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ABSTRACT Functional genomics techniques, such as transposon insertion sequenc
ing and RNA-sequencing, are key to studying relative differences in bacterial mutant 
fitness or gene expression under selective conditions. However, certain stress conditions, 
mutations, or antibiotics can directly interfere with DNA synthesis, resulting in systematic 
changes in local DNA copy numbers along the chromosome. This can lead to artifacts 
in sequencing-based functional genomics data when comparing antibiotic treatment to 
an unstressed control. Further, relative differences in gene-wise read counts may result 
from alterations in chromosomal replication dynamics, rather than selection or direct 
gene regulation. We term this artifact “chromosomal location bias” and implement a 
principled statistical approach to correct it by calculating local normalization factors 
along the chromosome. These normalization factors are then directly incorporated into 
statistical analyses using standard RNA-sequencing analysis methods without modifying 
the read counts themselves, preserving important information about the mean-variance 
relationship in the data. We illustrate the utility of this approach by generating and 
analyzing a ciprofloxacin-treated transposon insertion sequencing data set in Escherichia 
coli as a case study. We show that ciprofloxacin treatment generates chromosomal 
location bias in the resulting data, and we further demonstrate that failing to correct for 
this bias leads to false predictions of mutant drug sensitivity as measured by minimum 
inhibitory concentrations. We have developed an R package and user-friendly graphical 
Shiny application, ChromoCorrect, that detects and corrects for chromosomal bias in 
read count data, enabling the application of functional genomics technologies to the 
study of antibiotic stress.

IMPORTANCE Altered gene dosage due to changes in DNA replication has been 
observed under a variety of stresses with a variety of experimental techniques. However, 
the implications of changes in gene dosage for sequencing-based functional genomics 
assays are rarely considered. We present a statistically principled approach to correcting 
for the effect of changes in gene dosage, enabling testing for differences in the fitness 
effects or regulation of individual genes in the presence of confounding differences 
in DNA copy number. We show that failing to correct for these effects can lead to 
incorrect predictions of resistance phenotype when applying functional genomics assays 
to investigate antibiotic stress, and we provide a user-friendly application to detect and 
correct for changes in DNA copy number.
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F unctional genomics technologies, such as transposon insertion sequencing (TIS) 
(1) and RNA-sequencing (RNA-seq) (2), have emerged as effective, high-through

put methods for investigating gene function. Most analysis of functional genomics 
data relies on quantifying and comparing sequencing read counts, with results often 
expressed as relative (log) ratios of read counts between an experimental condition and 
control. Critically, the calculation of these log read count ratios depends on accurate 
normalization. Common normalization methods correct for differences in sequencing 
depth between experiments and assume this normalization factor is constant for all 
genes assayed. Here, we identify a phenomenon that violates these normalization 
assumptions resulting from treatments that affect DNA replication in bacteria, which 
we have coined chromosomal location bias (CLB). We present a new normalization 
technique and associated tool, named “ChromoCorrect,” that can be easily applied to any 
functional genomics data to identify and correct for CLB.

During normal exponential growth in bacteria, the time between cell divisions is 
significantly shorter than the time needed to complete chromosomal replication. This 
leads to cells containing more copies of DNA around the origin of replication (oriC) 
compared to the terminus (ter) and is due to the firing of multiple simultaneous 
replication forks (3) (Fig. 1A). In many sequencing-based assays, this difference in DNA 
copy numbers translates into higher read counts around the origin as compared to the 
terminus due to a higher availability of template nucleic acids. Under most conditions, 
the ratio of oriC-ter reads remains constant between a treatment and an untreated 
control and does not interfere with results. However, certain treatments specifically alter 
the oriC-ter ratio, such as exposure to the DNA gyrase-targeting antibiotic ciprofloxacin 
(Fig. 1B). This introduces large changes in read counts that primarily reflect changes in 
the DNA copy number near the origin rather than gene regulation (RNA-seq) or mutant 
fitness (TIS) (Fig. 1C). These distortions, or CLB, in turn can lead to incorrect predictions of 
drug sensitivity or resistance.

A comprehensive study by Slager et al. (4) showed that treatment with a range of 
antimicrobials modified both DNA and RNA copy numbers, resulting in altered oriC-ter 
ratios across the genomes for multiple bacterial species. In a subsequent review, Slager 
et al. (5) suggested that not normalizing for this effect in RNA-seq analyses may lead 
to an overestimation of differential gene expression. Previous studies have attempted 
to correct CLB in antibiotic-treated functional genomics data using local regression 
methods such as Lowess (6–8). Typically, local regression is performed on the raw read 
counts, with normalized counts produced to replace the raw reads for the differential 
analysis. However, most differential analysis tools for sequencing data rely on count 
models that assume counts of similar magnitude have similar variance (9, 10). Providing 
modified or transformed counts violates these assumptions and will lead to incorrect 
assessment of statistical significance. We often observe distortions in the local read count 
density spanning several orders of magnitude following antibiotic treatment, which 
would lead to concomitantly large distortions in resulting P-values. Hence, there is a 
clear need for a statistically sound methodology to properly address CLB in functional 
genomics data.

Here, we develop a statistically principled approach for correcting CLB using a 
local normalization factor rather than directly providing normalized counts. These 
local normalization factors can then be provided to differential analysis tools such as 
edgeR (9) or DESeq2 (10, 11) as offsets alongside the raw counts to correct for CLB 
within the statistical model. This preserves important features of the data needed for 
accurate calculation of P values, namely the mean-variance trend, while also produc
ing fold-changes that have the CLB effect removed. Based on this method we have 
developed an application for identifying and correcting for CLB named “ChromoCorrect.” 
We have made our diagnostic and normalization procedure available as a graphical 
Shiny application that can be applied to any sequencing-based functional genomics 
assay. We apply ChromoCorrect to a data set we generated for this study that displays 
strong CLB: TIS output of an Escherichia coli K12 library challenged with ciprofloxacin. We 
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confirm that ciprofloxacin produces the predicted large local distortions in read counts 
around the origin of replication, confounding the TIS counts such that they no longer 
accurately reflect the fitness of individual mutants. We show, using minimum inhibitory 
concentration (MIC) assays, that these distortions lead to incorrect predictions of mutant 
ciprofloxacin sensitivity and resistance. We also demonstrate that our normalization 
approach, after processing with ChromoCorrect, corrects these, rendering accurate fold 
changes that align well with independently determined mutant phenotypes.

FIG 1 Chromosomal location bias as a result of higher chromosomal copy number near the origin after ciprofloxacin treatment and the downstream effects 

on read counts. (A) Normal DNA replication producing two daughter cells. The origin of replication is colored purple. Multiple replication forks naturally lead 

to more origin (oriC) than terminus (ter) DNA. (B) Ciprofloxacin prevents DNA unwinding, stalling the replication fork. This produces a highly inflated relative 

concentration of DNA proximal to the origin. (C) The knock-on effects of increased DNA concentration around the origin on the read counts and fold changes, an 

observable peak at the origin in the relative log2FCs and potential false positive predictions of downstream drug sensitivity testing.
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RESULTS

Chromosomal location bias distorts a range of functional genomics data sets

To illustrate the prevalence of CLB, we collected instances of CLB in existing RNA-seq 
and TIS data sets from four different antibiotic treatments across four different bacteria 
and plotted log2 fold changes along the chromosome (Fig. 2) (4, 7, 12, 13). In all cases 
examined, we see clear evidence of CLB, with a local increase in DNA copy number 
identified around the origin. Taken together, this supports that CLB is widespread in 
antibiotic-treated functional genomics data sets and that a robust method to detect and 
remove CLB is necessary to produce accurate predictions for downstream analysis.

A principled normalization procedure to correct for chromosomal location 
bias

To correct CLB, we have developed a normalization procedure that produces offsets that 
can be directly incorporated into differential testing using packages such as edgeR (9) or 
DEseq2 (10) without modifying the input count data. These offsets can be thought of as 
a gene-specific normalization factor, which in this case includes a correction for the local 
read density across the chromosome.

FIG 2 Read count log2 fold changes versus genome location plots displaying chromosomal location bias under varying conditions and organisms using 

different experimental techniques. Blue lines indicate trendlines over the individual gray points. Dashed gray lines indicate the expected trend line. Solid vertical 

lines indicate the terminus (brown) and origin of replication (purple). All experiments have decreased fold changes or fitness scores that dip at the terminus 

and increase at the origin. (A) RNA-Seq analysis of 6(p-Hydroxyphenylazo)-uracil-treated Streptococcus pneumoniae. (B) RNA-Seq analysis of trimethoprim-treated 

Escherichia coli. (C) Tn-seq analysis of ciprofloxacin-treated Pseudomonas aeruginosa. (D) Tn-seq analysis of tobramycin-treated Acinetobacter baumannii. Data 

sources: (A): Slager et al. (4), (B): Qi et al. (12), (C): Murray et al. (13), and (D): Geisinger et al. (7).
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Our normalization procedure comprises three major steps as outlined in Fig. 3. First, 
we calculate the local median read depth along the chromosome using a sliding window 
over the local gene neighborhood. The number of flanking genes included in the sliding 

FIG 3 Schematic of pipeline for detecting and correcting chromosomal location bias using ChromoCorrect. Gray boxes indicate user input or output, and 

white indicates automated steps. Detecting requires the log2 fold changes of each locus to plot a scatterplot of fold change by chromosomal position, which 

graphs trends in the fold changes for the user to visualize the pipeline’s assessment. The app and the R console display a message recommending normalization 

if chromosomal location bias is detected by a fitted linear model. Correcting requires read counts per locus in a txt, csv, or tsv file format, which are then 

normalized using a sliding window of medians with a default size of 500. An offset matrix is generated from the normalized counts to input along with the raw 

read counts into edgeR. A linear model is fitted again during correction to determine whether the default sliding window is small enough to capture the trend 

and repeats the normalization procedure with a smaller window otherwise. The corrected analysis is returned after the normalization is complete.
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window starts at 500 and is dynamically determined from the data set by fitting a linear 
model and testing the slope and y-intercept of the fitted line. Each iteration reduces 
the window size by 100 loci if the window is not small enough to accurately fit the 
trendline until a minimum window size of 200 is reached. We have found that medians 
calculated from windows smaller than 200 loci can be unduly influenced by a small 
number of genes with particularly high or low read counts. Second, the sliding window 
analysis is used to calculate a gene read count normalized for local read density by 
dividing the actual read count for each gene by the ratio of the local to global average 
read counts. This normalized count is then used to derive a gene-wise normalization 
factor, additionally incorporating differences in effective library size between replicates 
using the trimmed mean of M-values (TMM) method (14) (see Materials and Methods). 
Finally, these offsets are provided to the edgeR (9) glmFit function alongside the raw 
counts for differential analysis, where they are directly incorporated into the statistical 
model for testing purposes. This procedure maintains the information contained in the 
raw counts, necessary for accurate statistical analysis, while correcting the resulting 
estimated log2FCs for local distortions in DNA copy number.

The ChromoCorrect app

The normalization techniques described here have been organized into an R Shiny 
app for easy use by researchers wanting to diagnose and normalize data affected 
by CLB. Instructions for installing and running the app can be found on Github 
(https://github.com/BarquistLab/ChromoCorrect/) or accessed online through ShinyApps 
(https://thecainlab.shinyapps.io/ChromoCorrect/).

Transposon insertion sequencing case study: ciprofloxacin

To illustrate the functionality of ChromoCorrect, we generated a data set applying the 
transposon-directed insertion-site sequencing (TraDIS) TIS technique to a dense library 
of E. coli transposon mutants exposed to ciprofloxacin compared to an untreated control. 
This data set was generated using E. coli K12 BW25113, the parental strain of the Keio 
collection (15). A TraDIS library of 350,000 unique Tn5 mutants (16) was challenged 
with a subinhibitory concentration of ciprofloxacin (1/2 MIC) with growth overnight. 
After analysis with the TraDIS toolkit (17), we confirmed ciprofloxacin as an inducer of 
exaggerated CLB as it displayed a distinctive peak of increased reads around the origin 
of replication (Fig. 4A). This peak reflects the expected increase in DNA copy number at 
the origin compared to the rest of the genome that ciprofloxacin induces as it targets 
topoisomerases and stalls the replication fork and DNA synthesis (4, 18). Around the 
peak, the observed inflation in transposon insertions occurred largely between loci 3023 
and 3622, 300 loci on either side of the origin of replication (oriC is located between locus 
3322, mnmG and locus 3323, mioC). This entire 600 locus region had an average log2FC 
of 1.5 (a fold change increase of 2.8 compared to the untreated control), whereas the rest 
of the genome had a more typical average log2FC of 0.1. Strikingly, this means that many 
of these 600 loci would meet the standard “2-fold” cutoff often used to prioritize genes 
for further investigation.

After analysis with the TraDIS toolkit (17), the ciprofloxacin treatment TIS data yielded 
754 genes with significant values (q-value < 0.05), with 468 having an absolute log2FC 
value over 1. Of these 468 genes, 391 (84%) of these were located between loci positions 
3023 and 3623, despite this region representing only 15% of the genome. Another 
confirmation of this data bias was visualization by a volcano plot showing log2FC versus 
−log10 q-value (Fig. 4B). The fold change was skewed to the right, indicating a bias 
towards cells that appeared to have a higher frequency of insertions in many genes. After 
normalizing the data using ChromoCorrect with an automatically determined sliding 
window median of 200 genes, we identified 272 significant genes (a 64% reduction), 
with only 163 having an absolute log2FC value over 1 (a 65% reduction). The normalized 
volcano plot and locus by fold change scatterplot show the CLB has been removed (Fig. 
3C and D).
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Chromosomal location bias leads to incorrect predictions of ciprofloxacin 
sensitivity

Using TIS or other functional genomics techniques to identify entire gene suites involved 
in antibiotic stress tolerance is well-established (8, 13, 19). However, the possible 
presence of CLB in these data sets, if left uncorrected, may result in false positive 
predictions that are carried on into laboratory analysis. To demonstrate the implications 
of CLB for predictions of antibiotic resistance (or sensitivity), as well as to validate the 
use of ChromoCorrect to generate more biologically accurate predictions, we tested the 
phenotypes of various E. coli BW25113 single gene mutants from the Keio collection (15) 
that represent different types of potential errors that may arise because of CLB. In total, 
11 mutants were tested for their ciprofloxacin resistance and sensitivity profile (between 
5 and 20 ng/mL) via an MIC assay and compared to the wild type (WT) BW25113 
resistance level (10 ng/mL). For this, we examined genes that exhibited dissimilar 
outputs before and after correction, particularly focusing on those that were identified 

FIG 4 Visualizing and diagnosing chromosomal location bias in a ciprofloxacin-treated transposon insertion sequencing data set. Each point represents a locus 

of the genome. The x-axis is the chromosomal location, and the y-axis is the log2FC from ciprofloxacin treated versus untreated comparisons. (A) Volcano plot 

before correction, showing a large skew of significant genes (red) to the right, representing an increased prevalence of these mutants compared to the no 

antibiotic control. (B) Locus by fold change scatterplot pre-normalization with loci plotted in chromosomal order. The dashed black line shows the expected 

trend of the data if not affected by CLB. The purple dotted line is the origin of replication, where a large peak of elevated read counts is seen. (C) Locus by fold 

change scatterplot post-normalization with no peak. (D) Volcano plot post-normalization with no skew. Normalization performed with a sliding median window 

size of 200. Some mutant examples from our phenotypic validation are labeled in the scatterplots. Blue genes represent significant genes with log2FCs ≤ −1, and 

red genes indicate significant genes with log2FCs ≥ 1.

Research Article mSystems

April 2024  Volume 9  Issue 4 10.1128/msystems.00665-23 7

https://doi.org/10.1128/msystems.00665-23


as significant prior to correction but not afterward. The 11 mutants tested represented 
four distinct classes of genes (Table 1). The first class represented a positive control and 
included the known antibiotic resistance determinants acrB, involved in efflux (20, 21), 
and recA, involved in DNA recombination and repair (22, 23). As expected, both genes 
remained significant after correction with ChromoCorrect with a predicted sensitivity 
phenotype and were confirmed by the MIC assay. The second class included five genes 
with a predicted sensitivity phenotype before but not after applying ChromoCorrect. As 
predicted by ChromoCorrect, all five mutants displayed no change in MIC compared to 
WT, confirming that they were falsely designated as ciprofloxacin sensitivity genes prior 
to correction for CLB. The third class comprised three gene representatives predicted 
to be sensitive both before and after correction, and all showed a twofold increase 
(20 ng/mL) in ciprofloxacin MIC, confirming a true sensitivity phenotype. Finally, we 
examined genes with the most extreme mispredictions of phenotype in the absence 
of correction for CLB, those that shifted from predicted mutant resistance to predicted 
sensitivity after correction. There were eight genes whose log2FC went from positive to 
negative values, but only one (uvrD) met the phenotypic validation threshold of |log2FC| 
≥ 1 before and after correction. The misprediction of ∆uvrD phenotype prior to correction 
was confirmed by increased ciprofloxacin sensitivity in our MIC assay. Neglecting to 
address this bias would have falsely classified uvrD as mediating ciprofloxacin sensitivity, 
not resistance. In summary, all mutants tested by MIC assay reflected the predicted 
phenotype after correction of CLB, including six instances where the analysis based on 
uncorrected data led to an incorrect prediction of resistance phenotype. This emphasizes 
the critical role of ChromoCorrect’s normalization in ensuring accurate and reliable gene 
fitness assessments.

Use of the Shiny application

The app is split into two main tabs: detecting and correcting (Fig. 3). Detecting requires the 
upload of analyzed output files containing log2FC values to visualize any CLB, while the 
Correcting tab requires the upload of the read counts for the conditions affected by CLB 
and the associated no-stress control.

The first step within the app is to assess whether data sets that have undergone 
differential analysis are affected by CLB. This can be done using the Detecting tab. 
The user inputs one or more files containing locus tags and fold change information, 
and a locus by fold change scatterplot for each condition is generated. The user 
can cycle through the uploaded data sets in the drop-down menu in the sidebar to 
determine if any of the experimental conditions are affected by CLB. It is deemed present 
if the general trend of the fold changes is not flat and distributed around zero, as 

TABLE 1 Single gene E. coli BW25113 Keio knockouts validated in this study

Predicted mutant phenotype Gene Function TraDIS log2FC Experimental

mutant phenotype 

MIC50 (ng/mL)
Before

ChromoCorrect

After

ChromoCorrect

- WT - - - 10

Cip sensitive before and after
acrB Multidrug efflux system protein −0.89 −0.83 ≤5

recA DNA recombination and repair protein −1.99 −1.92 ≤5

Cip resistant before and WT 

phenotype after

cyaA Adenylate cyclase 2.48 0.15 10

ilvN Acetolactate synthase 1 small subunit 2.13 −0.06 10

mtlD Mannitol-1-phosphate dehydrogenase 1.77 0.13 10

fdhE Formate dehydrogenase formation protein 1.66 0.13 10

pfkA 6-phosphofructokinase I 1.32 −0.03 10

Cip resistant before and after

purH Bifunctional transformylase/ cyclohydrolase 2.50 1.64 20

dgkA Diacylglycerol kinase 1.62 1.07 20

rpe D-ribulose-5-phosphate 3-epimerase 1.45 1.07 20

Cip resistant before

and sensitive after

uvrD DNA-dependent ATPase I and helicase II 1.32 −1.06 ≤5
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demonstrated in Fig. 3A. The “decision” box will contain red text suggesting correction if 
CLB is detected, or black text if not detected.

If the analysis produced CLB, the user can fix the issue with the second tab: Correcting. 
This tab requires the upload of a file with a locus_tag column and read counts, or the 
upload of read files produced by the tradis_gene_insert_sites script from Bio-TraDIS (17). 
The tab requires at least four insert site files or columns of read counts: two biological 
replicates of the experimental condition and two biological replicates of the associated 
control condition. Once the upload is complete, the user must define which condition 
specifies the control. The app will compute an edgeR comparison before and after 
normalization and produce two scatterplots of locus versus log fold change associated 
with the two analyses. The default window size of 500 is suitable for smooth trend 
lines. The window will automatically reduce in size if the data has not been normalized 
effectively due to any sharper trend lines present. The user can then export the corrected 
output, free from CLB.

DISCUSSION

This study addresses the fundamental issue of CLB, which we show impacts a wide 
variety of functional genomics analyses, resulting in false positives and negatives 
or incorrect interpretation of data. CLB arises from nucleic acid copy number fluctu-
ations along the chromosome, typically around the origin and/or terminus, which 
can be exacerbated by replication-disrupting events like replication-targeted antibiotic 
treatment. To solve this problem, we introduce ChromoCorrect, a normalization tool that 
effectively corrects for CLB producing accurate log2FCs and significance values for each 
locus. Using a ciprofloxacin-treated TraDIS data set in E. coli, we demonstrated that CLB 
leads to incorrect predictions of antibiotic resistance phenotypes that can be corrected 
using ChromoCorrect.

Over the past decade, functional genomics techniques, like TIS and RNA-Seq, have 
been employed to comprehensively assess the effects of various selection pressures, 
such as antibiotic exposure, on microbial fitness and cellular responses (8, 13, 19, 24, 
25). Here, we show that CLB can lead to incorrect prediction of phenotype using 
our own antibiotic-treated TIS data, as a cautionary tale for future studies. Our study 
retrospectively highlighted the prevalence of CLB in published functional genomics data 
sets across diverse species and under a range of conditions. These conditions include 
both treatment with direct DNA-targeting antimicrobials, such as fluoroquinolones, but 
also antimicrobials that have an indirect effect on DNA replication, like trimethoprim, 
HPUra, and tobramycin (Fig. 2) (4, 7, 12, 13). Trimethoprim targets the dihydrofolate 
reductase of the folate biosynthesis pathway and reduces the availability of tetrahy
drofolate, a precursor to the essential DNA components thymidine and thymine (26) 
eventually leading to “thymineless death” (27). Thymine starvation stalls replication forks, 
initially leading to a transient increase in origin-proximal DNA before the replicating 
DNA is destabilized and degraded, leading to ultimate depletion of origin-proximal 
DNA (28). Similarly, the uracil analogue HPUra has an indirect effect on DNA replication 
by stalling replication forks (4). The mechanism by which tobramycin, a ribosome-tar
geting antibiotic, contributes to the observed CLB is not obvious but could represent 
another indirect or secondary effect. Our work suggests that CLB may be exerting 
a more significant influence on the interpretation of sequencing data than currently 
acknowledged and an important future study would be to comprehensively assess the 
prevalence of CLB across functional genomics data sets.

The four organisms we investigated span both Gram-negative and Gram-positive 
bacteria, indicating that CLB occurs in diverse species, and is likely relevant beyond these 
well-studied organisms. Our method bears conceptual similarity to peak-to-trough ratio 
(PTR) methods that use oriC-ter ratios to determine bacterial growth rates from genomic 
or metagenomic DNA sequencing data (29–31), which have been shown to accurately 
predict growth rates in a wide range of bacteria in pure culture. The success of these 
methods suggests that beyond antibiotic treatments that interfere with DNA replication, 
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CLB may also affect the results of functional genomics comparison between bacterial 
cultures growing at different rates.

Biases arising from altered oriC-ter ratios in TIS data have been recognized previously 
and corrected for using local regression methods (6–8), though the origins of these 
biases have not been clearly described. Our contribution has been to highlight the 
prevalence of CLB in bacterial functional genomics data. A major advantage of Chromo
Correct is an ability to directly incorporate the local normalization factors as an offset 
into differential analysis tools such as edgeR (9) and DESeq2 (10). This preserves the 
mean-variance relationship in the underlying count data, which is important for accurate 
estimation of statistical significance. This approach was inspired by the transcript 
quantification package tximport that corrects for differences in isoform abundance 
during gene-level differential expression in eukaryotes (32). By facilitating the import 
of offsets into established RNA-seq analysis tools, ChromoCorrect can be used seamlessly 
with existing pipelines.

Although clearly a critical step in the analysis of functional genomics data, the 
interpretation of correcting for CLB requires care and depends on the technology 
analyzed. In the case of RNA-seq, CLB is reflective of a genuine increase in RNA synthe
sized from the origin-proximal region, and the primary danger is that this could be 
interpreted as a specific regulatory response rather than a direct result of antibiotic 
activity on DNA replication dynamics. In contrast for TIS experiments, CLB introduces 
artifacts that can lead to false predictions of phenotype. Since TIS uses transposon-flank-
ing reads as a proxy for mutant abundance, and local distortions in DNA copy number 
will lead to a local distortion in template DNA abundance, mutants containing trans
poson insertions in the vicinity of the origin will appear to be more frequent in the 
population than they really are in data affected by CLB.

Our study highlights the importance of scrutinizing data for CLB to improve the 
reliability of conclusions drawn from functional genomics data. We recommend that 
future microbial functional genomic data sets with read counts produced, especially 
those that involve antibiotic exposure, be screened for the presence of CLB, and if so, to 
correct the data using ChromoCorrect before proceeding with time and labor-intensive 
biological interpretation and laboratory experiments.

MATERIALS AND METHODS

Software

Analyses were performed using R (version 4.0.3), R Studio (version 2022.07.2). The 
application was developed using RShiny (version 1.7.3).

TraDIS library ciprofloxacin challenging and sequencing

An E. coli K12 TraDIS library was generated as previously described (16) and challenged 
with subinhibitory ciprofloxacin (40 µg/mL) in 10 mL of Mueller Hinton cation-adjusted 
media. Genomic DNA was extracted using the DNeasy UltraClean Microbial Kit (Qia
gen) according to the manufacturer’s instructions and was sequenced on an Illumina 
HiSeq2500 platform at the Wellcome Sanger Institute.

Identifying chromosomal location bias

The data were run through the Bio::TraDIS pipeline (17) using SMALT mapping and a 
minimum read count of 10. To identify whether CLB was present, the log2FCs were 
plotted in genome order, with locus on the x-axis and log2FC on the y-axis.

Generating normalized read counts and offsets with ChromoCorrect

For each condition, the read counts are obtained, and the first 1,000 genes are appended 
to the end of the file and the last 1,000 to the beginning to mimic a circular genome 
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for the median sliding window function. Read counts of zero are excluded from the data 
set to remove their influence on the median. The medianFilter function from package 
FBN (version 1.5.1) is used to calculate a median for each locus based on an adjustable 
window size. We have found that a default window size of 500 is sufficient for many 
smoother trends, whilst sharps trends need to be computed with a smaller window 
size. A ratio for each point is calculated by dividing the locus’ median by the mean 
median of all loci. The normalized read count is obtained by dividing the raw read 
count by the ratio computed for each locus. The normalized counts are not used as a 
replacement for the raw read counts, instead, an offset data set is created. The offset 
is computed as the natural logarithm of the raw count, subtracted from the natural 
logarithm of the normalized count. An arbitrary pseudocount of 0.1 is added to both 
raw and normalized counts before log transforming to prevent the undefined log of 0 
occurring. The effective library size is calculated using the edgeR package (version 3.32.1) 
calcNormFactors function applied to the normalized counts, multiplied by the column 
sums of the normalized counts. Following this, the offset values are adjusted to account 
for library size differences by subtracting the logarithm of the effective library size.

Comparisons using edgeR within ChromoCorrect

ChromoCorrect incorporates the offset along with the raw counts in edgeR to perform 
differential analysis and assess the normalization. Genes are filtered based on a minimum 
count threshold (default value of 10). Raw counts are put into a DGEList with groupings 
and scaleOffset() is used to offset the raw read counts. Library size normalization is not 
computed due to the inclusion of the offset, which produces a custom normalization 
factor per gene. Common negative binomial (estimateGLMCommonDisp()) and Bayes 
tagwise (estimateGLMTagwiseDisp()) dispersions for general linear models are calcula
ted. A gene-wise negative binomial for general linear models (glmFit() and glmLRT()) 
is fit with contrasts to produce likelihood ratio tests per gene between the control 
and conditions, producing the log2 fold changes and adjusted P values. Following the 
analysis, ChromoCorrect generates summary statistics and diagnostic plots, automati
cally calculating the adjustment of the window size if bias has not been mitigated. The 
process repeats until a satisfactory result is achieved or a minimum window size of 200 is 
reached. The code produces scatterplots of the data before and after bias is removed for 
a visual reference.

Minimum inhibitory concentration assays

MIC assays were performed for the single gene knockouts to determine their breakpoint 
compared to WT cultures. Mutants were steaked from frozen onto Mueller Hinton (MH) 
agar plates and incubated overnight at 37˚C. Three single colonies of each mutant were 
inoculated into 5 mL of cation-adjusted MH broth (CAMHB) and grown overnight at 37˚C 
and 200 rpm shaking. A 1/100 dilution of the overnight cultures was made in 5 mL of 
fresh CAMHB and grown for 2.5 h until the exponential phase. MICs were performed 
with triplicate technical replicates in a 96-well plate with approximately 1 × 105 cells 
per 150 µL well and grown overnight at 37˚C with 200 rpm shaking. Cells were imaged 
after 16 h at OD600 on a PHERAstar plate reader (BMG Labtech). Wells were blanked 
and averaged within triplicates. MIC was determined as the lowest concentration that 
inhibited at least 50% of growth compared to the untreated mutant positive control.

ACKNOWLEDGMENTS

The authors would like to thank Julian Parkhill and the Wellcome Sanger Institute 
sequencing team for kindly providing the TIS sequencing data used in this publication. 
The authors would also like to thank Claire Maher, Hannah Lott, and Natasha Delgado for 
prototype testing of ChromoCorrect.

G.J.S. acknowledges the Helmholtz Information & Data Science Academy (HIDA) for 
providing financial support for a short-term research visit to the Helmholtz Institute for 

Research Article mSystems

April 2024  Volume 9  Issue 4 10.1128/msystems.00665-2311

https://doi.org/10.1128/msystems.00665-23


RNA-based Infection Research (HIRI), acknowledges an Australian Research Council-fun
ded scholarship from project grant DE180100929, and acknowledges financial support 
from the Australasian Genomic Technologies Association. This project was partially 
funded by the Bavarian State Ministry for Science and the Arts through the research 
network bayresq.net to L.B. and Australian National Health and Medical Research Council 
(NHMRC) Project Grant 1159752 to A.K.C. and L.B. A.K.C. was supported by an Australian 
Research Council (ARC) Future Fellowship (FT220100152).

AUTHOR AFFILIATIONS

1ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie 
University, Sydney, Australia
2Faculty of Medicine, University of Würzburg, Würzburg, Germany
3Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for 
Infection Research (HZI), Würzburg, Germany
4Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada

AUTHOR ORCIDs

Geraldine J. Sullivan  http://orcid.org/0000-0001-5253-8660
Lars Barquist  http://orcid.org/0000-0003-4732-2667
Amy K. Cain  http://orcid.org/0000-0002-4230-6572

FUNDING

Funder Grant(s) Author(s)

Helmholtz Information & Data Science Academy Geraldine J. Sullivan

DHAC | National Health and Medical Research 
Council (NHMRC)

1159752 Amy K. Cain

Department of Education and Training | Australian 
Research Council (ARC)

FT220100152 Amy K. Cain

Bayerisches Staatsministerium für Bildung und 
Kultus, Wissenschaft und Kunst (Bavarian State 
Ministry of Education, Science and the Arts)

Lars Barquist

AUTHOR CONTRIBUTIONS

Geraldine J. Sullivan, Conceptualization, Data curation, Formal analysis, Funding 
acquisition, Investigation, Methodology, Validation, Visualization, Writing – original draft, 
Writing – review and editing | Lars Barquist, Conceptualization, Formal analysis, Funding 
acquisition, Investigation, Methodology, Resources, Supervision, Visualization, Writing – 
original draft, Writing – review and editing | Amy K. Cain, Conceptualization, Funding 
acquisition, Investigation, Methodology, Resources, Supervision, Writing – original draft, 
Writing – review and editing

DATA AVAILABILITY

TraDIS sequencing reads were deposited in the European Nucleotide Archive (ENA) 
under study accession number PRJEB35059. Control conditions are biosamples 
SAMEA6429763 and SAMEA6429764, ciprofloxacin conditions are SAMEA6429767 and 
SAMEA6429768. RNA sequencing data in S. pneumoniae reported in Slager et al. (4) 
sourced from ENA study accession PRJNA235855. RNA-Seq data in P. aeruginosa reported 
in Murray et al. (13) sourced from ENA study accession PRJNA291292.
The ChromoCorrect code is publicly available and can be found on Github at https://
github.com/BarquistLab/ChromoCorrect and as an online interface at https://thecain
lab.shinyapps.io/ChromoCorrect/.

Research Article mSystems

April 2024  Volume 9  Issue 4 10.1128/msystems.00665-2312

http://bayresq.net
https://www.ebi.ac.uk/ena/browser/view/PRJEB35059
https://www.ncbi.nlm.nih.gov/biosample/?term=SAMEA6429763
https://www.ncbi.nlm.nih.gov/biosample/?term=SAMEA6429764
https://www.ncbi.nlm.nih.gov/biosample/?term=SAMEA6429767
https://www.ncbi.nlm.nih.gov/biosample/?term=SAMEA6429768
https://www.ebi.ac.uk/ena/browser/view/PRJNA235855
https://www.ebi.ac.uk/ena/browser/view/PRJNA291292
https://github.com/BarquistLab/ChromoCorrect
https://thecainlab.shinyapps.io/ChromoCorrect/
https://doi.org/10.1128/msystems.00665-23


REFERENCES

1. Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T. 
2020. A decade of advances in transposon-insertion sequencing. Nat 
Rev Genet 21:526–540. https://doi.org/10.1038/s41576-020-0244-x

2. Colgan AM, Cameron AD, Kröger C. 2017. If it transcribes, we can 
sequence it: mining the complexities of host–pathogen–environment 
interactions using RNA-seq. Curr Opin Microbiol 36:37–46. https://doi.
org/10.1016/j.mib.2017.01.010

3. Skarstad K, Boye E, Steen HB. 1986. Timing of initiation of chromosome 
replication in individual Escherichia coli cells. EMBO J 5:1711–1717. https:
//doi.org/10.1002/j.1460-2075.1986.tb04415.x

4. Slager J, Kjos M, Attaiech L, Veening JW. 2014. Antibiotic-induced 
replication stress triggers bacterial competence by increasing gene 
dosage near the origin. Cell 157:395–406. https://doi.org/10.1016/j.cell.
2014.01.068

5. Slager J, Veening J-W. 2016. Hard-wired control of bacterial processes by 
chromosomal gene location. Trends Microbiol 24:788–800. https://doi.
org/10.1016/j.tim.2016.06.003

6. Zomer A, Burghout P, Bootsma HJ, Hermans PWM, van Hijum SAFT. 
2012. ESSENTIALS: software for rapid analysis of high throughput 
transposon insertion sequencing data. PLoS One 7:e43012. https://doi.
org/10.1371/journal.pone.0043012

7. Geisinger E, Mortman NJ, Dai Y, Cokol M, Syal S, Farinha A, Fisher DG, 
Tang AY, Lazinski DW, Wood S, Anthony J, van Opijnen T, Isberg RR. 2020. 
Antibiotic susceptibility signatures identify potential antimicrobial 
targets in the Acinetobacter baumannii cell envelope. Nat Commun 
11:4522. https://doi.org/10.1038/s41467-020-18301-2

8. Gallagher LA, Shendure J, Manoil C. 2011. Genome-scale identification of 
resistance functions in Pseudomonas aeruginosa using Tn-seq. mBio 
2:e00315-10. https://doi.org/10.1128/mBio.00315-10

9. Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a bioconductor 
package for differential expression analysis of digital gene expression 
data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformat
ics/btp616

10. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change 
and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. 
https://doi.org/10.1186/s13059-014-0550-8

11. Anders S, Huber W. 2010. Differential expression analysis for sequence 
count data. Nat Prec. https://doi.org/10.1038/npre.2010.4282.1

12. Qi Q, Angermayr SA, Bollenbach T. 2021. Uncovering key metabolic 
determinants of the drug interactions between trimethoprim and 
erythromycin in Escherichia coli. Front Microbiol 12. https://doi.org/10.
3389/fmicb.2021.760017

13. Murray JL, Kwon T, Marcotte EM, Whiteley M. 2015. Intrinsic antimicro
bial resistance determinants in the superbug Pseudomonas aeruginosa. 
mBio 6:e01603-15. https://doi.org/10.1128/mBio.01603-15

14. Robinson MD, Oshlack A. 2010. A scaling normalization method for 
differential expression analysis of RNA-seq data. Genome Biol 11:1–9. 
https://doi.org/10.1186/gb-2010-11-3-r25

15. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, 
Tomita M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K‐
12 in‐frame, single‐gene knockout mutants: the Keio collection. Mol 
Syst Biol 2:2006.0008. https://doi.org/10.1038/msb4100050

16. Maher C, Maharjan R, Sullivan G, Cain AK, Hassan KA. 2022. Breaching 
the barrier: genome-wide investigation into the role of a primary amine 
in promoting E. coli outer-membrane passage and growth inhibition by 
ampicillin. Microbiol Spectr 10:e0359322. https://doi.org/10.1128/
spectrum.03593-22

17. Barquist L, Mayho M, Cummins C, Cain AK, Boinett CJ, Page AJ, 
Langridge GC, Quail MA, Keane JA, Parkhill J. 2016. The TraDIS toolkit: 
sequencing and analysis for dense transposon mutant libraries. 
Bioinformatics 32:1109–1111. https://doi.org/10.1093/bioinformatics/
btw022

18. Ojkic N, Lilja E, Direito S, Dawson A, Allen RJ, Waclaw B. 2020. A 
roadblock-and-kill mechanism of action model for the DNA-targeting 

antibiotic ciprofloxacin. Antimicrob Agents Chemother 64:e02487-19. 
https://doi.org/10.1128/AAC.02487-19

19. Leshchiner D, Rosconi F, Sundaresh B, Rudmann E, Ramirez LMN, 
Nishimoto AT, Wood SJ, Jana B, Buján N, Li K, Gao J, Frank M, Reeve SM, 
Lee RE, Rock CO, Rosch JW, van Opijnen T. 2022. A genome-wide Atlas of 
antibiotic susceptibility targets and pathways to tolerance. Nat Commun 
13:3165. https://doi.org/10.1038/s41467-022-30967-4

20. Pakzad I, Zayyen Karin M, Taherikalani M, Boustanshenas M, Lari AR. 
2013. Contribution of AcrAB efflux pump to ciprofloxacin resistance in 
Klebsiella pneumoniae isolated from burn patients. GMS Hyg Infect 
Control 8:Doc15. https://doi.org/10.3205/dgkh000215

21. Nolivos S, Cayron J, Dedieu A, Page A, Delolme F, Lesterlin C. 2019. Role 
of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by 
plasmid transfer. Science 364:778–782. https://doi.org/10.1126/science.
aav6390

22. Lusetti SL, Cox MM. 2002. The bacterial RecA protein and the recombina
tional DNA repair of stalled replication forks. Annu Rev Biochem 71:71–
100. https://doi.org/10.1146/annurev.biochem.71.083101.133940

23. Machuca J, Recacha E, Gallego-Mesa B, Diaz-Diaz S, Rojas-Granado G, 
García-Duque A, Docobo-Pérez F, Blázquez J, Rodríguez-Rojas A, Pascual 
A, Rodríguez-Martínez JM. 2021. Effect of RecA inactivation on 
quinolone susceptibility and the evolution of resistance in clinical 
isolates of Escherichia coli. J Antimicrob Chemother 76:338–344. https://
doi.org/10.1093/jac/dkaa448

24. Jana B, Cain AK, Doerrler WT, Boinett CJ, Fookes MC, Parkhill J, 
Guardabassi L. 2017. The secondary resistome of multidrug-resistant 
Klebsiella pneumoniae. Sci Rep 7:42483. https://doi.org/10.1038/
srep42483

25. Boinett CJ, Cain AK, Hawkey J, Do Hoang NT, Khanh NNT, Thanh DP, 
Dordel J, Campbell JI, Lan NPH, Mayho M, Langridge GC, Hadfield J, 
Chau NVV, Thwaites GE, Parkhill J, Thomson NR, Holt KE, Baker S. 2019. 
Clinical and laboratory-induced colistin-resistance mechanisms in 
Acinetobacter baumannii. Microb Genom 5:e000246. https://doi.org/10.
1099/mgen.0.000246

26. Sangurdekar DP, Zhang Z, Khodursky AB. 2011. The association of DNA 
damage response and nucleotide level modulation with the antibacte
rial mechanism of the anti-folate drug trimethoprim. BMC Genomics 
12:583. https://doi.org/10.1186/1471-2164-12-583

27. Khodursky A, Guzmán EC, Hanawalt PC. 2015. Thymineless death lives 
on: new insights into a classic phenomenon. Annu Rev Microbiol 
69:247–263. https://doi.org/10.1146/annurev-micro-092412-155749

28. Sangurdekar DP, Hamann BL, Smirnov D, Srienc F, Hanawalt PC, 
Khodursky AB. 2010. Thymineless death is associated with loss of 
essential genetic information from the replication origin. Mol Microbiol 
75:1455–1467. https://doi.org/10.1111/j.1365-2958.2010.07072.x

29. Korem T, Zeevi D, Suez J, Weinberger A, Avnit-Sagi T, Pompan-Lotan M, 
Matot E, Jona G, Harmelin A, Cohen N, Sirota-Madi A, Thaiss CA, Pevsner-
Fischer M, Sorek R, Xavier R, Elinav E, Segal E. 2015. Growth dynamics of 
gut microbiota in health and disease inferred from single metagenomic 
samples. Science 349:1101–1106. https://doi.org/10.1126/science.
aac4812

30. Brown CT, Olm MR, Thomas BC, Banfield JF. 2016. Measurement of 
bacterial replication rates in microbial communities. Nat Biotechnol 
34:1256–1263. https://doi.org/10.1038/nbt.3704

31. Joseph TA, Chlenski P, Litman A, Korem T, Pe’er I. 2022. Accurate and 
robust inference of microbial growth dynamics from metagenomic 
sequencing reveals personalized growth rates. Genome Res 32:558–568. 
https://doi.org/10.1101/gr.275533.121

32. Soneson C, Love MI, Robinson MD. 2015. Differential analyses for RNA-
seq: transcript-level estimates improve gene-level inferences. F1000Res 
4:1521. https://doi.org/10.12688/f1000research.7563.2

Research Article mSystems

April 2024  Volume 9  Issue 4 10.1128/msystems.00665-2313

https://doi.org/10.1038/s41576-020-0244-x
https://doi.org/10.1016/j.mib.2017.01.010
https://doi.org/10.1002/j.1460-2075.1986.tb04415.x
https://doi.org/10.1016/j.cell.2014.01.068
https://doi.org/10.1016/j.tim.2016.06.003
https://doi.org/10.1371/journal.pone.0043012
https://doi.org/10.1038/s41467-020-18301-2
https://doi.org/10.1128/mBio.00315-10
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1038/npre.2010.4282.1
https://doi.org/10.3389/fmicb.2021.760017
https://doi.org/10.1128/mBio.01603-15
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1038/msb4100050
https://doi.org/10.1128/spectrum.03593-22
https://doi.org/10.1093/bioinformatics/btw022
https://doi.org/10.1128/AAC.02487-19
https://doi.org/10.1038/s41467-022-30967-4
https://doi.org/10.3205/dgkh000215
https://doi.org/10.1126/science.aav6390
https://doi.org/10.1146/annurev.biochem.71.083101.133940
https://doi.org/10.1093/jac/dkaa448
https://doi.org/10.1038/srep42483
https://doi.org/10.1099/mgen.0.000246
https://doi.org/10.1186/1471-2164-12-583
https://doi.org/10.1146/annurev-micro-092412-155749
https://doi.org/10.1111/j.1365-2958.2010.07072.x
https://doi.org/10.1126/science.aac4812
https://doi.org/10.1038/nbt.3704
https://doi.org/10.1101/gr.275533.121
https://doi.org/10.12688/f1000research.7563.2
https://doi.org/10.1128/msystems.00665-23

	A method to correct for local alterations in DNA copy number that bias functional genomics assays applied to antibiotic-treated bacteria
	RESULTS
	Chromosomal location bias distorts a range of functional genomics data sets
	A principled normalization procedure to correct for chromosomal location bias
	The ChromoCorrect app
	Transposon insertion sequencing case study: ciprofloxacin
	Chromosomal location bias leads to incorrect predictions of ciprofloxacin sensitivity
	Use of the Shiny application

	DISCUSSION
	MATERIALS AND METHODS
	Software
	TraDIS library ciprofloxacin challenging and sequencing
	Identifying chromosomal location bias
	Generating normalized read counts and offsets with ChromoCorrect
	Comparisons using edgeR within ChromoCorrect
	Minimum inhibitory concentration assays



