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ABSTRACT Ectomycorrhizal fungi establish mutually beneficial relationships with trees, 
trading nutrients for carbon. Suillus are ectomycorrhizal fungi that are critical to the 
health of boreal and temperate forest ecosystems. Comparative genomics has identified 
a high number of non-ribosomal peptide synthetase and terpene biosynthetic gene 
clusters (BGC) potentially involved in fungal competition and communication. However, 
the functionality of these BGCs is not known. This study employed co-culture techniques 
to activate BGC expression and then used metabolomics to investigate the diversity 
of metabolic products produced by three Suillus species (Suillus hirtellus EM16, Suillus 
decipiens EM49, and Suillus cothurnatus VC1858), core members of the pine microbiome. 
After 28 days of growth on solid media, liquid chromatography–tandem mass spec­
trometry identified a diverse range of extracellular metabolites (exometabolites) along 
the interaction zone between Suillus co-cultures. Prenol lipids were among the most 
abundant chemical classes. Out of the 62 unique terpene BGCs predicted by genome 
mining, 41 putative prenol lipids (includes 37 putative terpenes) were identified across 
the three Suillus species using metabolomics. Notably, some terpenes were significantly 
more abundant in co-culture conditions. For example, we identified a metabolite 
matching to isomers isopimaric acid, sandaracopimaric acid, and abietic acid, which can 
be found in pine resin and play important roles in host defense mechanisms and Suillus 
spore germination. This research highlights the importance of combining genomics and 
metabolomics to advance our understanding of the chemical diversity underpinning 
fungal signaling and communication.

IMPORTANCE Using a combination of genomics and metabolomics, this study’s 
findings offer new insights into the chemical diversity of Suillus fungi, which serve a 
critical role in forest ecosystems.

KEYWORDS fungi, ectomycorrhizae, Suillus, genome mining, metabolomics, secondary 
metabolites, terpene

E ctomycorrhizal (ECM) fungi are important community members in temperate and 
boreal forest ecosystems, where they form an obligate symbiosis with woody plant 

species. Ectomycorrhizal fungi trade fungal-scavenged nutrients, such as nitrogen and 
phosphorus, for host-derived photosynthetically fixed carbon and play critical roles in 
biogeochemical cycling (1). Fungi in the genus Suillus are important ECM symbionts 
that associate almost exclusively with host trees in the family Pinaceae (2), where 
they facilitate improved seedling establishment, drought resistance via improved water 
conductance, and ecological remediation of heavy metal-contaminated sites (3–5). In 
their role as essential root symbionts, ECM fungi interact with complex consortia of other 
organisms including plants, bacteria, viruses, invertebrates, and other fungi. Interactions 
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between ECM fungi and these co-occurring community members are mediated by 
complex chemical signals including small molecules, proteins, and secondary 
metabolites (6). Despite the importance of these interactions, our understanding of 
the chemical diversity facilitating interactions between ECM fungi, their hosts, and 
the rhizosphere community is limited. Characterizing the identity of the metabolites 
involved in these interactions and the conditions under which they are expressed are 
the first steps in elucidating the diverse ecological functions of secondary compounds in 
environmental sensing, competition, and communication.

Unlike primary metabolites, secondary metabolites are not essential to cellular 
functions but often play critical roles in signaling, communication, and regulating inter- 
and intraspecies interactions between fungi and their surrounding communities (7). To 
date, most studies of fungal secondary metabolic diversity have focused on pathogens, 
saprophytes, and endophytes, particularly those in the phylum Ascomycota (8). This 
hinders our ability to appreciate the vast repertoire of secondary metabolites produced 
by fungi occupying diverse lifestyles. Previous studies of Suillus metabolomes have 
mostly focused on fruit bodies (mushrooms) (9–11) and were able to identify metabolites 
such as prenylated phenols and boviquinones (10). The exometabolomes of Suillus, on 
the other hand, have not been well characterized. Previous work using comparative 
genomics and genome mining-based predictions of Biosynthetic Gene Clusters (BGCs) 
in Suillus indicated that the genus may have a significantly higher capacity to produce 
terpenes and non-ribosomal peptides than other ECM genera (12). However, genome-
mining-based approaches are unable to characterize most of these compounds past 
these broad metabolite classes, and the ecological roles and conditions necessary for 
their expression are unknown. Further, BGCs are often not expressed under standard 
laboratory conditions and require induction by altering environmental conditions (13). 
Techniques, such as OSMAC (one strain many compounds), have been successfully 
used to activate silent BGCs by systematically altering biotic and abiotic environmental 
variables (14). Today, it is widely recognized that one of the most efficient and effective 
forms of metabolite induction is coculturing fungi with other organisms (15).

Unlike many OSMAC strategies, coculture has the added benefit of being able 
to address ecologically relevant scenarios, including interactions between naturally 
co-occurring or co-evolving community members. As a first step toward characterizing 
the chemical diversity of Suillus, we chose three genome-sequenced species of Suillus 
known to co-occur and associate with the same species of host tree (Pinus taeda—
loblolly pine). Genome mining was used to predict and study the similarity between 
secondary metabolite-producing BGCs across the three species. The three species were 
grown in monoculture as well as coculture for all pairwise combinations. Untargeted 
metabolomics was then used to characterize the exometabolites produced at the growth 
interface between two fungal cultures.

MATERIALS AND METHODS

Genome mining

Genomes for the three species of Suillus used in this study, S. decipiens EM49, S. 
cothurnatus VC1858, and S. hirtellus EM16, were first published and characterized in 
(12) and are publicly available from the JGI MycoCosm database (16). Biosynthetic gene 
clusters were predicted using antiSMASH v.6.0.1 (17), with the parameters (--taxon fungi 
–cb-general –cb-subclusters –cb-knownclusters –p fam2go). Orthology and conserva­
tion predictions between BGC were carried out via BiG-SCAPE with default parameters 
(18). The inputs for BiG-SCAPE were the GenBank files obtained from antiSMASH. The 
antiSMASH and BiG-SCAPE result files are provided in MassIVE (see Data Availability).

Co-culture and growth assay

The three species of Suillus used in this study originally came from fruitbodies grow­
ing under Pinus species. The three species of Suillus were inoculated onto 100-mm 
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Petri dishes containing solid high carbon Pachlewski’s media (19). Each Petri dish was 
inoculated with n = 2 4-mm plugs placed exactly 2 cm from one another and equidistant 
to a diameter line intersecting the plate. Treatments included all pairwise combinations 
of the three Suillus species (at n = 5 biological replicates). Single-species controls were 
inoculated with two plugs as above (n = 5 biological replicates). Therefore, altogether 
five biological replicates were used for each sample group. The media-only samples were 
used as a negative control (n = 3). Cultures were grown for 28 days, in the dark, at room 
temperature. Starting at 7 days post inoculation (dpi), the colony area was measured 
twice per week using background illumination and outlining the colony margins on the 
bottom side of each Petri dish using a fine-tip marker. At the end of the 28-day growth 
period, we captured images of the bottom of each Petri dish using a desktop scanner and 
calculated the colony area at each time point using the program imageJ (20). After 28 
days, three agar plugs were collected, pooled together, and placed in 1.5-mL cryotubes 
using a sterile brass core borer, taking plugs from along the diameter line of the plate 
and capturing the interaction zone between the two cultures. After collection, samples 
were immediately frozen in liquid nitrogen and stored at −80°C until sample processing.

Metabolomics sample preparation

The frozen agar plugs containing mycelia were lyophilized using a Labconco Freezone 
freeze dryer (Labconco Equipment Co., KS, USA) until completely dry. The freeze-dried 
agar plugs were then processed using a biphasic extraction method by mixing 0.5 mL 
of cold liquid chromatography–mass spectrometry (LC-MS)-grade water with 0.5 mL of 
cold hydrated ethyl acetate, vortexed for 1 min and then kept at 4°C overnight for 
extraction. The ethyl acetate and water fractions were then separated by aspiration. For 
the aqueous fraction, samples were filtered using a 10-kDa filter (Sartorius Vivaspin 2 
Centrifugal Concentrator Polyethersulfone) by centrifugation at 4,500 × g to remove the 
remaining agar particulates. After filtering, the aqueous extract was freeze dried and 
resuspended in an aqueous solvent (5% acetonitrile, 0.1% formic acid), while the ethyl 
acetate extract was air dried in a chemical fume hood until dry and then resuspended 
in an organic solvent (70% acetonitrile, 0.1% formic acid). All samples were stored short 
term at 4°C until liquid chromatography-electrospray ionization tandem mass spectrom­
etry (LC-ESI-MS/MS) measurements.

Liquid chromatography-electrospray ionization tandem mass spectrometry 
(LC-ESI-MS/MS)

All samples were analyzed using ultra-high-pressure liquid chromatography coupled 
with a ThermoFisher Q-Exactive Plus mass spectrometer. For each sample, 10 µL was 
injected and allowed to flow across an in-house-constructed nanospray analytical 
column (75 µm × 150 mm) packed with a 1.7-µm C18 Kinetex RP C18 resin (Phenom­
enex). The mobile phase included solvent A (95% water, 5% acetonitrile, 0.1% formic 
acid) and solvent B (70% acetonitrile, 30% water, 0.1% formic acid). The metabolites 
were separated across a 30-min linear organic gradient (250 nL/min flow rate) from 
5% aqueous solvent (5% acetonitrile, 0.1% formic acid) to 100% organic solvent (70% 
acetonitrile, 0.1% formic acid). All MS data were acquired by Xcalibur software version 
4.3 using the top N method where N could be up to 5. Target values for the full-scan 
MS spectra were 3 × 106 charges in the 135–2,000 m/z range with a maximum injection 
time of 100 ms. Transient times corresponding to a resolution of 70,000 at m/z 200 
were chosen, and a 2.0 m/z isolation window and an isolation offset of 0.5 m/z were 
used. Fragmentation of precursor ions was performed by stepped higher-energy C-trap 
dissociation with normalized collision energies of 10, 20, and 40 eVs. MS/MS scans were 
performed at a resolution of 17,500 at m/z 200 with an ion target value of 1.6 × 105 and 
a 50-ms maximum injection time. Dynamic exclusion was set to 10 s to avoid oversam­
pling of abundant metabolites. A more detailed listing of the parameters can be found 
in Supplemental File 1. The identification and quantification analyses for untargeted 
LC-MS/MS data were performed using Thermo Scientific Compound Discoverer (CD) 
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v3.3.1, MetaboAnalyst v6.0 (21, 22), GNPS (Global Natural Products Social Molecular 
Networking) (23, 24), and Skyline v22.2 (25, 26).

Data processing for LC-ESI-MS/MS

The .raw files obtained from the measurements were analyzed using Compound 
Discoverer v3.3.1 using the untargeted metabolomics workflow. For this, the following 
workflow steps were used: first, input .raw files were processed by the “select spectra” 
node using the default settings (every spectrum from 0 to 30 min was used). The 
default option of a signal/noise (S/N) ratio of 1.5 was used for peak filtering. For the 
“detect compound” node, again, the default setting from the untargeted metabolomics 
workflow was used, including a mass tolerance of 5 ppm, a minimum peak intensity of 
10,000, a minimum number of scans per peak equal to 5, and a most intense isotope set 
as “True”. The compound detection was set to ions [M + 2H], [M + 3H], and [M + H] and 
base ions as [M + H]. Then, the “group compound” node was selected in the process­
ing workflow where the settings included mass tolerance set to 5 ppm and retention 
tolerance in minutes of 0.02. The preferred ion was set at [M + H], and area integration 
was done for the most common ion. Similarly, the peak rating contributions were also 
included in the workflow. The peak rating filter was applied such that only peaks crossing 
the peak rating threshold of 4 in at least two files were retained. The “fill gaps” node 
from the processing node was used with the following settings: mass tolerance equal to 
5 ppm, signal-to-noise ratio threshold of 1.5, and real-time peak detection and restric­
tive gap filling set to “True”. The node “mzVault” was selected for spectral matching 
against the high-resolution NIST 2020 spectral library and the mzCloud spectral library. 
The nodes “predict composition” and “ChemSpider” were selected to further annotate 
compounds based on precursor mass. Then, the “mzLogic” node was selected with 
FT fragment mass tolerance set to 10 ppm, IT fragment mass tolerance set to 0.4 Da, 
maximum number of compounds set to 0, the maximum number of mzCloud similarity 
results to consider per compounds set to 10, and a match factor threshold set to 30. 
Next, the “assign compound annotations” node in the workflow was used to annotate in 
the following order: mzVault (NIST2020), mzCloud, predicted compositions, Chemspider, 
and Metabolika Search. The scoring rule included use of mzLogic set to “True”, the use 
of spectral distance set to “True”, The SFit threshold set to 20, and SFit Range set to 20. 
Finally, the differential analysis node was selected with the Log10 transformed value set 
to “True.”

The resulting data matrix was processed further to obtain a non-redundant list of 
putative metabolite identifications. First, the compound identifications were filtered to 
only retain those that had a confident spectral match to either mzCloud or mzVault 
spectral libraries. Next, the data matrix was filtered to remove compound identifications 
that were indistinguishable by annotated molecular weight and retention time to obtain 
a non-redundant list of putative metabolites.

For data post-processing, the data matrix of the resulting non-redundant putative 
metabolite identifications and their associated quantitative values were analyzed by 
MetaboAnalyst v6.0. To identify metabolites with relative abundances greater than those 
observed in media controls, compound peak areas were Log10 transformed, and a 
Student’s t-test was performed. The metabolites with Log2 fold change greater than 2 
and an FDR-adjusted P-value less than 0.05 were selected.

For the GNPS-based molecular networking analysis, .raw files were first converted 
to .mzML format using the software MSConvert (27, 28). The .mzML files were transferred 
to the MassIVE server using the software WinSCP (https://winscp.net/). Then, using the 
GNPS software, the classical molecular networking workflow was used to process the 
provided .mzML files. For this workflow, the precursor ion mass tolerance was set at 
0.01 Da, and fragment ion mass tolerance was set at 0.01 Da. The results were then 
subset to include only those metabolite feature nodes with a cosine similarity score of 
0.7 or greater and with at least six matched fragment ions. The maximum size of each 
subnetwork was set to 100.
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Skyline v22.2 was use for manual curation of putative metabolite relative abundances 
in this study. That is, retention time boundaries per metabolite were manually refined 
across all the data files. Skyline results are provided in MassIVE (see Data Availability).

RESULTS

Fungal growth was marginally different between inter- and intraspecies 
pairings

Colony area increased with incubation time for all the fungal cocultures starting from 
7 days post inoculation to day 28 when samples were collected, indicating that all 
cultures were actively growing when agar plugs were collected for exometabolomic 
analysis. Generally, isolates grown in intraspecies pairings reached larger colony areas 
than isolates grown in interspecies (coculture) pairings, but none of these differences 
were statistically significant (ANOVA, P > 0.05) (Fig. S1).

Genome mining and analysis of biosynthetic diversity predicts specific types 
of secondary metabolites

Using antiSMASH v6.0.1, we predicted the total number of BGCs for each of the 
genomes. S. cothurnatus VC1858 had the highest predicted number of putative BGCs 
(53), whereas S. hirtellus EM16 and S. decipiens EM49 had a lower number of BGCs (43 
and 36, respectively) (Fig. 1A). In general, the total number of predicted BGCs was related 
to genome size for all three species. As found previously (12), the number of BGCs 
with genes for non-ribosomal peptide synthetase-like (NRPS-like) proteins and terpene 
synthases was much higher in all three genomes compared to that of BGCs representing 
other classes of backbone enzymes, such as polyketide synthases (PKSs) or hybrid BGCs 
with multiple types of backbones. In total, we found 38 terpene synthase BGCs in S. 
cothurnatus VC1858, 23 in S. hirtellus EM16, and 19 in S. decipiens EM49. Similarly, we 
identified 14 NRPS-like genes in S. hirtellus EM16, 12 in S. cothurnatus VC1858, and 14 in S. 
decipiens (Fig. 1B). This new comparative analysis of BGCs suggests that there is variation 
in secondary metabolite production across Suillus strains.

BiG-SCAPE was used to construct sequence similarity networks between BGCs to 
identify gene cluster families across the three Suillus genomes. This analysis revealed that 
the BGCs containing terpene synthases and NRPS-like genes are remarkably diverse (Fig. 
1C and D), suggesting there is a vast chemical space to be discovered. Overall, 55 
predicted BGCs with terpene synthases did not cluster into gene families based on 
sequence similarity, four were found to be orthologous across the three species of Suillus, 
two were orthologous between S. hirtellus EM16 and S. cothurnatus, and one was 
orthologous between S. cothurnatus VC1858 and S. decipiens EM49. Regarding BGCs 
containing NRPS-like genes, 23 did not cluster based on sequence similarity, four were 
orthologous between the three species, two were orthologous between S. cothurnatus 
VC1858 and S. decipiens EM49, and only one orthologous cluster was observed between 
S. hirtellus EM16 and S. decipiens EM49.

Diverse classes of metabolites were identified from the exudates of Suillus 
depending on monoculture vs coculture conditions

The untargeted metabolomics data-processing workflow in Compound Discoverer 3.3.1 
was used for spectral matching. Overall, this workflow predicted chemical formulas for 
42,933 compound features that have a measured retention time and a relative abun­
dance based on a calculated peak area (Table S1). Among these compound features, a 
metabolite annotation could be assigned to 19,400 features based on accurate precursor 
mass alone using the ChemSpider database or with further confidence by matching 
measured fragmentation spectra to spectral libraries in both the mzCloud database (29) 
and the high-resolution NIST 2020 database (30). Next, data were filtered to only 
consider compound features matching either the mzCloud and/or NIST 2020 databases, 
resulting in a list of 3,769 putative compound identifications (Table S2). Principal 
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component analysis was performed separately for the aqueous and organic fractions 
using MetaboAnalyst version 6.0 (21), with the resulting plots displaying discrete 
grouping between biological replicates and separation between coculture groups (Fig. 
2A and B). Further manual data curation was performed to identify a non-redundant list 
of compound identifications that matched with mzCloud and/or the NIST 2020 high-
resolution library resulting in a list of 770 putative metabolites. That is, the data were 
filtered to remove compound identifications that were indistinguishable by annotated 
molecular weight and retention time (i.e., isomeric) to obtain a non-redundant list of 
putative metabolites. The data set was then filtered to compound features with abun­
dances significantly greater in sample groups when compared against the media blank 
control (adj. P-value < 0.05 and a Log2 fold change >2) resulting in a final list of 487 
putative metabolites (Table S3). ClassyFire version 1.0 (31) was used for chemical 
taxonomy classification (Fig. 3), and there were 85 chemical classes observed for 467 out 
of 487 metabolites (Table S4). “Benzene and substituted derivatives” and “carboxylic 
acids and derivatives” were the most abundant chemical classes with 58 metabolites. 
This was followed by prenol lipids with 33 metabolites. Importantly, prenol lipids 
encompassed 8 different prenol lipid subclasses among which terpene lactones (10), 
diterpenoids (8), and sesquiterpenoids (5) were the top three most abundant subclasses.

To help define the conditions under which a particular metabolite or class of com­
pounds are induced, we assessed the degree of overlap in putative identifications 
observed in the intra- and interspecies cocultures. An UpSet plot was created separately 
for compound identifications detected in an aqueous or organic fraction sample (Fig. 2C 
and D). In general, both UpSet plots showed that a relatively higher number of putative 
metabolites were observed in coculture conditions when compared to monoculture 
conditions. In the aqueous fraction, among the interspecies pairings, the highest number 
of unique features were observed among the S. hirtellus EM16–S. cothurnatus VC1858 (7). 

FIG 1 Genome mining revealed diversity of compounds encoded in three species of Suillus. (A) Genome size, number of genes, and predicted BGCs vary across 

S. cothurnatus VC 1858, S. hirtellus EM16, and S. decipiens EM49. (B) The tool antiSMASH v.6.0.1 detected and characterized the number of BGCs in the genome 

of S. cothurnatus VC1858, S. hirtellus EM16, and S. decipiens EM49. The tool BiG-SCAPE showed low grouping between architecture and sequence similarity for 

(C) NRPS-like and (D) terpene-classified BGCs.
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Similarly, for the organic fraction, the S. hirtellus EM16–S. cothurnatus VC1858 interspecies 
pairing produced the highest number of unique metabolites (23).

Next, we were interested in determining which coculture conditions produced the 
greatest diversity of chemical classes. In total, 59 putatively identified metabolites were 
present only in coculture conditions. ClassyFire-based classification of these metabolites 
resulted in 25 different classes, and we assessed the overlap of these classes across each 
sample. Across both fractions, the greatest representation of chemical diversity was 
observed for the S. hirtellus EM16–S. cothurnatus VC1858 interspecies pairing (Fig. S2 and 
S3). In general, the most represented chemical classes were “benzene and substituted 
derivatives” (11), “carboxylic acids and derivatives” (7), and “prenol lipids” (4).

The exometabolome of Suillus was found to be rich in terpenes, which aligns 
well with genome mining-based prediction of terpene-coding potential

A relatively large number of putative terpenes were identified using untargeted metabo­
lomics based on MS/MS similarity to reference spectra present in the high-resolution 
NIST 2020 and mzCloud libraries. Overall, 41 different terpenes had a high confidence 
match to a reference spectra, and analysis of taxonomic subclass showed eight different 

FIG 2 Principal component analysis (PCA) plot and UpSet plot showed metabolite variation among different culture conditions. PCA for metabolites observed in 

(A) ethylacetate fraction and (B) aqueous fraction showed clear separation among culture conditions. The replicates are closer together, while culture groups are 

well separated along the PCA space. UpSet plot showing the number of putative metabolites that are present in either multiple-culture condition or present in 

only a specific-culture group for (C) ethylacetate and (D) aqueous fractions. Only a subset of the UpSet plot is shown to show the number of metabolites shared 

among different sample groups.
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subclasses of terpenoids out of which terpene lactones (13), diterpenoids (8), and 
sesquiterpenoids (7) were the three most abundant subclasses.

Overall, the majority of these putative terpenes were produced in both monoculture 
and coculture. A subset of terpenes that were relatively abundant in the data set 
were further processed using the program Skyline (25, 26) to manually curate metab­
olite feature extraction for refined quantification. The Skyline results can be found in 
MassIVE (see Data Availability). The abundance of these distinct terpenes varied greatly 
among the culture conditions (Fig. 4A). For example, the metabolite feature matching 
to the non-volatile diterpenoid sandaracopimaric acid was relatively more abundant in 
coculture conditions, while the monoterpenoid, myrtenal, was relatively more abundant 
in the monoculture of S. hirtellus EM16 than when S. hirtellus EM16 was cocultured 
with the other two species. Interestingly, sandaracopimaric acid has been previously 
quantified in pine resin (32) and seedling tissue where it was found to play an important 
ecological role in interactions between plant and other community members. In an effort 
to further validate the identification of sandaracopimaric acid in this study, a commercial 
standard was purchased (A2B Chem, CAS No.: 471–74-9) and measured using the same 
LC-MS/MS settings. As shown in Fig. 4B, there is a high similarity between the tandem 
mass spectra for the sandaracopimaric acid analytical standard and the Suillus-derived 
metabolite. Previous work studying pine resin and plant tissue has shown that these 
chemical fractions also have high concentrations of other non-volatile diterpenoids, 
including abietic acid, pimaric acid, and isopimaric acid (33–35). To assess tandem mass 
spectra fragmentation similarity between the isomers sandaracopimaric and abietic acid, 
we purchased a commercial standard for abietic acid (Sigma Aldrich, CAS No.: 514–10-3), 
measured using the same LC-MS/MS settings. As shown in Fig. 4C, the spectral matching 
between the Suillus-derived metabolite and this abietic acid analytical standard was also 
quite similar. Based on this piece of data alone, it is equally likely that this metabolite is 
either sandaracopimaric acid or abietic acid.

Classical molecular networking illustrates Suillus exometabolite diversity and 
distinct chemical profiles

Molecular networking was used to visualize and explore the entire chemical space 
beyond what was uncovered by the Compound Discoverer workflow. All experimental 

FIG 3 Compound classification highlighted chemical diversity of the putatively identified metabolites. 

The tool ClassyFire classified the chemical taxonomy of compounds for the non-redundant list of 487 

compounds identified using Compound Discoverer workflow. This analysis showed carboxylic acids and 

derivatives, benzene and substituted derivatives, and prenol lipids are the most abundant chemical 

classes observed in LC-MS/MS analysis for the three species of Suillus used in this study.
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data were processed on the GNPS analysis platform (https://gnps.ucsd.edu/; accessed 28 
June 2023) in a single workflow using default settings to create a classical molecular 
network that connects experimental MS/MS spectra (nodes) using a cosine scoring 
scheme (edges) ranging from 0 (totally dissimilar) to 1 (completely identical). The 
raw .mzML files from the study were separated into five different groups when performing 
classical molecular networking. All the monoculture files were grouped as one, all three 
coculture combinations were separately grouped, and all media-only controls were 
grouped together, thus resulting in five different groups. Experimental MS/MS spectra 
were matched against the GNPS-community spectral library (a relatively large collection 
of publicly accessible natural product and metabolomics MS/MS data) to assign putative 
annotations and identify molecular families, which are defined as related MS/MS spectra 
differing by simple structural or chemical transformations. The MolNetEnhancer workflow 
(36) in GNPS was used to combine the outputs from molecular networking and the 
automated chemical classification through ClassyFire to provide a more comprehensive 
chemical overview (Table S5). With the applied settings, the molecular network contained 
16,904 nodes with ~14% associated with a chemical classification (Fig. S4; Fig. 5). Among 

FIG 4 Prenol lipids relative abundance varied among culture conditions. (A) A heatmap illustrates the relative abundances of selected prenol lipids metabolites 

that varied in their abundance among culture conditions in ethylacetate fraction. These putative identifications were the result of an untargeted metabolomics 

analysis using Compound Discoverer. For each compound, the average intensity across biological replicates was Log10 transformed into a scaled value. Mirror 

match images for (B) sandaracopimaric acid, (C) abietic acid, and (D) isopimaric acid. The experimentally observed MS/MS spectrum is shown at the top, and a 

representative MS/MS spectrum from a pure standard is shown in blue color at the bottom.
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all the nodes, ~68% of the nodes belonged to subnetworks with at least two MS/MS 
spectra. Analysis of all 16,904 nodes showed that a total of 2,925 nodes were unique to 
monoculture conditions, 2,482 nodes were unique to coculture conditions, and 1,780 
nodes were observed in all the culture conditions yet absent in media blanks. Across the 
entire study, GNPS provided putative annotations for 56 metabolites, which were 
representative of nine chemical superclasses. In general, the top 20 chemical classes and 
their representation according to GNPS were similar to what was found using the 
Compound Discoverer workflow (Fig. S4). Further inspection of the resulting prenol lipid 
annotations revealed that the sandaracopimaric acid-related MS/MS spectra (Fig. 4B) from 
the Compound Discoverer workflow matched with high confidence to the stereoisomer 
isopamaric acid in the GNPS public library (Fig. 4D).

DISCUSSION

Pine trees are native to the northern hemisphere but have been introduced globally 
for shade, shelter, and wood products, making them some of the most ecologically and 
economically significant tree groups. In boreal forests, which are often nutrient poor, 
pine nutrition is largely supported by associations with ECM fungi such as Suillus. The 
establishment and maintenance of these ecological interactions depend on a combina­
tion of factors, including effective communication between the host and fungal partner. 
Secondary metabolites are well known for their role in communication between and 
within species. When secondary metabolites are released into the extracellular environ­
ment (exometabolites), they can convey information about an organism’s presence, 
function, or metabolic status. These signals help organisms recognize resources and 
threats. Typically, fungal secondary metabolites are not constitutively expressed, and 

FIG 5 Classical molecular network uncovered predominant annotated and unannotated MS/MS spectra. (A) The GNPS-derived molecular network was 

visualized by the Cytoscape software. Each node represents an MS/MS spectrum from this study. Nodes colored white represent unannotated MS/MS spectrum, 

and colored nodes represent an MS/MS spectrum associated with a putative metabolite annotation with a relatively high spectral similarity score (correlation 

>0.7). Nodes with putative annotations were annotated by the MolNetEnhancer workflow in GNPS to illustrate the different superclass annotations. Only a subset 

of the molecular network is shown by removing subnetworks with fewer than six nodes. (B) A bar plot shows the number of metabolites belonging to a chemical 

class reported by the MolNetEnhancer workflow in GNPS. The full molecular network and associated chemical classes are illustrated in Fig. S4.
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require specific metabolic or environmental cues for induction—complicating the 
characterization of these important chemical signals.

Previous whole-genome analysis suggested that the Suillus species have a relatively 
large number of terpene and NRPS-like BGCs compared to other ECM fungi (12). To 
further assess these highly specialized genomes, we used genome mining and orthol­
ogy analysis to predict and compare BGCs in three Suillus species (S. hirtellus EM16, S. 
decipiens EM49, and S. cothurnatus VC1858). We found that these three species encoded 
an abundance of BGCs, which were dominated by species-specific clusters that displayed 
little conservation between species. In agreement with previous predictions made across 
the genus (12), the majority of these clusters were composed of BGCs containing terpene 
and NRPS-like backbones.

Next, we employed metabolomics to characterize the extracellular secondary 
metabolites produced by Suillus under coculture and monoculture conditions. Conduct­
ing a global assessment of metabolites is a significant challenge because variation in 
sample preparation and methods for metabolite detection can introduce biases. This 
motivated us to perform a biphasic extraction to wholistically sample and measure 
polar and nonpolar fractions of secondary metabolites. It is important to note that 
no single analytical platform is suitable for all metabolomic studies, and the selection 
of which platform to use should be guided by the research question and the nature 
of the metabolites of interest (37, 38). For this study, LC-MS was selected for untarge­
ted metabolomic assessment because this method offers high sensitivity, selectivity, 
and comprehensive coverage for a diverse set of metabolites with different chemi­
cal properties (39, 40). Empowered by the growing availability of LC-MS public data 
resources, we sought to leverage several available spectral libraries to address another 
challenge associated with untargeted metabolomics—metabolite identification. In this 
study, secondary metabolites produced under coculture conditions were mostly fatty 
acyls, carboxylic acids and derivatives, benzene and substituted derivatives, prenol lipids, 
and organic oxygen compounds. As expected, only a small amount of the total data 
(<20%) could be assigned a putative annotation based on spectral matching against a 
public reference library. While these annotations are useful to describe the physiochem­
istry of the secondary metabolites observed, it is important to further note that these 
are putative identifications that require additional verification. The use of commercial 
standards is recommended to achieve a higher level of confidence. However, as shown 
for tandem mass spectra matching to several isomers (sandaracopimaric acid, isopimaric 
acid, and abietic acid), other orthogonal techniques (e.g., nuclear magnetic resonance 
spectroscopy) must be used to complete the identification process. Nevertheless, the 
high-mass-accuracy LC-MS putative identifications presented in this study revealed a 
vast, yet to be characterized, landscape of unknown compounds while providing new 
insights into the chemical ecology of Suillus fungi.

The exometabolome of Suillus was found to be rich in terpenes, and this observa­
tion aligned well with the derived genome-mining predictions. Given the ecological 
importance of terpenes for pine growth and defense, we manually curated quantitative 
abundances for a subset of putative terpene identifications. Among these, we further 
interrogated tandem mass spectra belonging to the non-volatile diterpenoid sandara­
copimaric acid through an assessment against several available analytical standards. 
Because the spectral matching between stereoisomer and isomer candidates cannot be 
differentiated, additional experiments are needed to complete the process of identifica-
tion. Nevertheless, the prospect of Suillus fungi producing either of these compounds is 
intriguing considering that both are typically produced by conifers such as pines (41).

While the ecological role of terpene production in ECM fungi is largely unknown, 
recent metatranscriptomic analysis of pine roots inoculated with different Suillus species 
revealed that terpene synthase genes were differentially expressed during incompati­
ble-host parings (42) suggesting that they may play a role in recognition and stress 
responses. The identification of diterpene acids in our Suillus cocultures raises several 
new questions about the ecological roles and origins of terpenes in ECM fungi. Diterpene 
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acids are known to have diverse functions in fungal community interactions; abietic acid 
is a well-known elicitor of spore germination in Suillus (43, 44) and has been shown to 
be antifungal against conifer pathogens such as Heterobasidion and Ophiostoma (45, 46). 
While diterpene acid production is not unheard of in fungi (47), the production of these 
compounds is typically associated with plants—particularly conifers, raising questions 
about the origin of diterpene acid BCGs in Suillus. Identifying the exact BGCs responsible 
for encoding these secondary metabolites is nontrivial, but further work to link these 
products to genes and determine the origin of diterpene acid production in Suillus 
(including the potential for horizonal gene transfer from the host) is warranted.

In conclusion, genome mining coupled with co-culture and untargeted metabolomics 
revealed a diverse set of secondary metabolites likely to be important for ECM commun­
ity interactions. In agreement with previous studies, we identified a large number of 
terpene BGCs using genome mining, encompassing 62 unique clusters. Importantly, 
while our coculture BGC induction method proved highly effective in inducing a variety 
of terpenes, these within-genus pairings represent only a single type of environmental 
trigger, and the true terpene diversity of Suillus is likely even greater than what we 
have reported here. Taken together, our LC-MS/MS-based untargeted metabolomics 
analysis of the Suillus exometabolome revealed diverse terpenes exuded differentially 
from species grown in monoculture- and coculture-specific conditions, highlighting the 
potential role these chemicals may play in inter- and intraspecific community interfacing.
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