 0.77 0.91 0.84 0.97 0.61 0.99 / / / / / /
Silhouette / / / / / / 0.11 0.11 0.15 0.15 0.14 0.22
Homogeneity / / / / / / 0.37 0.37 0.37 0.42 0.55 0.06
Completeness / / / / / / 0.51 0.51 0.42 0.45 0.56 0.33
V_meaure / / / / / / 0.42 0.42 0.39 0.44 0.55 0.11

Cross_Screening

Accuracy 0.86 0.94 0.86 0.80 0.70 0.85 0.63 0.63 0.58 0.58 0.60 0.63
Precision 0.87 0.94 0.88 0.81 0.73 0.86 / / / / / /
Recall 0.86 0.94 0.86 0.80 0.70 0.85 / / / / / /
F1-score 0.86 0.94 0.86 0.80 0.70 0.85 / / / / / /
Silhouette / / / / / / 0.26 0.26 0.26 0.26 0.26 0.26
Homogeneity / / / / / / 0.55 0.55 0.51 0.45 0.48 0.51
Completeness / / / / / / 0.65 0.65 0.70 0.50 0.54 0.62
V_meaure / / / / / / 0.60 0.60 0.59 0.47 0.51 0.56

Composite_Hyperparameter

Accuracy 0.73 0.91 0.86 0.80 0.68 0.80 0.65 0.65 0.61 0.58 0.59 0.64
Precision 0.74 0.92 0.87 0.81 0.70 0.81 / / / / / /
Recall 0.73 0.91 0.86 0.80 0.68 0.80 / / / / / /
F1-score 0.73 0.91 0.86 0.79 0.68 0.79 / / / / / /
Silhouette / / / / / / 0.29 0.29 0.32 0.32 .031 0.32
Homogeneity / / / / / / 0.50 0.50 0.50 .046 0.46 0.52
Completeness / / / / / / 0.54 0.54 0.55 0.50 0.50 0.61
V_meaure / / / / / / 0.52 0.52 0.52 0.48 0.48 0.56