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Isolation of a recombinant simian adenovirus encoding the 
human adenovirus G52 hexon suggests a simian origin for 
human adenovirus G52
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ABSTRACT Human adenoviruses (HAdVs) are causative agents of morbidity and 
mortality throughout the world. These double-stranded DNA viruses are phylogeneti­
cally classified into seven different species (A–G). HAdV-G52, originally isolated in 2008 
from a patient presenting with gastroenteritis, is the sole human-derived member of 
species G. Phylogenetic analysis previously suggested that HAdV-G52 may have a simian 
origin, indicating a potential zoonotic spillover into humans. However, evidence of 
HAdV-G52 in either human or simian populations has not been reported since. Here, we 
describe the isolation and in vitro characterization of rhesus (rh)AdV-69, a novel simian 
AdV with clear evidence of recombination with HAdV-G52, from the stool of a rhesus 
macaque. Specifically, the rhAdV-69 hexon capsid protein is 100% identical to that of 
HAdV-G52, whereas the remainder of the genome is most similar to rhAdV-55, sharing 
95.36% nucleic acid identity. A second recombination event with an unknown adenovi­
rus (AdV) is evident at the short fiber gene. From the same sample, we also isolated a 
second, highly related recombinant AdV (rhAdV-68) that harbors a distinct hexon gene 
but nearly identical backbone compared to rhAdV-69. In vitro, rhAdV-68 and rhAdV-69 
demonstrate comparable growth kinetics and tropisms in human cell lines, nonhuman 
cell lines, and human enteroids. Furthermore, we show that coinfection of highly related 
AdVs is not unique to this sample since we also isolated coinfecting rhAdVs from two 
additional rhesus macaque stool samples. Our data collectively contribute to elucidating 
the origins of HAdV-G52 and provide insights into the frequency of coinfections and 
subsequent recombination in AdV evolution.

IMPORTANCE Understanding the host origins of adenoviruses (AdVs) is critical for 
public health as transmission of viruses from animals to humans can lead to emergent 
viruses. Recombination between animal and human AdVs can also produce emergent 
viruses. HAdV-G52 is the only human-derived member of the HAdV G species. It has been 
suggested that HAdV-G52 has a simian origin. Here, we isolated from a rhesus macaque, 
a novel rhAdV, rhAdV-69, that encodes a hexon protein that is 100% identical to that of 
HAdV-G52. This observation suggests that HAdV-G52 may indeed have a simian origin. 
We also isolated a highly related rhAdV, differing only in the hexon gene, from the same 
rhesus macaque stool sample as rhAdV-69, illustrating the potential for co-infection 
of closely related AdVs and recombination at the hexon gene. Furthermore, our study 
highlights the critical role of whole-genome sequencing in understanding AdV evolution 
and monitoring the emergence of pathogenic AdVs.
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A denoviruses (AdVs) are nonenveloped, double-stranded DNA (dsDNA) viruses 
belonging to the Adenoviridae family. Since their discovery in the 1950s, over 100 
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human (H)AdV genotypes have been discovered and classified into seven species (A–G) 
based on genetic and biological features (1, 2). HAdVs cause a variety of mild-to-
severe diseases affecting the eye and the respiratory, urinary, and gastrointestinal tracts 
(3). AdVs have also been isolated from other mammalian (e.g., nonhuman primate, 
NHP) and nonmammalian (e.g., avian) species. A subset of these non-HAdVs have been 
leveraged as candidate vaccine vectors, as well as models for AdV antiviral development 
and pathogenesis (4–6). However, there are few therapeutics and no publicly available 
vaccines to combat AdV infections.

AdV evolution via recombination is a challenge to preventing and treating AdV 
infections (7–10). Recombination commonly occurs at hypervariable “hotspots” under 
high immune pressure including capsid and immune evasion genes of dsDNA viruses 
(e.g., herpes simplex viruses 1 and 2 and papillomavirus) but can also occur throughout 
the genome in both nonstructural and structural genes (11–14). For HAdVs, hotspots are 
frequently the hexon capsid, penton, and fiber receptor genes, which are responsible 
for virion structure and attachment to epithelial cells (7, 9, 10, 15–17). Recombinant 
genotypes originating from two parental AdVs that infect the same host species, as well 
as pairs that infect different host species (zoonoses), have been reported with increasing 
frequency over the past two decades; several recombinants have also been associated 
with outbreaks, such as keratoconjunctivitis caused by HAdV-85 (18–29). Zoonotic AdV 
recombinants are particularly concerning in a community lacking pre-existing immunity, 
especially if the recombinant AdV exhibits enhanced pathogenicity and transmissibility 
(28, 30–33).

The recent increase in the number of known NHP-derived AdVs (over 210 reported 
in NCBI as of October 2023) has fueled concerns for pathogenic zoonotic AdVs due to 
their high genetic relatedness with HAdVs and ability to replicate in human cells (5, 28, 
33–47). The majority of known NHP AdVs have been detected in the gastrointestinal 
tract, whereas most HAdVs affect the respiratory tract (species B and E) or eye (species 
B, D, and E) (3, 29, 39, 48). In contrast, only two HAdVs of the F species—HAdV-F40 and 
HAdV-F41—are frequently linked to human gastrointestinal infection (49, 50). HAdV-G52, 
the sole human-derived member of the G species, was isolated from the stool of a 
patient with gastroenteritis (51). However, HAdV-G52 has not been identified in any 
human sample since its report in 2007 (52, 53). Phylogenetic analysis suggests that 
HAdV-G52 may be of simian rather than human origin, and it is noteworthy that the 
isolation of HAdV-G52 utilized primary monkey kidney cells (51). The remaining members 
of the HAdV-G species are derived from NHPs and have not been reported in humans.

Although coinfection of replicating AdVs is a prerequisite for recombination, reports 
describing AdV coinfection are limited (54–56). Our understanding of coinfection is 
also currently limited to HAdV coinfections in the respiratory tract even though the 
gastrointestinal tract is also a likely site of coinfection due to persistent HAdV infection 
(57–61). One major limitation is that most current diagnostic methods cannot discern 
the presence of more than one AdV, especially if they are highly similar. Conventional, 
consensus PCR-based AdV screening methods that target a conserved locus in the 
genome may fail to detect multiple or recombinant AdVs (22, 23, 53, 62–66). In 
contrast, multiplex- and microarray-based assays can detect multiple AdV genotypes 
by leveraging a collection of genotype-specific probes targeting a single gene like hexon 
or penton. However, reliance on a single or few loci can preclude the identification of 
recombinant or novel HAdVs in the absence of whole-genome sequencing (22, 23, 43, 62, 
67, 68). For instance, a number of HAdVs (e.g., HAdV-D53 and HAdV-D63) were originally 
misclassified on the basis of hexon-targeted neutralization and sequencing assays but 
were later reclassified following whole-genome sequencing (20, 23). Direct culturing 
is another strategy for detecting coinfection in clinical scenarios, but this method is 
not routinely interrogated for AdV coinfection. Altogether, limited investigation of AdV 
coinfection impedes a deeper understanding of the rate, mechanism, and functional 
impact of recombination on AdV biology.
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In this study, we identified, isolated, and characterized two closely related, hexon-
recombinant rhAdVs (rhAdV-68 and rhAdV-69) coinfecting the gastrointestinal tract 
of a single rhesus macaque. One of the rhAdVs possessed the hexon of HAdV-G52, 
suggesting a simian rather than human origin for HAdV-G52. Despite differences in 
hexon, rhAdV-68 and rhAdV-69 shared similar in vitro growth kinetics and tropisms. We 
also identified and isolated highly related rhAdVs coinfecting two additional rhesus 
macaques. Identification of an HAdV-G52 hexon recombinant rhAdV and multiple 
coinfections expands our understanding of AdV evolution and suggests that contin­
ual surveillance is critical for identifying novel and recombinant AdVs with unknown 
pathogenic potential.

RESULTS

Isolation of rhesus adenoviruses 68 and 69 in cell culture

Previous high-throughput sequencing (HTS) analysis of the stool virome of rhesus 
macaques from a simian immunodeficiency virus (SIV) vaccine study identified several 
samples harboring sequences from novel AdVs (69). Our initial efforts to isolate novel 
AdVs from a single sample (sample 14581) using Vero E6 cells (African green monkey 
kidney epithelial cells) yielded cytopathic effects (CPEs) that could be passaged. After five 
passages, we performed one limiting dilution assay (LDA; Fig. S1A, passages 1–6). HTS 
of DNA extracted from whole lysates from two separate wells in the LDA identified two 
distinct, full-length rhAdVs genomes referred to as rhAdV-68 and rhAdV-69 in accordance 
with the current naming scheme for unclassified AdVs derived from rhesus macaque 
samples (1, 5). Phylogenetic analysis demonstrated that both rhAdV-68 and rhAdV-69 
were most closely related to rhAdV-55 at 95.39% and 95.36% nucleotide identity (ni), 
respectively (Fig. 1A; Table S1). Furthermore, rhAdV-68 and -69 were nearly identical 
to each other, sharing 98.60% overall ni across the genome (Fig. 1A). The divergence 
occurred primarily in the hexon region (85.55% ni), while the backbones of the two 
viruses shared 99.74% ni (Fig. 1B). Phylogenetic analysis of the hexon demonstrated 
that the rhAdV-69 hexon is nearly identical to HAdV-G52 hexon at the nucleotide level 
(99.20% ni) and 100% identical at the amino acid level (Fig. 2A; Fig. S2A). In contrast, the 
hexon gene of rhAdV-68 is most similar to rhAdV-64 at the nucleotide and amino acid 
levels (89.30% and 95.10% identities, respectively; Fig. 2A; Fig. S2A).

Comparison of rhAdV-68 and rhAdV-69 to their closest relative, rhAd V-55, identified 
high variability in several regions, including the early genes E1A, E1B, and E4 and the 
short fiber genes (Fig. 2B). The short fiber gene of rhAdV-68 and rhAdV-69 shared 55.36% 
amino acid identity in their closest relative, human mastadenovirus F (Fig. S2B). These 
data suggest that rhAdV-68 and rhAdV-69 are the result of rhAdV-55 undergoing at least 
two recombination events in the hexon and short fiber genes (Fig. S3A).

Virus purification by further limiting dilution assay

While rhAdV-69 was the only rhAdV in one culture (P6.2), the other culture (P6.1) of 
the LDA contained both rhAdV-68 and rhAdV-69 according to HTS. We confirmed the 
composition of rhAdV-68 and rhAdV-69 in each culture of the LDA with virus-specific 
Taqman quantitative PCR (qPCR) primers and probes targeting the hexon region (Fig. 
S1B). To physically separate rhAdV-68 and rhAdV-69, we performed a second LDA 
followed by two rounds of inoculation on Vero E6 cells to further amplify the rhAdVs 
(Fig. S1A). qPCR of the final passages (P9.1 and P9.2) confirmed that we had successfully 
separated rhAdV-68 and rhAdV-69 (Fig. S1B). In addition, whole-genome sequencing 
yielded no reads from the unique hexon region of rhAdV-68 detected in the rhAdV-69 
culture and vice versa (Table S2). Sequencing also confirmed that the genome sequences 
from P6 to P9 were identical, indicating no new mutations were acquired for either 
rhAdV-68 or rhAdV-69 during the additional passages.
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FIG 1 Identification of highly similar, coinfecting rhAdV-68 and rhAdV-69. (A) Whole genome maximum likelihood tree (unrooted) was generated using iqtree2 

with 1,000 bootstraps and the TIM2 + F + R3 substitution model following multiple sequence alignment of nucleotide sequences with MAFFT. Bootstrap values 

greater than 60 are shown at nodes. (B) Similarity plot comparing rhAdV-68 and rhAdV-69 genomes using a 200 bp sliding window and 20 bp step size. Genome 

organization for both rhAdV-68 and rhAdV-69 is depicted above the similarity plot. Protein-coding regions are represented by colored arrows indicating the 

transcriptional orientation.

Full-Length Text Journal of Virology

April 2024  Volume 98  Issue 4 10.1128/jvi.00043-24 4

https://doi.org/10.1128/jvi.00043-24


FIG 2 Phylogenetic analysis of rhAdV-68 and rhAdV-69. (A) Hexon gene maximum likelihood trees (unrooted) were generated using iqtree2 with 1,000 

bootstraps and the TIM2 + F + G4 substitution model following multiple sequence alignment of nucleotide sequences with MAFFT. Bootstrap values greater than 

60 are shown at nodes. (B) Similarity plot comparing rhAdV-68 and rhAdV-69 genomes to the closest relative, rhAdV-55, using a 200 bp sliding window and 20 bp 

step size. Genome organization for the three rhAdVs is depicted above the similarity plot. Protein-coding regions are represented by colored arrows indicating 

the transcriptional orientation.
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Comparative growth kinetics of rhAdV-68 and rhAdV-69

Hexon may play a role in viral attachment, entry, and replication of HAdVs (70). Given 
that rhAdV-68 and rhAdV-69 primarily differed at the hexon genes, we compared the 
viral growth kinetics of both viruses in Vero E6 cells (MOI = 0.01; Fig. 3). rhAdV-68 and 
rhAdV-69 exhibited similar multi-step growth kinetics, including an eclipse period of 
approximately 24 hours and similar peak viral titers {[rhAdV-68, 7.9 ± 0.1; rhAdV-69, 8.0 ± 
0.4 log10[plaque forming unit (PFU/mL)]} and genome copy levels [rhAdV-68, 10.7 ± 0.1; 
rhAdV-69, 9.7 ± 0.1 log10(genome copies/mL)] at 120 hours post infection (HPI). Infection 
with either virus induced 100% CPE by 120 HPI. No significant differences in genome 
copy levels or viral titers were detected at any timepoint.

Comparative tropism of rhAdV-68 and rhAdV-69

To determine if genetic differences influenced viral tropism, we next compared the 
tropisms of rhAdV-68 and rhAdV-69 in multiple immortalized cell lines and a human 
jejunal enteroid monolayer model lacking STAT1 (Fig. 4). We inoculated HEK293T (human 
embryonic kidney epithelia), A549 (human lung adenocarcinoma), and LLC-MK2 (rhesus 
macaque kidney epithelia) with rhAdV-68 or rhAdV-69 (MOI = 0.01) and then quantified 
viral genome copy levels at 4 HPI and once cultures exhibited 100% CPE (Fig. 4A). Each 
cell line supported rhAdV-68 and rhAdV-69 replication, with rhAdV-68 and rhAdV-69 
replicating to similar levels for a given cell line. However, the extent to which rhAdV-68 
and rhAdV-69 replicated in a specific cell line differed (Fig. 4B). Infection in LLC-MK2 cells 
produced the greatest log10 fold-change in viral genome copy levels for both rhAdV-68 
(6.07 ± 0.28) and rhAdV-69 (5.51 ± 0.19). rhAdV-69 also replicated to a greater extent in 
A549 cells (4.10 ± 0.10) and Vero E6 cells (4.12 ± 0.05) than HEK293T cells (3.65 ± 0.10). 
In contrast, viral genome copy levels were similar for Vero E6, A549, and HEK293T cells 
infected with rhAdV-68 (Fig. 4B).

rhAdV-68 and rhAdV-69 also infected and replicated to similar levels in differentiated 
human STAT-/- jejunal enteroid monolayers by 120 HPI (MOI = 5; Fig. 4C). rhAdV-68 and 
rhAdV-69 genome copy levels also increased by similar extents (3.30 ± 0.49 and 3.22 ± 
0.41 log10 fold-change, respectively) in the enteroid monolayers (Fig. 4D).

Evidence of coinfections in additional rhesus macaque stool samples

To our knowledge, gastrointestinal coinfection of closely related AdVs has not been 
previously reported in humans or NHPs. Therefore, we next examined two additional 
rhesus macaque stool samples (samples 14585 and 14587) containing rhAdVs sequences 
in our cohort to determine if rhAdV coinfection in the gastrointestinal tract is a more 

FIG 3 Comparative growth kinetics of rhAdV-68 and rhAdV-69. Multi-step growth kinetics of rhAdV-68 and rhAdV-69 were acquired in Vero E6 cells infected 

with MOI = 0.01. Extracellular viral (A) genome copy number and (B) PFU were quantified with qPCR and plaque assay, respectively. Data from three biological 

replicates are shown as the geometric mean with error bars representing the geometric SD.
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generalized phenomenon, and, if so, the relationship of the two viruses to each other 
(69). Using the culture approach followed by LDA described above, we successfully 
isolated and obtained full genome sequences for two pairs of coinfecting rhAdVs: 
rhAdV-70 and -71 from sample 14585 and rhAdV-72 and -73 from sample 14587 (Fig. 
5; Fig. S4). Phylogenetic analysis indicated that rhAdV-71, -72, and -73 were most closely 
related to rhAdV-60 (99.1%–99.4% ni) and rhAdV-70 to rhAdV-62 (98.5% ni; Fig. 5A; 
Table S1). One coinfecting rhAdVs pair (rhAdV-70 and -71) displayed less than 85% 
genome-wide ni, reflecting two distinct virus species. The second pair (rhAdV-72 and -73) 
was highly similar (99.11%) with the regions of differences primarily localized to early 
and pV genes, suggesting recombination with other rhAdVs (rhAdV-64 and rhAdV-51, 
respectively; Fig. 5B and C; Fig. S3C). Further investigation suggested that rhAdV-70, -71, 
-72, and -73 all likely underwent other recombination events at the short and long fiber 
genes, as well as other nonstructural and structural genes like hexon, penton, and early 
E1A/B genes (Fig. S3B, C and S4).

DISCUSSION

Phylogenetic analysis suggests that HAdV-G52 has a simian rather than human origin 
(51). However, evidence of HAdV-G52 in simian or human samples has not been reported 
since its initial discovery (51–53, 71). Here, we report the detection of a novel rhesus 
adenovirus genome that possesses the HAdV-G52 hexon gene, making this only the 
second time the HAdV-G52 hexon sequence has been described. The fact that the 
rhAdV-69 hexon is 100% identical to the HAdV-G52 hexon at the amino acid level and 
differs only by 21 nucleotides strongly supports the hypothesis that HAdV-G52 has a 
simian origin.

FIG 4 Comparative tropism of rhAdV-68 and rhAdV-69 in cell lines and jejunal enteroids. Extracellular rhAdV-68 and rhAdV-69 genome copy levels acquired (A 

and B) after Vero E6, A549, HEK293T, and LLC-MK2 cells (MOI = 0.01) reached 100% CPE at 5 DPI, 6 DPI, 2 DPI, and 14 DPI, respectively; and (C and D) at 5 DPI 

in human STAT1-/- jejunal monolayer enteroids (MOI = 5). Log10 fold-change in viral copy number in (B) and (D) was calculated as the log-transformed ratio of 

genome copies per milliliter at the terminal timepoint vs 4 HPI. Data from three (A and B) or four (C and D) biological replicates are shown as the geometric mean 

with error bars representing the geometric SD. One-way ANOVA with multiple comparisons, *P-value ≤ 0.05; **P-value ≤ 0.01; ***P-value ≤ 0.001; ****P-value ≤ 

0.001.
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Within the sample in which we isolated rhAdV-69, we also obtained a second 
rhAdV (rhAdV-68) that predominantly differed only at the hexon gene in comparison 
to rhAdV-69, suggesting that rhAdV-68 and -69 are recombinants. We showed that 
these two coinfecting rhAdVs exhibited similar in vitro replication kinetics and tropisms. 
We also identified additional examples of rhAdV coinfection of two additional rhesus 
macaques. One of these samples harbored a pair of rhAdVs that differed only at limited 
loci, suggesting they are also related by recombination. Our findings collectively support 
the idea that the gastrointestinal tract can be a reservoir of multi-AdV coinfections, 
making it an ideal site for the evolution of AdV via recombination. Therefore, these 
results highlight the critical need for AdV surveillance in the gastrointestinal tract since 
high levels of recombination between coinfecting AdVs might lead to novel, pathogenic 
genotypes.

All the rhAdVs isolated in this study were recovered from immunocompromised 
rhesus macaques terminally infected with SIV (69). The presence and isolation of AdVs 
from these samples is not unexpected since it is well-established that immunocompro­
mised individuals, such as those infected with HIV (SIV for NHPs) or undergoing organ 
transplantation, are at greater risk for both de novo AdV infection and expansion of 
persistent enteric AdVs (35, 69, 72–74). AdVs can persist in various mucosal sites of 
immunocompetent and immunocompromised individuals, such as within the gastroin­
testinal lamina propria (59, 61, 75, 76). However, there is limited data demonstrating 
coinfection in immunocompromised hosts, let alone in immunocompetent hosts or the 
gastrointestinal tract (54, 55). Instead, coinfection studies have primarily focused on 
pediatric populations with acute respiratory disease, wherein the coinfection rate may 
be as high as ~10% (56, 77). Failure to identify coinfections and recombinant AdVs is 
likely due to the use of low-resolution genotyping tools like PCR. Only recently have 
HTS technologies been employed in clinical settings to fully characterize HAdV infections 
(78, 79). Our findings highlight the value of HTS-based assays for characterizing HAdV 
infections since single-locus-based approaches would likely have been unable to reveal 
the coinfections identified in this study. Furthermore, the combination of virus culture 

FIG 5 Genomic characterization of coinfecting rhAdV pairs rhAdV-70 and -71 and rhAdV-72 and -73. (A) Whole genome maximum likelihood tree (unrooted) was 

generated using iqtree2 with 1,000 bootstraps and the TIM2 + F + G4 substitution model following multiple sequence alignment of nucleotide sequences with 

MAFFT. Bootstrap values greater than 60 are shown at nodes. Coinfecting rhAdVs isolated from three separate rhesus macaque stool samples in this study are 

colored as follows: rhAdV-68 (orange) and -69 (blue) from sample 14581; rhAdV-70 and -71 from sample 14585 (green); and rhAdV-72 and -73 from sample 14587 

(purple). Similarity plots comparing coinfecting rhAdVs from (B) sample 14585 and (C) sample 14587 using a 200 bp sliding window and 20 bp step size.
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and complete genome sequencing of purified viruses allowed us to identify regions 
of high variation in genomes that are otherwise >99% identical. Additional HTS-based 
surveillance studies determining the prevalence of HAdVs in the gastrointestinal tract of 
immunocompetent children and adults should also be performed to determine baseline 
levels of HAdV coinfection and recombination.

The recombinant rhAdVs isolated in this study demonstrated potential recombina­
tion events at well-documented genetic “hotspots”: hexon, fiber, and penton—the 
major capsid genes that mediate viral attachment and entry (7, 10). We also detected 
potential recombination at genes involved in viral replication (e.g., E1A and E1B19K) 
and encoding minor capsid components (e.g., pV and protease). There are few inves­
tigations of recombination at these genes, which are typically shielded from the 
host immune system and, thus, considered under less immune pressure (15, 16). 
Again, whole-genome sequencing provides insights into additional regions subject to 
recombination, suggesting there may be unrecognized and unanticipated biological 
pressures at these loci. Therefore, future investigations of how recombination at these 
genes affects the molecular properties of AdVs will likely reveal new insights into the 
host-AdV interactions.

Despite the differences between hexon and other genes, multi-step growth kinetics 
in Vero E6 cells and tropisms for rhAdV-68 and rhAdV-69 were similar. This suggests that 
neither virus has a significant competitive advantage over the other in vitro in the cells 
we tested. Future work using in vivo models is needed to examine the possible impacts of 
the hexon recombination events on virus fitness under immune pressures from the host. 
Like other simian-derived AdVs, rhAdV-68 and rhAdV-69 can replicate in both human and 
NHP cell lines, although the extent depends on the cell type (5, 36, 45). We observed the 
increase in replication in the rhesus kidney epithelial cell line LLC-MK2, suggesting that 
rhAdV-68 and rhAdV-69 may be adapted for replication in a simian host. rhAdV-68 and 
rhAdV-69 also demonstrated similar changes in replication levels in two human cell lines 
(human lung adenocarcinoma and kidney epithelia) and differentiated human jejunal 
enteroid monolayers lacking STAT1. Replication of AdVs in enteroid monolayers has been 
previously demonstrated only for HAdV-C5 and HAdV-F41 (80). The ability of rhAdV-68 
and rhAdV-69 to replicate in human cells raises the possibility of zoonotic transmission. 
Even if these viruses themselves are of limited or no pathogenicity, their ability to infect 
humans could lead to further AdV recombination that generates more pathogenic AdVs. 
Apart from this, a potential benefit of their human tropism is the possibility that these 
rhAdVs may be suitable for AdV-vectored-based vaccine research if levels of pre-existing 
immunity in humans are low (5).

In contrast to the rhAdV-69 hexon gene, the short fiber gene shared by rhAdV-68 
and rhAdV-69 is distinct from known fiber genes, with the closest relative being the 
short fiber of human mastadenovirus F (55.36% amino acid identity). This divergence is 
likely due to recombination between rhAdV-55 and an unknown AdV rather than viral 
mutation, which plays a minor role in AdV diversity compared to other dsDNA viruses 
(81–84). Therefore, rhAdV-68 and rhAdV-69 likely derived from recombination between 
an unknown AdV closely related to rhAdV-55 and either HAdV-G52 (for rhAdV-69) or an 
AdV related to rhAdV-64 (for rhAdV-68).

Future studies are needed to define the tissue tropism of these novel rhAdVs beyond 
the gastrointestinal tract. We suggest that these rhAdVs are derived from the gastroin­
testinal tract since they were recovered from stool samples and can grow in human 
intestinal organoids. However, HAdVs not associated with gastrointestinal disease or 
tropism have been detected in human fecal samples; therefore, we cannot rule out 
whether these rhAdVs infect other tissues and are merely passing through the gastroin­
testinal tract (57, 59, 74). Samples from other tissues from the infected animal were 
unavailable for us to investigate this possibility.

In conclusion, this study demonstrates the presence and characterization of highly 
related, recombinant, and coinfecting rhAdVs from the gastrointestinal tract of rhesus 
macaques using a set of bioinformatic and in vitro approaches. Our data provide insight 
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into the origins of HAdV-G52, suggesting that it may indeed be of simian rather than 
human origin. Additionally, these data suggest that surveillance of gastrointestinal AdV 
infection will be critical for monitoring the emergence of novel, recombinant, and 
potentially pathogenic AdV genotypes.

MATERIALS AND METHODS

Cell culture

Vero E6 (African green monkey kidney epithelia), LLC-MK2 (rhesus macaque kidney 
epithelia), A549 (human lung adenocarcinoma), and HEK293T (human embryonic kidney 
epithelia) were maintained in Dulbecco’s modified Eagle medium (DMEM, Gibco) 
supplemented with 10% fetal bovine serum (FBS, Gibco), 10 mM HEPES buffer (Gibco), 
100 U/mL penicillin streptomycin (100 U/mL, Gibco), 2 mM L-glutamine (Gibco), and 
0.1 mM MEM nonessential amino acids (Gibco) at 37°C with 5% CO2. For virus infections, 
all cells were cultured in the same medium with FBS content reduced to 2%.

Adenovirus cultivation, isolation, and sequencing from stool samples

Virus isolation

Three rhesus macaques stools collected in a previous study were analyzed in this study 
(14581, 14585, and 14587) (69). rhAdV-68 and rhAdV-69 were isolated from sample 14581 
according to the workflow presented in Fig. S1A. Briefly, confluent Vero E6 cells in a 
96-well plate format were initially inoculated with 20 µL of stool filtrate (passage 1). 
Following six days of incubation, infections were subjected to three cycles of freeze-
thaw. The resulting whole-cell lysates were via low-speed centrifugation (2000 rpm, 
10 minutes), and the supernatant was passaged to a new confluent Vero E6 cell layer 
(passage 2). This was repeated for a total of five passages before performing two 
successive LDAs. For LDAs, 10 µL of a 10-fold serial dilution of clarified cell lysate 
supernatant was used to inoculate confluent layers of Vero E6 cells in 96-well formats 
(n = 8 wells per dilution). Clarified whole cell lysate was collected from the greatest 
dilution at which CPE was still observed, centrifuged, and then either frozen or immedi­
ately passaged to a new layer of confluent Vero-E6 cells for further passaging. A similar 
strategy was used to isolate coinfecting rhAdV pairs from sample 14585 (rhAdV-70 and 
-71) and sample 14587 (rhAdV-72 and -73).

Whole-genome sequencing

For passage 5, total nucleic acid was extracted from the clarified supernatant of whole 
cell lysate using the Direct-zol RNA Miniprep kit (Zymo Research) according to the 
manufacturer’s protocol. RNA was randomly amplified as previously described before 
library preparation with the NEBNext Ultra DNA prep Kit for Illumina (New England 
Biolabs) (85). An Agilent 2100 Bioanalyzer was used to quantify and assess the quality of 
libraries before sequencing on Illumina MiSeq (2 × 250 bp paired-end reads). Raw data 
were analyzed using the Chan Zuckerberg ID (CZID) platform (86). For passages 6 and 
9, total DNA was extracted from the supernatant of whole cell lysate using the Qiagen 
DNeasy Blood and Tissue Kit (Qiagen) according to manufacture protocol. Libraries were 
constructed using the Illumina DNA Library prep kit (Illumina). Libraries were sequenced 
on Illumina NextSeq (2 × 150 bp paired-end reads) and analyzed with both the CZID 
platform (https://czid.org/) and a custom assembly pipeline described below (86).

Bioinformatic analyses

Viral assembly was manually verified using the following pipeline. Quality-filtered, 
trimmed (Trimgalore), and deduplicated (BBMap) reads failing to align to the human 
genome GRCh38 were used for de Bruijn-based assembly using metaSPAdes with 
BayesHammer error correction (87). Whole genomes were annotated with the Genome 
Annotation Transfer Utility tool (88). For phylogenetic analysis, sequences were aligned 
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with MAFFT using progressive methods with default settings (89). Maximum likeli­
hood trees were constructed using iqtree2 with 1,000 bootstrap replications (90). The 
substation model that minimized the Bayesian information criterion was chosen on a 
per-tree basis. Recombination analysis and visualization were performed with Simplot 
using the Kimura (2-parameter) distance model, maximum likelihood tree model, 
2.0Ts/Tv ratio, 100 bootstrap replicates, and sliding window of 200 bp with a 20 bp step 
size (91). Variant analysis was performed according to GATK standards (92). In brief, raw 
reads were quality-filtered (Phred score >30), trimmed (adapter removal and 15 bp from 
the 5’ end), and then aligned to either the rhAdV-68 or rhAdV-69 genomes using BWA 
mem with seed length of 30 and default settings. Aligned reads were then deduplicated 
with Picard prior to variant calling with VarScan2. Searches for closest relatives were 
performed using BLASTn.

qPCR assay

Total DNA was extracted from the supernatant of whole-cell lysates using the Qiagen 
DNeasy Blood and Tissue Kit (Qiagen) according to manufacture protocol. qPCR was 
performed using TaqMan Fast Virus 1-Step Master Mix (Applied Biosystems) on ViiA 7 
Real-Time PCR System in 96-well plate format. Standard curves using templates targeting 
the unique regions of the hexon genes of rhAdV-68 and rhAdV-69 were generated to 
quantify viral genome copy levels. TaqMan qPCR primers and probes (Integrated DNA 
Technologies) targeting unique regions of the hexon genes of rhAdV-68 and rhAdV-69 
are provided below. All samples were measured as technical duplicates.

rhAdV-68 forward: 5′-GGGTACCGCGTACAATTCC-3′, rhAdV-68 reverse: 5′-ACTCTCAG
CTTGTTGCTGTC-3′, rhAdV-68 probe: 5’-/56-FAM/AACCCTGCA/ZEN/GAATGGGAGGATACC
/3IABkFQ/−3’ rhAdV-69, forward: 5′-TACTCCGGCACCGCTTA-3′ rhAdV-69, reverse: 5′-GTGC
TTGGGCTCTCACTTT-3′ rhAdV-69, and probe: 5’-/56-FAM/TCCGTAGAG/ZEN/TGGCCGGATA
ACACT/3IABkFQ/−3’.

Plaque assay

Confluent Vero E6 cells in six-well plates were infected with 500 µL of 10-fold serial 
dilutions of rhAdV-68 or rhAdV-69 for 1 hour at 37°C with periodic gentle shaking. 
After incubation, cells were washed once with culture media without FBS. An overlay 
containing a 1:1 ratio of 1.2% SeaPlaque Agarose (Millipore) and 2× Modified Eagle 
Medium (Gibco) supplemented with 4% FBS was applied. After a minimum 10 days of 
incubation at 37°C, cells were fixed overnight with 4% formaldehyde and then stained 
with crystal violet for plaque counting.

Multi-step growth curve

Vero E6 cells were infected with MOI = 0.01 of rhAdV-68 or rhAdV-69 (titrated by plaque 
assay) for 1 hour at 37°C. After incubation, cells were washed once with culture media 
without FBS. The supernatant was collected and clarified (2,000 rpm, 10 minutes) at 4, 24, 
48, 72, 96, and 120 HPI for quantification of the extracellular virus by plaque assay and 
qPCR. Fresh media were supplemented at each collection timepoint to account for the 
volume of supernatant that was collected. Samples were collected for three biological 
replicates.

Virus infection of cell lines

A549, HEK293T, and LLC-MK2 cells were inoculated with MOI = 0.01 of rhAdV-68 or 
rhAdV-69 for 1 hour at 37°C. After incubation, cells were washed once with culture media 
without FBS. Whole-cell lysates were collected at 4 HPI and once infections reached 
100% CPE, which was 6 days for A549, 2 days for HEK293T, and 14 days for LLC-MK2. 
Fresh media were supplemented at each collection timepoint to account for the volume 
of supernatant that was collected. Samples were collected for three biological replicates. 
Whole-cell lysates were clarified via low-speed centrifugation (2,000 rpm, 10 minutes), 
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and DNA was extracted from the resulting supernatant using the Qiagen DNeasy Blood 
and Tissue Kit (Qiagen) according to manufacture protocol. qPCR was used to quantify 
viral genome copies as described above. Log10 fold-change in viral genome copy level 
was calculated as the genome copies per milliliter at the terminal timepoint divided by 
that at 4 HPI.

Virus infection of enteroid cultures

The J2 human STAT1-/- enteroid cultures were generated as previously described (93). 
Cultures were purchased (TMC Digestive Diseases Center Gastrointestinal Experimental 
Model Systems Core), maintained, and passaged in Matrigel matrix (Corning, #354230) 
as multilobular three-dimensional (3D) cultures in 24-well plates supplemented with 
enteroid growth medium (WRNE, with Wnt, R-Spondin, and Noggin growth factors 
in 50% L-WRN cell conditioned medium). To generate confluent monolayers, the 3D 
enteroids were dissociated with TrypLE Express (Thermo, #12604–013), filtered with a 
40 µm cell strainer (Corning, #431750), and seeded onto collagen IV-coated 96-well 
plates as monolayers.

Following culture in growth medium for 24 hours, seeded cells were plated in 
differentiation medium for 5 days before inoculation. For virus infection, monolayers 
(approximately 2 × 104 cells/well) were inoculated with rhAdVs at MOI = 5 for 2 hours at 
37°C in 5% CO2. Monolayers were then washed twice with a complete medium without 
growth factors [CMGF(−)] to remove unbound viruses. Inoculated wells were cultured 
in a differentiation medium for five days. Samples were collected at 0 HPI (immediately 
after removal of unbound virus) and 5 DPI for DNA extraction and quantification of viral 
genome copy levels with qPCR. Each experiment was performed with four technical 
replicates in each condition.

Statistical analysis

All analyses were performed with GraphPad Prism (version 10). Comparisons between 
three or more groups were evaluated with one-way ANOVA with multiple comparisons. 
Comparisons between two groups were evaluated with t tests with Welch’s correction. 
*P-value ≤ 0.05; **P-value ≤ 0.01; ***P-value ≤ 0.001; ****P-value ≤ 0.0001.
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