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Abstract

The Entangled Brain (Pessoa, L., 2002. MIT Press) promotes the idea that we need to understand 

the brain as a complex, entangled system. Why does the complex systems perspective, one that 

entails emergent properties, matter for brain science? In fact, many neuroscientists consider these 

ideas a distraction. We discuss three principles of brain organization that inform the question 

of the interactional complexity of the brain: (1) massive combinatorial anatomical connectivity; 

(2) highly distributed functional coordination; and (3) networks/circuits as functional units. To 

motivate the challenges of mapping structure and function, we discuss neural circuits illustrating 

the high anatomical and functional interactional complexity typical in the brain. We discuss 

potential avenues for testing for network-level properties, including those relying on distributed 

computations across multiple regions. We discuss implications for brain science, including the 

need to characterize decentralized and heterarchical anatomical–functional organization. The view 

advocated has important implications for causation, too, because traditional accounts of causality 

provide poor candidates for explanation in interactionally complex systems like the brain given 

the distributed, mutual, and reciprocal nature of the interactions. Ultimately, to make progress 

understanding how the brain supports complex mental functions, we need to dissolve boundaries 

within the brain—those suggested to be associated with perception, cognition, action, emotion, 

motivation—as well as outside the brain, as we bring down the walls between biology, psychology, 

mathematics, computer science, philosophy, and so on.

INTRODUCTION

Neuroscience tends to study parts of the brain separately. The Entangled Brain (Pessoa, 

2022b) promotes the idea that, instead, we need to understand the brain as a complex, 

entangled system. Accordingly, the business of a brain region needs to be situated in the 

context of multiregion circuits: What does a brain region do “in combination” with other 

areas? In a sense, when one discusses regions R1, …, R4 as part of some function, the 

decision to “not” discuss other areas is fairly arbitrary. We could have discussed the roles of 

regions R5, R6, and so on. One of the main reasons we don’t is due to the limitations of the 

Reprint requests should be sent to Luiz Pessoa, University of Maryland, College Park, MD 20742, or via pessoa@umd.edu. 

Diversity in Citation Practices
Retrospective analysis of the citations in every article published in this journal from 2010 to 2021 reveals a persistent pattern of gender 
imbalance: Although the proportions of authorship teams (categorized by estimated gender identification of first author/last author) 
publishing in the Journal of Cognitive Neuroscience (JoCN) during this period were M(an)/M = .407, W(oman)/M = .32, M/W = .115, 
and W/W = .159, the comparable proportions for the articles that these authorship teams cited were M/M = .549, W/M = .257, M/W 
= .109, and W/W = .085 (Postle and Fulvio, JoCN, 34:1, pp. 1–3). Consequently, JoCN encourages all authors to consider gender 
balance explicitly when selecting which articles to cite and gives them the opportunity to report their article’s gender citation balance.

HHS Public Access
Author manuscript
J Cogn Neurosci. Author manuscript; available in PMC 2024 April 16.

Published in final edited form as:
J Cogn Neurosci. 2023 March 01; 35(3): 349–360. doi:10.1162/jocn_a_01908.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tools available to neuroscientists, which are ill-suited to investigating large-scale, distributed 

systems (although techniques are advancing fast). As a result, we still do not know much 

about collective computations involving larger numbers of gray matter components.

The word “entangled” conjures multiple interrelated ideas but is not intended to suggest 

something like threads that are mixed together but can be separated given enough time. The 

meaning is closer to “integrated,” but single words do not do justice to the general theme 

permeating the book—for example, cars are highly integrated systems but are designed 

with parts with well-defined functions. Instead, the sense of “entangled” is one in which 

brain parts dynamically assemble into coalitions that support complex cognitive–emotional 

behaviors, coalitions composed of parts that jointly do their job. Thus, an entangled system 

is a deeply context-dependent one in which the function of parts (such as a brain region, 

or a population of cells within a region) must be understood in terms of other parts: an 

interactionally complex system (as described below).

In this piece, I summarize a few of the key themes of the argument built in The Entangled 
Brain, including that brain functions need to be understood as “emergent properties.” Of 

course, this is not a new idea. However, neuroscientists still study and explain brain 

functions in a way that does not heed this assertion. What is more, new generations of 

students learn about the nervous system in a piecemeal fashion as if processes were fairly 

localizable—if not in areas, at least in relatively simple networks. Therefore, revisiting these 

issues is valuable for students of the brain at all levels of expertise. (N.B.: Citations in the 

text that follows are only illustrative, and in no way seek to be representative. It is my hope 

that specific work can be given proper credit in the ensuing discussions initiated by this 

piece.)

WHAT EMERGES?

The prevailing modus operandi of science can be summarized as explaining phenomena by 

reducing them to an interplay of elementary units that can be investigated independently of 

one another (Von Bertalanffy, 1950). Such a “reductionistic approach” reached its zenith, 

perhaps, with the success of chemistry and particle physics in the 20th century. In the 

present century, its power is clearly evidenced by dramatic progress in molecular biology 

and genetics. At its root, this attitude to science “resolves all natural phenomena into a 

play of elementary units, the characteristics of which remain unaltered whether they are 

investigated in isolation or in a complex” (Von Bertalanffy, 1950, p. 135).

Of course, the reductionistic framework is not the only game in town, as everyone knows 

that “the whole is greater than the sum of its parts.” Scientists study objects that have many 

components that interact in manifold ways, so figuring out the parts is not enough—or so 

the saying implies. Again, in the words of one of early proponents of complex systems, Von 

Bertalanffy, it is necessary to investigate “not only parts but also relations of organization 

resulting from a dynamic interaction” leading to “the difference in behavior of parts in 

isolation and in the whole organism” (Von Bertalanffy, 1950, p. 135). But what does it mean 

to say that parts behave differently in isolation relative to when they are part of a system?
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Enter “emergence,” a term originally coined in the 1870s to describe instances in chemistry 

and physiology where new and unpredictable properties appear that are not clearly 

ascribable to the elements from which they arise. For example, when amino acids organize 

themselves into a protein, the protein can carry out enzymatic functions that the amino acids 

on their own cannot. More importantly, they behave differently as part of the protein than 

they would on their own. But it is actually more than that. The dynamics of the system 

(the protein) closes off some of the behaviors that would be open to the components (amino 

acids) were they not captured by the overall system (Juarrero, 1999). Once folded up into 

a protein, the amino acids find their activity regulated—one sense in which they behave 

differently.

A possible definition of emergence is as follows: a novel, collective property that is observed 

when multiple elements interact that is not readily reducible to the function of the elements 

alone. Both scientifically and philosophically speaking, the friction caused by the idea of 

emergence arises because it is actually unclear what precisely emerges. For example, what 

is it about amino acids as part of proteins that differs from free floating ones? The question 

revolves around the exact status of emergent properties. Philosophers refer to this question 

as the “ontological” status of emergence, that is, one concerning the “proper existence” 

of the higher-level properties. Do emergent properties point to the existence of new laws 

that are not present at the lower level? Is something fundamentally irreducible at stake? 

As the philosopher Alicia Juarrero (1999) says, it is particularly intriguing when “systems 

exhibit organized and apparently novel properties, seemingly emergent characteristics that 

should be predictable in principle, but are not in fact” (p. 6). These types of question remain 

by-and-large unsolved and subject to vigorous intellectual battles (an excellent treatment is 

provided by Humphreys, 2016; see also Juarrero, 1999).

Fortunately, we do not need to crack the problem and can instead use “lower” and 

“higher” levels pragmatically when they are epistemically useful—when the theoretical 

stance advances knowledge. To provide an oversimplified example, we do not need to 

worry about the status between quarks and aerodynamics. Massive airplanes are of course 

made of matter, which are agglomerations of elementary particles such as quarks. But when 

engineers design a new airplane, they consider the laws of aerodynamics, the study of the 

motion of air, and particularly the behavior of a solid object, such as an airplane wing, in 

air—they need no training at all in particle physics! So, there is no need to agonize about 

the “true” relationship between aerodynamics and particle physics (e.g., can the former be 

reduced to the latter?). The practical thing to do is simply to study the former.

One could object to this example because the inherent levels of particle physics and 

aerodynamics are very far removed, one level too micro and the other too macro. More 

interesting cases present themselves when the constituent parts and the higher-level objects 

are closer to each other, for example, the behavior of an individual ant and the collective 

behavior of the ant colony, the flight of a pelican and the V-shape pattern of the flock, or 

amino acids and proteins. And of course, such is the case of the brain.
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THE BRAIN AS A COMPLEX SYSTEM?

Why does the complex systems perspective matter for brain science? In fact, many 

renowned neuroscientists consider the issues above a distraction. For example:

[A]lthough network properties of a system are a convenient explanation for 

complex responses, they tell us little about how they actually work, and the concept 

tends to stifle exploration for more parsimonious explanations…[For example, the] 

highly interconnected nature of the central autonomic control system has for many 

years served as an impediment to assigning responsibility for specific autonomic 

patterns [to particular groups of neurons]. (Saper, 2002, p. 460)

Under this view, treating the brain as a complex system is not only a temporary distraction 

but also an actual impediment to progress.

One scenario that justifies the quote’s stance is if we consider the brain to be a “near-

decomposable” system. Herbert Simon (1962) proposed that scientists are frequently 

interested in systems exhibiting “near-complete decomposability” (see also Bechtel & 

Richardson, 2010), where intrasystem interactions are much stronger than extrasystem ones. 

Engineered systems work this way, and much research in neuroscience—lesion work in 

neuropsychology, systems neuroscience, fMRI research, and so on—proceeds from this 

vantage point. Such systems are “interactionally simple,” with parts interacting weakly 

with anything considered beyond the system’s boundaries, under a given, “reasonable” 

decomposition. A trivial example is a rock, where the atoms within the rock interact strongly 

but weakly with atoms elsewhere. In contrast, a system is “interactionally complex” to the 

extent that its elements (under a certain decomposition) cross its boundaries in important 

ways. Of course, systems exhibit a spectrum of interactivity, from low to high (for in-depth 

analysis, see Wimsatt, 2007, Chap. 9).

Biologists of the brain, indeed academics across varied disciplines, have been repeatedly 

turned off by some of the putative mystical features of emergent properties. With this in 

mind, it might be advantageous to switch the language used to, hopefully, stimulate debate 

along more productive directions centered around “system interactivity.” The question of 

interest then shifts toward dissecting the types of communication and interactivity we find in 

the nervous system. Temporarily, at least, it might be productive to have “emergence” and 

“complex systems” recede into the background (hopefully in way that does not amount to a 

pure semantic sleight of hand).

The question we face is thus the following: What kind of interactional system is the brain?

PRINCIPLES OF BRAIN ORGANIZATION

To address this question, consider three principles of brain organization: (1) massive 

combinatorial anatomical connectivity, (2) highly distributed functional coordination, and 

(3) networks/circuits as functional units.
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Massive Combinatorial Anatomical Connectivity

Anatomical pathways are dominated by short-distance connections. In fact, 70% of all the 

projections to a given locus on the cortical sheet arise from within 1.5–2.5 mm (Markov et 

al., 2011). Does this not dictate that processing in the brain is local, or quasilocal?

Computational analyses of anatomical cortical pathways gathered from a large number of 

studies inform this question. Studies initially suggested that the cortex operates as a “small-

world” (Sporns & Zwi, 2004), an organization that supports enhanced signal propagation 

speed and synchronizability between parts, among other properties (Barabási & Albert, 

1999; Watts & Strogatz, 1998). In small-world networks, though most of the connectivity 

is local, a modest amount of long-range random connections suffices to endow networks 

with these properties. Arguably, the most important insight of these analyses is not that 

the brain really follows a small-world organization; after all, biological systems would not 

be expected to exhibit “random” nonlocal connections (that’s a mathematical construct!). 

Instead, the key idea is that it’s possible for a system with mostly local physical connections, 

but some mid- and long-range connections, to display “unexpected” large-scale system 

properties.

Indeed, cortical organization is not small-world. First, nonlocal pathways are not random 

and instead target a “core of regions.” Although different arrangements have been proposed, 

they indicate that cortical signals flow via a relatively small subset of richly interconnected 

and integrated areas, at times called a “rich club.” For example, Markov et al. (2013) 

identified a small subset of areas in temporal cortex, parietal cortex, frontal cortex, and 

pFC that are very highly connected structurally. It is thus likely that brain communication 

relies heavily on signals being communicated via a core (Figure 1A). Second, and 

surprisingly, experiments indicate that cortical regions are considerably more interconnected 

than previously believed. Some estimates are that 60% of the possible connections between 

pairs of areas are indeed observed in some cortical patches (Markov et al., 2013)—clearly 

not a small-world organization! The precise implications of these findings, if confirmed, 

must also consider pathway strength (not only the existence vs. absence of a connection), 

which varies over several orders of magnitude, because computational work demonstrates 

that the type of network organization (is it small-world?) strongly depends on the pattern of 

pathway strengths (Gallos, Makse, & Sigman, 2012).

Cortical connectivity, although important, is only one ingredient contributing to the 

anatomical organization of the CNS. In fact, the focus on cortical connections of most 

of the computational work neglects major connectional properties that shape the overall 

neuroarchitecture (for a comprehensive treatment, see Nieuwenhuys, Voogd, & van Huijzen, 

2008). (1) The entire cortical sheet projects to the striatum and loops back to the cortex 

via the thalamus, forming the so-called BG–cortical loops (Figure 1B). (2) The cortex and 

the thalamus are massively interconnected. Most of the thalamic volume is involved in 

bidirectional circuits with the cortex via the so-called higher-order regions (Sherman & 

Guillery, 2002). For example, the pulvinar nucleus is bidirectionally connected to the entire 

cortical sheet. (3) The hypothalamus is frequently viewed as a “descending” controller of 

autonomic functions. However, the mammalian cerebral cortex and the hypothalamus share 

massive “bidirectional” connections. In particular, in rodents, there are direct hypothalamic 
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projections to all parts of the cortical sheet (as well as multiple indirect connectivity 

systems with cortex; Risold, Thompson, & Swanson, 1997). In primates, the hypothalamus 

has widespread projections to all sectors of the pFC, including lateral sectors. (4) The 

basolateral amygdala (BLA) is bidirectionally connected with the entire cortical sheet; these 

connections are quite substantial with parts of frontal and temporal cortex, leading to the 

suggestion that this amygdala sector be called the “frontotemporal amygdala” (Swanson & 

Petrovich, 1998). (5) The cerebellum not only receives inputs from broad swaths of the 

cerebral cortex but also projects to many, if not all, of these areas. In particular, a significant 

portion of the output from the dentate nucleus of the cerebellum projects to nonmotor 

areas, including regions of pFC and posterior parietal cortex (Bostan, Dum, & Strick, 2013). 

Other major connectivity systems involve the claustrum, the septum, and the brainstem 

(Nieuwenhuys et al., 2008).

Clearly, a more complete elucidation of the properties of the connectional neuroarchitecture 

requires combining both cortical and noncortical pathway systems. The overall picture is 

one of massive interconnectivity, leading to “combinatorial” pathways between sectors. In 

other words, one can go from point A to point B in a multitude of ways. We propose that, 

combined, connectivity systems spanning the entire neuroaxis (cortical forebrain, subcortical 

forebrain, midbrain, and hindbrain) provide the basis for both broadcasting and integration 

of diverse signals linked to the external and internal worlds. Such crisscrossing connectional 

systems support the interaction and integration of signals that are typically associated with 

standard mental domains, including emotion, motivation, perception, cognition, and action 

(Pessoa, 2013) but, critically, in a manner that does not abide by putative boundaries 

between these categories (see below). I propose that this general architecture supports a 

degree of computational flexibility that enables animals to cope successfully with complex 

and ever-changing environments. The overall architecture may produce circuits with local 

specificity while attaining large-scale sensitivity, a type of “global-within-local design,” 

which likely contributes to more sophisticated, plastic, and context-sensitive behaviors 

(Pessoa, Medina, & Desfilis, 2022).

Highly Distributed Functional Coordination

The complexity of anatomical pathways allows signals to flow across the brain in a 

staggeringly large set of ways. Anatomy provides a backbone that constrains function, but 

the structure–function relationship is anything but simple when one considers the abundance 

of bidirectional connections and loop-like organization (as in the BG), combined with 

excitation, inhibition, and nonlinearities. In this manner, the anatomy supports a large range 

of “functional interactions,” namely, particular relationships between signals in disparate 

parts of the brain (e.g., they might fire coherently). For one, the anatomy will support the 

efficient communication of signals, even when strong direct pathways are absent, such as 

the functional coordination between signals in the amygdala and lateral pFC, although the 

two are not strongly connected physically. These ideas, of course, are related to the notion 

of functional connectivity, which in its most basic form can be indexed via the correlation 

coefficient between two time series (e.g., of the amygdala and the lateral pFC).
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As an illustration of functional interactions, consider an experiment that acquired fMRI in 

monkeys when they were not performing an explicit task (Grayson et al., 2016). The study 

observed robust signal correlation between the amygdala and several regions that are not 

connected to it (as far as it is known). They asked, too, whether functional connectivity was 

more related to direct (monosynaptic) pathways or multipath (polysynaptic) connectivity by 

undertaking graph analysis. Are there efficient routes of travel between regions even when 

they are not directly connected? To address this question formally, they estimated a graph 

measure called “communicability” (related to the concept of “efficiency”) and found that 

amygdala functional connectivity was more closely related to communicability than would 

be expected by considering only monosynaptic pathways. Their finding illustrates that the 

relationship between signals in disparate parts of the brain is not determined by structural 

pathways in a straightforward manner.

Networks/Circuits as Functional Units

The combination of the prior two principles leads to the present one. In a highly 

interconnected system, to understand function, we need to shift away from thinking in 

terms of individual brain regions: The network itself is the functional unit, not the brain 

area (Figure 2A). Processes that support behavior are not implemented by an individual 

area but depend on the interaction of multiple areas, which are dynamically recruited into 

multiregion assemblies. Such functional networks are based on the relationships between 

signals across disparate parts of the brain.

But how are networks/circuits defined? Let us consider here large-scale networks, such as 

those studied with fMRI in humans and rodents (Grandjean et al., 2020; Yeo et al., 2011). 

(Other examples of networks/circuits will be discussed in the context of extinction learning 

below.) The most popular partitioning schemes parse individual elements (brain regions or 

parcels) into unique groupings—a node belongs to one and exactly one community. (A 

community refers to a subdivision of a larger network, namely, a subnetwork. At times we 

will refer to subnetworks as “networks,” as in “default network,” given common usage in 

the literature.) Based on fMRI data in the absence of a task, Yeo et al. (2011) described 

a seven-community division of the entire cortex, where each local patch of tissue was 

assigned to a single community. In other words, the overall space was broken into disjoint 

communities. Their elegant work has been very influential, and their seven-network partition 

has been adopted as a sort of “canonical” division of the cortex. Whereas discrete clusters 

simplify the description of a system, do they capture the underlying organization?

Multiple types of networks (social, biological) exhibit nontrivial “overlapping organization” 

(Palla, Derenyi, Farkas, & Vicsek, 2005). For example, the study of chemical interactions 

reveals that a substantial fraction of proteins interacts with several protein groups, indicating 

that actual networks are made of interwoven sets of overlapping communities. Another way 

to motivate overlapping organization in networks is by considering “hub regions.” Both 

structural and functional analyses of brain data have revealed the existence of particularly 

well-connected regions, called hubs. For example, as discussed above, Markov et al. (2013) 

described a set of areas in temporal cortex, parietal cortex, frontal cortex, and pFC that 

are very highly connected structurally. Regions that work as “connector hubs” (Guimera 
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& Nunes Amaral, 2005) are distinctly interesting because they have the potential to 

integrate diverse types of signals (if they receive inputs from disparate sources) and/or to 

distribute signals widely (if they project to disparate targets). They are a good reminder that 

communities are not islands; regions within a (disjoint) community have connections both 

within and outside the community.

Although there are many ways to operationalize overlapping networks, a simple way is to 

allow each brain region to participate in all communities simultaneously but in a graded 

fashion. Thus, if region A does not participate in community C1, its membership value is 

0; conversely, a membership value of 1 indicates that it belongs maximally to C1. It is also 

useful to conceive of membership as a finite resource, such that it sums to 1. Applying 

these notions formally, we found that functional brain networks based on fMRI data both 

when tasks are not required and during task conditions are highly overlapping (Najafi, 

McMenamin, Simon, & Pessoa, 2016). In other words, a considerable fraction of regions 

shared their memberships across multiple communities. Indeed, overlapping organization 

has been detected via multiple networks analysis techniques (Faskowitz, Esfahlani, Jo, 

Sporns, & Betzel, 2020; Yeo, Krienen, Chee, & Buckner, 2014).

The brain is a dynamic, constantly moving object, and so are its networks. Functional 

relationships between groups of regions are constantly fluctuating based on cognitive, 

emotional, and motivational demands. Paying attention to a stimulus that is emotionally 

significant (say, paired with mild shock in the past), increases functionally connectivity 

between the visual cortex and the amygdala (Lojowska, Ling, Roelofs, & Hermans, 2018). 

Performing a challenging task in which an advance cue stimulus indicates that participants 

may earn extra cash for performing it correctly increases functional connectivity between the 

parietal/frontal cortex (important for performing the task) and the ventral striatum (important 

for reward-related processes; Padmala & Pessoa, 2011).

A vast literature has documented such changes in functional connectivity between pairs of 

regions, but distributed, large-scale changes have been observed, too (Cole et al., 2013). For 

example, in the reward study just described, the nucleus accumbens and the caudate each 

increased their functional connectivity with nearly all cortical regions engaged by the cue. 

Network analysis identified two communities, one cortical and another composed mostly 

of subcortical regions (including the nucleus accumbens and caudate). It also revealed a 

decrease of modularity when potential reward cues were encountered, consistent with the 

notion that particular conditions (in this case, the possibility of reward) reorganize large-

scale functional organization (Kinnison, Padmala, Choi, & Pessoa, 2012). In another study, 

we observed a progression of network-level changes when participants experienced threat, 

uncovering how network organization unfolds across time during anxious apprehension 

(McMenamin, Langeslag, Sirbu, Padmala, & Pessoa, 2014), a reminder that network 

functional organization must be understood dynamically, as further illustrated by studies 

of time-varying functional connectivity (Lurie et al., 2020).

The ideas of network overlap and dynamic organization are related. If brain areas can belong 

to multiple networks, what determines the strength of a region’s affiliation to a specific 

network? Here, context plays a pivotal role: region A will participate strongly in network 
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N1 during a certain context C1 but will be more strongly linked with network N2 during 

context C2. These ideas resonate with the “flexible hub theory” (Cole et al., 2013), where 

some regions are suggested to adjust their functional connectivity patterns as a function of 

task demands. This conceptualization brings us back to the functions of brain regions: The 

processes carried out by an area will depend on its network affiliations (i.e., the regions it 

clusters with) at a given time.

Overlap and dynamics promote a view in which networks do not consist of fixed collections 

of regions but instead are made of coalitions that form and dissolve to meet computational 

needs. In contrast, in the literature, networks frequently are described in terms of fixed sets 

of nodes; for example, the “salience network” might refer to nine bilateral regions plus the 

dorsal ACC (Hermans et al., 2011). But conceptualizing networks in more dynamic fashion 

is fruitful. For instance, at time t1, regions R1, R2, R7, and R9 might form a natural cluster; 

at a later time t2, regions R2, R7, and R17 might coalesce. This shift in perspective challenges 

the notion of a network as a stable unit, at least for longer periods of time, and raises new 

questions. At what point does a coalition of regions become something other than network 

N? Conversely, can we think of the “salience network,” for example, as a set of regions that 

varies temporally (see Figure 2A).

THE INTERACTIONAL COMPLEXITY OF FEAR EXTINCTION

We now discuss the neural circuits of fear extinction as an example of the types of 

network studied by systems neuroscientists, which also illustrates the challenges of trying 

to unravel the mapping between structure and function. When a conditioned stimulus no 

longer predicts the unconditioned stimulus to which it was paired in the past (say, a 

sound no longer is followed by a shock), the conditioned stimulus gradually stops eliciting 

the conditioned response. This process is called “fear extinction.” Understanding it is 

of potentially enormous consequence given the prevalence of anxiety and other related 

disorders.

The medial pFC plays an important role in regulating the amygdala during fear extinction 

(Morgan, Romanski, & LeDoux, 1993). Extinction critically depends on context, too. For 

instance, a sound may no longer signal an aversive event, but not necessarily in a completely 

novel environment, and the hippocampus is thought to provide such critical contextual 

information to the amygdala. Another region influencing extinction is the nucleus reuniens 

of the thalamus, which allows discrimination of dangerous from safe contexts (Ramanathan, 

Jin, Giustino, Payne, & Maren, 2018). At first glance, fear extinction appears to fit the 

scheme of separate contributions interacting to generate a new behavior: cognition (tied to 

the medial pFC) controlling emotion (tied to the amygdala) in a top–down fashion, with 

additional contributions related to the context of extinction and other factors (Figure 3A). 

However, such characterization does not do justice to the behavioral and neural richness of 

the phenomenon.

Let’s consider a few additional findings about fear extinction (Figure 3B). Multiple cell 

groups in the BLA actually project to the medial pFC whose outputs in turn influence 

amygdala signals. Some studies even have suggested that the BLA is upstream of the 
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medial pFC, because a population of extinction neurons in the BLA (which project to the 

medial pFC) increase their activity during extinction learning (Herry et al., 2008). The 

medial pFC is also the target of the hippocampus, and this input potentiates medial pFC 

signals during extinction. Furthermore, the medial pFC receives substantial inputs from the 

thalamus, itself a major subcortical–cortical connectivity hub. Additional contributors to 

this circuit include the ventral tegmental area, where dopamine neurons are activated by 

the omission of the aversive unconditioned stimulus during extinction (Salinas-Hernández 

et al., 2018) and are suggested to influence the BLA (possibly via indirect projections). 

Although the role of the medial pFC is well established in extinction, it is likely that 

both the OFC and the ventrolateral pFC are important for behavioral regulation in the 

presence of aversive stimuli, too (Shiba, Santangelo, & Roberts, 2016). Finally, the locus 

coeruleus in the brainstem, which is a primary source of forebrain norepinephrine, has 

important neuromodulatory effects on extinction. In fact, stress-related engagement of the 

locus coeruleus opposes extinction (Maren, 2022). (To simplify the discussion, we described 

the medial pFC as a unit, but in rodents, the main contributions during extinction involve 

the ventral/infralimbic component, which probably corresponds to the ventromedial pFC in 

humans. In addition, complex microcircuits exist within critical nodes of the circuit, such as 

the amygdala [Whittle et al., 2021], but are not discussed here.)

Now, let us return to the initial scheme of Figure 3A. This description of extinction 

instantiates a boxes-and-arrows arrangement that is a mainstay of psychology and 

neuroscience, where semantic labels can be added to some of the interactions when 

their interpretation can be distilled to a convenient concept. However, the depiction 

is fundamentally wanting not only because it lacks some regions and connections but 

also because of the implicit assumption that well-defined functions are implemented by 

individual regions, with their outputs being read by downstream regions. For example, 

the hippocampus determines context, and the medial pFC some kind of appraisal that 

determines when the amygdala should be downregulated; hence, one can place these 

functions at the regions. Their outputs are then read by the amygdala to determine what 

to do given the inputs.

In contrast, an alternative mode of thinking considers how multiple regions jointly and 

dynamically implement key processes (Figure 3A). For example, as discussed above, 

extinction neurons in the BLA are reciprocally connected to the medial pFC (Herry et al., 

2008). Thus, whereas they actually could be thought to be “upstream” of the medial pFC 

(thus flipping the typical way of thinking about the two regions, as indicated previously), it 

is important to evaluate the possibility that the two regions work in a coordinated fashion 

during extinction learning. Another reason fear extinction should be considered a circuit/

network property is that extinction has to do with processes that convert a fear-inducing 

stimulus back to a status of neutrality—an “off” switch, if you will. However, as animals 

navigate their environment, there are many stimuli that do exactly the opposite, and they 

can be considered “on” switches. Accordingly, to understand complex behaviors, one needs 

to consider how defensive behaviors are dynamically engaged and disengaged. Even more 

broadly, the defensive circuits involved intersect and interact heavily with those that promote 

exploratory and appetitive behaviors. Should the animal withdraw, stay, or approach?
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In any case, even under a more constrained conceptualization, the preceding discussion 

should help highlight the interactional complexity of systems-level processes neuroscientists 

often focus on. For one, the circuit contains both unidirectional and bidirectional 

connections, as well as both excitatory and inhibitory components. The case advanced 

here is that the field should in fact embrace this level of interactivity, not attempt to 

side step it. Otherwise, it will continue to be no surprise how little progress has been 

made in ameliorating the debilitating impacts of fear- and anxiety-related mental health 

conditions in the lives of so many people. Broadly speaking, extinction can be studied in 

the context of Pavlovian or instrumental learning (an example of the latter is avoidance 

learning where the animal makes a response to avoid foot shock). In both laboratory 

animals and humans, procedures to extinguish behavior (“instrumental extinction”) elicit 

well-documented “side effects” (for a discussion, see Bouton, Maren, & McNally, 2021). 

Examples include temporary increase of the very behavior being extinguished, a return 

of other behaviors previously extinguished, as well as increased frequency of undesirable 

behaviors such as aggression. The claim made here is that these examples appear to be 

secondary consequences when regions are considered as well-defined investigative units 

with putatively specialized functions. Instead, they are exactly the types of effects routinely 

found in nondecomposable, interactionally complex systems, where cascades of interactions 

generate “side effects.”

WHAT KIND OF NETWORK?

Let us consider two scenarios to further clarify what is meant by “network properties.” In 

a Type I network, brain regions carry out (compute) fairly specific functions. For example, 

in the context of extinction, the hippocampus determines contextual information, and the 

ventral tegmental area computes omission prediction errors. In this scenario, a process of 

interest (say, fear extinction) is still viewed as a network property that depends on the 

interactions of the brain regions involved. That is to say, it is necessary to investigate the 

orchestration of multiple regions to understand how the regions, collectively, carry out the 

processes of interest. Importantly, however, the collective properties of the system are not 

accessible, or predictable, from the behavior of the individual regions alone: The multiregion 

function, F(R1, R2, …, Rn), is poorly characterized from considering f(R1), f(R2), and so on.

Poorly characterized in what sense? In a near-decomposable system, lesion of R1, for 

example, will cause a deficit to the network that is directly related to the putative function 

of R1. However, this is not the outcome in an interactionally complex system. Consider 

multispecies ecological systems in which the introduction of a new species or the removal of 

an existing one causes completely unexpected knock-on effects (Levine, Bascompte, Adler, 

& Allesina, 2017). The claim being made here is that, in many cases, we need to consider 

brain networks in much the same way: A complex system that is not well approximated 

by simple decompositions; F(R1, R2, …, Rn) will not be well approximated by considering 

f(R1), f(R2), …, f(Rn) (Figure 2B1).

Now let us turn to Type II networks, where areas do not instantiate specific functions. 

Instead, two or more regions working together instantiate the basic function of interest, 

such that its implementation is distributed across regions. It is easy to provide an example 
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of Type II networks if we consider computational models where undifferentiated units are 

trained together to perform a function of interest. But, are there examples of this type of 

situation in the brain? Multiarea functions are exemplified by reciprocal dynamics between 

the FEFs and the lateral intraparietal area in macaques supporting persistent activity during 

a delayed oculomotor task (Hart & Huk, 2020). Based, among others, on the tight link 

between these areas at the trial level, the authors suggested that the two areas be viewed as a 

single functional unit (see Murray, Jaramillo, & Wang, 2017, and Kang & Drukmann, 2020, 

for a computational model; see also Mejías & Wang, 2022; Figure 2B2).

In rodents, motor preparation requires reciprocal excitation across multiple brain areas (Guo 

et al., 2017). Persistent preparatory activity cannot be sustained within cortical circuits alone 

but in addition requires recurrent excitation through a thalamocortical loop. Inactivation 

of the parts of the thalamus reciprocally connected to the frontal cortex results in strong 

inhibition of frontal cortex neurons. Conversely, the frontal cortex contributes major driving 

excitation to the higher-order thalamus in question. What is more, persistent activity in 

frontal cortex also requires activity in the cerebellum and vice versa (Gao et al., 2018), 

revealing that persistent activity during motor planning is maintained by circuits that span 

multiple regions. The claim, thus, is that persistent motor activity is a circuit property that 

requires multiple brain regions. In such case, one cannot point to a brain region (or even a 

sector) and label “working memory” as residing there.

It could be argued that, in the brain, the two types of networks discussed here—with and 

without well-defined node functions—are not really distinct and that what differs is the 

granularity of the function. After all, if above one could decompose the function “persistent 

motor activity” into basic primitives, it is conceivable that they could be carried out in 

separate regions. In such case, we would revert back to the situation of networks with nodes 

that compute well-defined functions. Put another way, a skeptic could quibble that, in the 

brain, a putative Type II network is a reflection of our temporary state of ignorance. The 

conjecture advanced here is that, in the brain, such reductive reasoning will fare poorly in 

the long run: It is not the case that one can develop a system of primitive properties that, 

together, span the functions/processes of interest. In many cases, network properties are 

not reducible to component interactions of well-defined subfunctions—they are inexorably 

distributed.

SOME IMPLICATIONS FOR BRAIN SCIENCE

In the preceding sections, we discussed one of the major themes of The Entangled 
Brain: Neural processes that accompany behavior are profitably viewed through the lens 

of complex, networked systems. Here, we summarize some of the implications of the 

framework to the general goal of elucidating brain functions and how they relate to brain 

parts.

Interactional Complexity

The brain is a system of interacting parts. At a local level, say within a specific 

Brodmann’s region or subcortical area, populations of neurons interact. But interactions are 

not only local. Massive anatomical connectivity provides the substrate for communication 
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crisscrossing the entire span of the neuroaxis (hindbrain, midbrain, and forebrain). This 

structural interactional complexity has important implications for brain function: Simpler 

decompositions that insulate brain regions from one another will capture only a slice of the 

contributions of the parts in question.

Anatomical interactional complexity implies that network or circuits are the functional unit 

of interest. This conclusion, when considered in a broad sense, may seem incontrovertible 

to many (most?) neuroscientists. The question then is what kind of network/circuit are 

we studying? I contend that simply enlarging the functional unit from an area to a 

standard, fixed network is only a modest step. Networks should be considered inherently 

overlapping and dynamic. Parts of the brain (say, populations of neurons within areas) 

affiliate dynamically with other elements in a highly context dependent manner driven by 

the current endogenous and exogenous demands and opportunities present to the animal. 

Critically, network properties are novel (with respect to that of individual regions), and key 

functions are distributed across regions or neuronal populations.

From this perspective, it is no surprise that neuroscientists are constantly discovering that 

brain regions participate in novel and unexpected ways in previously studied circuits and/or 

processes. Examples abound, but in the context of extinction learning, for example, a 

growing number of critical contributions of the thalamus are being discovered (Silva et 

al., 2021; Ramanathan et al., 2018). Finally, the inflexible nature of laboratory testing 

plays no small role in the apparent low interactional complexity of functional brain circuits 

(Paré & Quirk, 2017). By restricting the conditions under which circuits are interrogated, it 

appears that neuronal populations, areas, and circuits are considerably more selective for the 

properties and functions investigated.

Decentralization, Heterarchy, and Causation

In many systems, and the brain is no exception, it is instinctive to think that many of its 

important functions depend on centralized processes; for example, the pFC may be viewed 

as a convergence sector for multiple types of information, allowing it to control behavior. 

The view advanced here favors PDP (Goldman-Rakic, 1988). Instead of information flowing 

hierarchically to an “apex region” where signals are integrated, information travels in 

multiple directions without a strict hierarchy. An organization of this sort is termed a 

“heterarchy” to emphasize the multidirectional flow of information. As discussed previously, 

this does not imply an absence of organization. The anatomical backbone itself is highly 

structured, and several cortical regions are important anatomical/functional core regions 

(Markov et al., 2013). Other noncortical areas are also important hubs, including the 

thalamus, hypothalamus, BLA, and parts of the midbrain, including the superior colliculus.

The decentralized nature of processing should be understood temporally, too. When a novel 

stimulus and/or context is encountered by an animal, signals might flow first along the 

most direct and potent routes. However, behavior evolves temporally, and signal flow 

will progress in complex, decentralized ways. In fact, the spiraling pathways of the 

neuroarchitecture support communication and integration of signals across different spatial 

extents. The processing of new stimuli always take place against ongoing activity reflecting 

the immediate, recent past (and of course the more remote past), further decoupling 
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functional states from what would be anticipated by considering the most immediate 

anatomical pathways.

Investigating systems that are conceptualized as relatively decentralized instigates different 

classes of research questions about brain and behavior. If it is the coordination between the 

multiple parts that leads to the properties of interest, the object of scientific studies shifts to 

unraveling how such interactions work. For example, instead of investigating how property 

P is encoded in area A, the question becomes one of elucidating how the property arises 

from decentralized coordination. The coordination framework also moves the goalpost away 

from deciphering what information is passed from region to region—or relatedly how a 

region decodes the signals of other regions—to how the coordinated activity of multiregion 

assemblies generates signals with specific properties.

The view has important implications for causation, too, as the concept needs to be 

substantially reformulated. Neuroscientists often operate with an implicit billiard ball model 

of causation, a Newtonian scheme in which signals in one region affect the response in 

another, much like billiard balls affect each other. However, Newtonian causality provides an 

extremely poor candidate for explanation in interactionally complex systems like the brain 

because of the distributed, mutual, and reciprocal nature of the causal contributions. This is 

not to promote a Lashleyan view of causal equipotentiality; the brain is clearly very highly 

structured. So, how should one proceed?

A possible strategy to advance the understanding of causation is to investigate circuit 

controllability (Tang & Bassett, 2018; Liu & Barabási, 2016). By using tools from network 

science and mathematical control theory, one seeks to determine the extent to which certain 

network nodes can steer the system into different states. Thus, controllability of future 

system states provides a promising tool to understand the emergence of multipart properties. 

An interesting concept from this field is the notion of “pinning control,” where multiple 

inputs are applied (“pinned”) and propagate through the system, with the goal of defining 

the (future) trajectory of the system (Wang & Chen, 2002; Figure 4). Transplanting such 

reasoning to neuroscience, one could see how it could inform perturbation experiments. The 

ability to determine specific future states will depend on simultaneously stimulating and/or 

silencing sets of regions, not a single one, in particular ways.

This perspective offers avenues for testing network-level properties, too. To observe a certain 

function, F, instantiated by a certain future circuit state requires pinning multiple regions 

(or neuronal subpopulations); pinning a single one is insufficient to attain the collective 

state in question (see also Fakhar & Hilgetag, 2021, for arguments that multiregion lesion 

experiments are necessary). This type of approach also helps evaluate Type II networks, 

where function is not well defined at the area level. In such cases, manipulating two or 

more regions is necessary for the function in question to be instantiated (such as R1 and 

R3 in Figure 2B2). More generally, neuroscience will benefit from the development of 

mathematical techniques to investigate causation in complex systems, as in other areas such 

as weather prediction (Runge et al., 2019) and ecology (Sugihara et al., 2012).
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Mental Categories and the Entangled Brain

Categories such as perception, cognition, action, emotion, and motivation organize how 

we understand and study brain function. But are such mental domains consistent with 

the framework described here? In a nutshell, no. The standard decomposition adopted by 

neuroscientists requires an organization that is fairly modular, which is inconsistent with the 

principles of the anatomical and functional neuroarchitecture discussed. In general, mental 

processes of interest cut across domains and do not respect putative boundaries between 

traditional systems (e.g., emotion, cognition). In fact, crisscrossing anatomical/functional 

connectional systems dissolve potential lines of demarcation.

More broadly, brains have evolved to provide adaptive responses to problems faced by living 

beings, promoting survival and reproduction. In this context, even the mental vocabulary of 

neuroscience (attention, cognitive control, etc.), with origins disconnected from the study 

of animal behavior, provides problematic theoretical pillars. Instead, approaches inspired by 

evolutionary considerations provide potentially better scaffolds to sort out the relationships 

between brain structure and function (Cisek, 2022; Pessoa et al., 2022).

FINAL THOUGHTS

Neuroscience strives to elucidate the neural underpinnings of behaviors and has done so in 

a preponderantly reductionistic fashion for over a century and a half. The time is ripe for 

transitioning into a period when a truly dynamic and networked view of the brain takes 

hold. Future research will need to strive to make progress along several fronts: dynamics, 

decentralized computation, and, yes, emergence.

Why do we need the perspective advocated here? The claim goes back to the interactional 

complexity of the brain. If some of the ideas above are correct, neuroscience needs to stop 

treating the brain as a near-decomposable system. Doing so distorts our view of the very 

system we’re attempting to decipher. For example, we will think we can make progress in 

understanding fear and anxiety by focusing on a few regions at a time, or even isolated 

circuits. The contention made here is that this strategy is deficient (see Pessoa, 2022a).

How can the shift advocated be implemented? At least in part, current limitations stem from 

the neurotechniques available. Novel neurotechniques will play a major role. In particular, 

developments that allow recording over a larger number of regions simultaneously, as well 

as accomplishing multiregion perturbations. At the same time, a science of the mind–brain 

must stand on a solid foundation of understanding behavior (Krakauer, Ghazanfar, Gomez-

Marin, MacIver, & Poeppel, 2017), while employing computational and mathematical tools 

in an integral manner. The field needs to take stock and invest on the development of 

conceptual and theoretical pillars. Bigger and shinier tools and techniques alone will not 

yield the necessary progress; we run the risk of being able to measure every cell (or 

subcellular component even) in the brain in a theoretical vacuum. The current obsession 

in the field with causation is equally problematic. Without conceptual clarity—how should 

we even think of causation in highly entangled systems?—causal explanations in fact might 

miss the point.
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Ultimately, to explain the cognitive–emotional brain, we need to dissolve boundaries within 

the brain—perception, cognition, action, emotion, and motivation—as well as outside the 

brain, as we bring down the walls between biology, psychology, ecology, mathematics, 

computer science, philosophy, and so on.
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Figure 1. 
Combinatorial anatomical connectivity. (A) Computational analysis of cortical pathways 

suggests that a subgroup of regions works as a “rich club” (orange circles in the middle): a 

set of highly interconnected nodes that play a major role in determining the flow of signals 

across the brain. (B) The neuroarchitecture also includes multiple large-scale connectional 

systems, such as via the BG, as illustrated here. Additional systems include those involving 

the thalamus, the hypothalamus, the BLA, and the cerebellum, among others.
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Figure 2. 
From regions to networks. (A) The meaningful functional unit is not the brain region (left) 

but networks of brain regions that aggregate and disassemble as a function of time (middle 

and right). (B) Illustration of network properties (functions) in a scenario in which regions 

carry out well-defined “primitives” (B1) and when they do not (B2); in the latter, the 

function in question needs to be understood in terms a set of regions (blue contours). Note 

that in both cases, understanding the circuit behavior (function F) is not well approximated 

by considering the individual functions, f. Instead, it is necessary to consider the coordinated 

(emergent) circuit function. In B1, individual functions can be specified based on single 

regions (e.g., f(R1)), but in B2 depend on more than one region in some cases (e.g., f(R1, 

R2)). Boxes at the bottom indicate criteria to determine network-level properties, as well as 

Type II networks (in B2).
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Figure 3. 
Fear extinction circuits. (A) Basic extinction circuit centered on the BLA. The contributions 

of a few key regions are labeled with their putative functional contributions. (B) 

Extended circuit, with a larger set of brain regions believedtobeinvolved(notintended to 

becomprehensive). The blue arrows indicate indirect anatomical connectivity. The red 

arrows indicate the extensive norepinephric projections of the locus coeruleus. HIPP, 

hippocampus; LC, locus coeruleus; MPFC, medial pFC; THAL, thalamus; VTA, ventral 

tegmental area.
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Figure 4. 
Network controllability. (A) Multiperturbation methods can be used to activate and/or 

silence multiple brain regions simultaneously (here R1 and R3). (B) Such perturbations 

can be used to attempt to steer the trajectory of the system from some initial state, I, toward 

a final target state. Here, the state of the system can be represented as a point in four 

dimensions, each corresponding to the activity level at an individual region. The temporal 

evolution of the system along the state space corresponds to a trajectory.
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