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Abstract

Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow

across the radial axis of the lobule generates oxygen, nutrient, and hormone

gradients, which result in zoned spatial variability and functional diversity. This

large heterogeneity suggests that hepatocytes in different lobule zones may

have distinct gene expression profiles, metabolic features, regenerative

capacity, and susceptibility to damage. Here, we describe the principles of liver

zonation, introduce metabolomic approaches to study the spatial hetero-

geneity of the liver, and highlight the possibility of exploring the spatial

metabolic profile, leading to a deeper understanding of the tissue metabolic

organization. Spatial metabolomics can also reveal intercellular heterogeneity

and its contribution to liver disease. These approaches facilitate the global

characterization of liver metabolic function with high spatial resolution along

physiological and pathological time scales. This review summarizes the state

of the art for spatially resolved metabolomic analysis and the challenges that

hinder the achievement of metabolome coverage at the single-cell level. We

also discuss several major contributions to the understanding of liver spatial
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metabolism and conclude with our opinion on the future developments and

applications of these exciting new technologies.

INTRODUCTION

The liver is a highly heterogeneous and unique
structure that supports body homeostasis through blood
detoxification, production of bile acids, and several
metabolic functions. This myriad of roles is orchestrated
in hepatocytes, KCs, HSCs, liver sinusoidal endothelial
cells, and cholangiocytes organized in a repeated
hexagonal manner. These architectural structures are
termed lobules and create a gradient of oxygen,
nutrients, and hormones that contribute to hepatic
zonation.

The human metabolome is composed of a large
number of highly diverse molecules, such as amino
acids, lipids, organic acids, and carbohydrates.[1]

These small molecules represent the substrates,
intermediates, and products of the enzymatic reac-
tions and metabolic pathways of a cell, organ, or
organism. Constituting the building blocks of the
physiological processes, metabolites are also energy
storage entities and key regulators of homeostasis
systems, participating in metabolic regulation, mem-
brane trafficking, signaling, proliferation, or apoptosis.
This results in a metabolome that is highly sensitive to
alterations. Even subtle changes in daily habits, such
as diet, increased stress, physical activity, lifestyle,
stimuli, or environmental changes, can significantly
alter the metabolite levels. Thus, metabolomics is a
powerful tool for the real-time assessment of a
metabolic state or a clinical phenotype, as well as to
decode the molecular mechanisms of metabolic-
related disorders.

Nevertheless, the highly specialized microenviron-
ment in the liver generates different metabolic profiles,
where bulk liver tissue metabolomics may compromise
the understanding of spatial and cell-specific regulators
in each disease phenotype, leading to the current
demand for spatial metabolomic approaches enabled
by advances in mass spectrometry imaging (MSI)
technology. MSI is a powerful approach to performing
in situ analysis of the molecular composition of the
biological tissue, while retaining the spatial information.
No prior knowledge or labeling is required and hundreds
to thousands of molecules can be detected simulta-
neously. This allows molecular mapping for a range
of sample types and chemical classes, revealing
an unprecedented level of information on molecular
processes at the cellular level. Importantly, single-
cell metabolomics allows high-throughput metabolic
analysis at the cellular level. Metabolites represent

precursors, intermediates, and end products crucial to
identify the respective phenotype signatures in each
zonate.[2] Spatial metabolomics can then reflect the
intracellular physiological reactions and functional state
of the tissue sample,[3] and provide the possibility to
explore the spatial metabolic profile and tissue histology
at the single-cell level, leading to a deeper under-
standing of tissue metabolic organization. However,
spatial metabolomics is challenged by the fact that,
within a single cell, metabolites are present in very low
amounts (femtomolar range) and can be more transient
(millisecond turnover) than proteins or mRNA.[4] Accord-
ingly, the methodology and sampling period will
determine the outcome.[5,6]

In the field of liver disease, the application of spatial
metabolomics is expected to strongly empower our
understanding of the metabolic processes within spe-
cific liver zonations and their impact on disease
progression and treatment. On one hand, hepatocyte
functions are oxygen dependent. On the other hand,
periportal hepatocytes are responsible for glucose
delivery, gluconeogenesis from lactate, urea synthesis,
fatty acid oxidation, sulfation, and cholesterol synthesis,
whereas pericentral hepatocytes are involved in glu-
cose uptake, glycolysis from glucose, glutamine syn-
thesis, bile acid synthesis, and lipogenesis and
ketogenesis.[7]

SPATIAL HETEROGENEITY IN THE
MAMMALIAN LIVER

Architecture of the mammalian liver

The liver is the central metabolic organ of higher
vertebrates and the largest glandular organ. The
mammalian liver is a highly complex 3D structured
and functionally heterogeneous organ with a unique
dual blood supply from the hepatic portal vein (PV),
which brings all the blood from the gastrointestinal tract,
gallbladder, pancreas, and spleen, and from the hepatic
artery that carries oxygenated blood to the liver. Portal
venous and arterial blood mix together in hepatic
sinusoids before leaving the liver through the hepatic
vein. The mammalian liver is divided into functionally
distinct lobes, which in turn are formed by honeycomb-
like structures made of repetitive functional structural
units, the liver lobules, are organized in a highly
irregular manner, and present different sizes and axial
orientations (Figure 1A).
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Liver lobules are hexagonal-shaped anatomical
functional units, centered on a branch of the hepatic
vein called the central vein (CV). The portal triads are
located in the hexagonal corners and the junction with
the neighboring lobules, and are formed by PV, the
hepatic arteriole, and bile ducts. Liver lobules are

composed of concentric layers of hepatocytes distrib-
uted into hepatic cords and containing two intertwined
radially distributed networks, the sinusoids for blood
flow and the bile canaliculi for bile flux and secretion.[8]

In the basolateral domains, hepatocytes face fenes-
trated liver sinusoidal endothelial cells that form the

F IGURE 1 Liver architecture and metabolic zonation. (A) The mammalian liver is a highly complex 3D structure organized in a honeycomb-
like arrangement made of liver lobules as repetitive functional structural units. Liver lobules can be further divided into 3 zones: the region
surrounding the portal triads, composed of the portal vein (PV), hepatic artery, and the bile duct, is called the periportal (zone 1); hepatocytes
adjacent to the central vein (CV) are known as the pericentral (zone 3); and the regions in between are referred to as the midlobular (zone 2).
(B) Currently described spatial metabolic zonation of liver metabolic processes and liver immune cells, and the molecular determinants of liver
zonation are schematically summarized.
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radial sinusoidal blood vessels. HSCs, the primary cell
type involved in fibrosis, reside in the “space of Disse”
between the hepatocytes and sinusoids. In contrast,
KCs, the liver-resident macrophages, are largely immo-
tile cells in the sinusoids. Liver lobules can be further
divided into 3 zones: the region surrounding the portal
triads is called periportal (zone 1), hepatocytes adjacent
to the CV are known as pericentral (zone 3), and
the regions in between are referred to as midlobular
(zone 2)[9] (Figure 1A). Alternatively, another way to
conceptualize the microscopic structure of the liver lobe
is by dividing them into portal lobules, centered in the
portal triads instead of the CV, or dividing them into
acini, the functional units in terms of blood flow. The
acinus contains a small portal tract at the center and
terminal hepatic venules at the periphery.[10] The liver
acinus was first divided by Rappaport into zones 1, 2,
and 3, wherein zone 1 surrounds the portal tract and
zone 3 surrounds the hepatic venule. Acinar zones 1, 2,
and 3 correspond to the periportal, middle, and
pericentral zones of the lobule.[10,11] As blood flows
inward from the periportal region to the pericentral
region, hepatocytes take up and secrete nutrients and
sense hormones. Sequential hepatocyte consumption
and production, together with local tissue morphogens,
give rise to a graded microenvironment of oxygen
concentrations, nutrients, and signaling along the
PV-CV axis and create different radial layers of
subspecialized hepatocytes, a phenomenon termed
zonation.[12] Liver metabolic zonation is a highly
regulated process critical for optimal liver function
by maintaining energy homeostasis, regulating the
metabolism of nutrients and xenobiotics, and
controlling the production, regulation, and recycling of
various proteins.

Molecular determinants of liver zonation

Since liver zonation was first described, a great effort has
been dedicated to understanding the molecular determi-
nants of liver zonation. Wnt ligands, generally considered
classical morphogens, are insoluble secreted glycopro-
teins that act through autocrine or paracrine binding to a
Frizzled receptor and LDL receptor–related protein 5/6
(LRP5/6) coreceptors. Eventually, the signaling cascade
leads to β-catenin accumulation in the cytoplasm, trans-
location into the nucleus, and interaction with the T-cell
factor family of transcription factors to help transcribe
target genes. Previous reports have shown that
under homeostatic conditions, Wnt/β-catenin activity is
restricted to pericentral hepatocytes.[13] More importantly,
compelling studies have demonstrated that conditional
liver-specific β-catenin knockouts,[14,15] inducible liver-
specific adenomatous polyposis coli knockouts,[16] and
Lrp5/6 knockouts[17] loosen zonation patterns, supporting
Wnt/β-catenin as the gatekeeper of liver metabolic

zonation. The impact of Wnt/β-catenin–induced meta-
bolic changes on liver carcinogenesis has recently been
thoroughly explored.[18–20]

Other pathways have also been implicated in liver
zonation mostly by counteracting Wnt/β-catenin signal-
ing. Hedgehog signaling, although presenting low
activity in healthy mature hepatocytes, is higher in the
periportal region and hypothetically implicated in the
regulation of zone 1 hepatocytes.[21] Hedgehog ligands,
such as Sonic hedgehog, Indian hedgehog, and Desert
hedgehog, bind to Ptch1/2 receptors to relieve patched-
mediated suppression of Smoothened. Activated
Smoothened leads to the stabilization and nuclear
translocation of GLI transcription factors.[22] Using
conditional Smoothened knockout mice, two key mech-
anisms of Hedgehog signaling regulation of liver
zonation were proposed: (i) Hedgehog signaling affects
the Wnt/β-catenin pathway by downregulating its target
gene[23] and (ii) Hedgehog signaling regulates the
insulin-like growth factor axis by means of the GLI3
transcription factor.[24] Likewise, blood-borne molecules
have been shown to activate Ras signaling, which
promotes the expression of periportal genes while
suppressing pericentral-associated genes.[25] Also, the
canonical Wnt signaling has been described to con-
verge on the hepatocyte nuclear factor-4α–driven tran-
scription to modulate liver zonation.[26,27] Another well-
described antagonist to the Wnt/β-catenin signaling
pathway is glucagon, a hormone released from the
pancreatic α-cells and distributed to the liver lobules. A
gradient drop in glucagon concentration is observed in
the sinusoid along the PV-CV axis. Noteworthy,
glucagon-deficient mice (Gcg−/−) have perturbed hep-
atic gene expression and zonation patterns, which can
be rescued by glucagon reinfusion, further suggesting
that glucagon plays a critical role in shaping liver
zonation.[28] In addition, the family of hypoxia-induced
transcription factors (HIFs) provides another layer of
regulation for liver zonation and patterned gene
expression profiles.[29] HIFs, mainly localized in the
perivenous region, are a family of oxygen-sensitive
heterodimeric transcription factors that regulate gene
expression in response to oxygen availability.[30] It has
been hypothesized that the oxygen gradient along the
PV-CV axis drives transcriptional responses regulated
by HIFs controlling the zone-dependent heterogeneity
of hepatocytes.[31,32] In agreement, ablation of the hif-1α
gene in stem cells reduces Wnt/β-catenin gene expres-
sion under hypoxic conditions,[33] and adenomatous
polyposis coli, a negative regulator of β-catenin, directly
represses HIF-1α[34] (Figure 1B). Finally, the effect of
hypophysectomy and subsequent infusion of growth
hormone or injections of triiodothyronine were used to
show that pituitary-dependent hormones regulate zone-
specific xenobiotic metabolism.[35] The influence of
pituitary hormones on liver zonation was further
confirmed using hypopituitary dwarf mice.[36]
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High-throughput methods can identify genome-wide
differences in expression between cells enriched for
periportal and pericentral hepatocytes. However, until
recently, the spatial resolution of these studies was limited
to cell populations isolated by separating hepatocytes
according to their physical characteristics, such as cell
size, cell density, and different binding to lecithins, or
more commonly, using digitonin perfusion,[37,38] retro-
grade/anterograde collagenase perfusion,[39] laser cap-
ture microdissection (LCM),[40] or using flow cytometry.[41]

In recent years, the development of novel technologies
such as single-cell RNA sequencing,[36] spatial
transcriptomics,[42] and targeted immunoaffinity-based
proteomics,[43] among others, have driven the re-exami-
nation of earlier discoveries of liver zonation determi-
nants, enlightening some novel regulators of liver
zonation. For example, using targeted immunoaffinity-
based proteomics, data mining revealed key regulators
and preferentially active pathways in either periportal or
pericentral hepatocytes. The authors confirmed that β-
catenin signaling and nuclear xenosensing receptors are
the most prominent pericentral regulators. Several kinase-
dependent and G-protein-dependent signaling cascades
are active mainly in periportal hepatocytes.[43] Also, using
single-cell RNA sequencing combined with single-mole-
cule RNA fluorescence in situ hybridization to interrogate
hepatocyte zonation in the mouse liver, 50% of the
hepatocyte genes were shown to be zonated. The major
determinants of liver zonation were Wnt/β-catenin signal-
ing and the oxygen gradient, Ras signaling, which
activates periportal genes, and pituitary signals, which
inhibit periportal genes. Surprisingly, regulation of the
expression of two-thirds of the zonated liver genes
remains to be established.[36]

In summary, although our understanding of the
molecular determinants of liver zonation has grown
immensely in the last years with the advent of novel
technologies, it is evident that many regulators or the
interplay among determinants of liver zonation remain
to be identified. On the other hand, whereas Wnt/β-
catenin signaling has been shown to regulate the
expression of one-third of the zonated hepatocyte
genes, the factors underlying the control of Wnt/β-
catenin signaling remain to be addressed. On this basis,
Dicer, an endoribonuclease III type enzyme involved in
microRNA biogenesis, has been proven to be essential
for the actions of Wnt/β-catenin signaling in liver
zonation.[44] By applying transcriptomics, microRNA
arrays, and mass spectrometry (MS) proteomics to
reconstruct spatial atlases of multiple zonated features,
protein zonation was demonstrated to largely overlap
with microRNA zonation.[45] Despite this, the relevance
of microRNAs, and other cellular properties, such as
DNA methylation patterns, chromosomal conformations
and chromatin modifications, proteomes, and metab-
olomes in the regulation of liver zonation remains to be
addressed.

Spatial metabolic zonation of liver
metabolic processes

The liver is a central hub regulating carbohydrate, lipid,
and amino acid metabolism, ammonia clearance, urea,
albumin and bile acid synthesis, and xenobiotic
metabolism, among others, and it is also involved in
the inflammatory response. The zonal-specific differ-
ences in the metabolic capacities of many enzymes of
liver hepatocytes allow different and opposing metabolic
processes to coexist simultaneously conferring optimal
liver function.

The liver regulates systemic glucose and lipid fluxes
during feeding and fasting, and relies on these substrates
for its own energy needs.[46] After a carbohydrate-rich
meal, plasma glucose is taken up by the liver and
transiently converted into glycogen and used as a
substrate for synthesizing fatty acids through de novo
lipogenesis. On the contrary, during fasting, the liver
becomes a producer of glucose to prevent a dramatic
drop in plasma glucose through the glycogenolysis
pathways and gluconeogenic synthesis from amino
acids, lactate, and glycerol. Early studies using LCM of
periportal and pericentral rat liver tissue have shown that
the gluconeogenic enzymes fructose-1,6-bisphospha-
tase, glucose-6-phosphatase, and phosphoenolpyruvate
carboxykinase are preferentially expressed in the peri-
portal zone.[47,48] In contrast, the glycolytic enzyme
glucokinase is mainly expressed in the pericentral
zone.[47,49,50] In addition, an ultrastructural heterogeneity
of glycogen lobular distribution has been described, with
periportal hepatocytes showing dense glycogen deposits
during fasting while midlobular and pericentral hepato-
cytes present sparse glycogen particles.[51,52] This func-
tional and spatial division of hepatocytes prevents futile
cycling when fulfilling both anabolic processes (ATP-
consuming, such as gluconeogenesis) in periportal
hepatocytes and catabolic requirements (ATP-generat-
ing, such as glycolysis) in pericentral cells, avoiding
competition for common substrates between pathways.
Molecular determinants of zonal glucose homeostasis
include (i) glucagon to promote hepatic glucose output in
the periportal zone[53]; (ii) HIF-2α/insulin receptor
substrate 2 that preferentially enhances insulin signaling,
thereby suppressing gluconeogenesis, and HIF-1α
that promotes glycolysis, corroborating the role of HIFs
and oxygen supply in maintaining zonal glucose
metabolism[54]; and (iii) Hedgehog signaling by the
regulation of insulin-like growth factor-1 homeostasis.[24]

The fact that glucagon, a hormone secreted in response
to fasting, can quickly alter the zonation metabolic profile
underlines the liver’s flexibility to adapt to substrate
availability.

The list of zonally expressed enzymes can be further
extended to metabolic pathways such as lipid metab-
olism. After a meal, glucose and fructose can be
channeled to fatty acid biosynthesis through de novo
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lipogenesis. On the contrary, during fasting, the liver
responds by producing glucose through glycogenolysis
and gluconeogenesis. With increased fasting time and a
shortage of glycogenic and gluconeogenic substrates,
ketone bodies provide an alternative energy source for
highly oxidative organs such as the brain. Under these
circumstances, hepatic fatty acid β-oxidation is critical
by providing the carbon backbone for ketogenesis
(acetyl-CoA) and supporting gluconeogenesis energetic
demands. Early reports indicate that the rate of fatty
acid synthesis and activity of acetyl-CoA carboxylase
are markedly enhanced in pericentral hepatocytes.[55]

However, this seems far more complex, as the staining
of fatty acid synthase, the major lipogenic enzyme, has
been shown to be diffused from the periportal to the
midzone under healthy conditions. In contrast, in
transgenic mice with hepatocyte-targeted expression
of all HCV proteins and presenting steatosis, fatty acid
synthase is concentrated in the midzone and extended
toward the centrilobular region.[56] Moreover, the oxida-
tive process of fatty acid oxidation is a zonated process
occurring preferentially in periportal hepatocytes.[55,57]

In addition, both cholesterol biosynthesis, localized in
the periportal zone, and bile acid production, in the
pericentral region, are also localized metabolic
processes.[58,59] The zonation of complementary tasks
is important for maintaining liver lipid homeostasis.

One of the best known examples of liver metabolic
processes carried out by zonated enzymes is ammonia
detoxification. In fact, the enzyme glutamine synthetase
is highly expressed within 1 or 2 layers of pericentral
hepatocytes.[60] The zonal-specific expression has
also been established for enzymes of the urea
cycle in periportal cells compared with perivenous
hepatocytes.[61] Hepatic ammonia detoxification is a
clear example of spatial recycling where periportal
hepatocytes detoxify ammonia to generate urea. This
process requires the breakdown of glutamine into
glutamate by the action of the co-localized enzyme
glutaminase, and pericentral hepatocytes take up
the excess glutamate and recover it to glutamine, by
the activity of glutamine synthetase, maintaining the
amino acid balance. Nevertheless, under steatotic
pathological conditions, this hepatic nitrogen homeo-
stasis is hampered due to loss of periportal glutaminase
2 isoform expression and appearance of glutaminase
1 throughout the liver parenchyma.[62] Also, liver-specific
knockout of β-catenin leads to a loss of glutamine
synthetase expression.[14] Moreover, adenomatous poly-
posis coli hepatic deletion results in the upregulation of
Wnt/β-catenin signaling in the periportal region and
dysregulated ammonia metabolism,[16] indicating that
β-catenin regulates the periportal urea cycle and peri-
central glutamine synthesis genes. However,Gcg-/- mice
exhibit extended glutamine synthase expression.[28]

Many enzymes of xenobiotic metabolism also exhibit
zonal-specific differences in protein or mRNA levels,

with a preferential pericentral expression of the main
detoxification enzymes, such as the cytochrome P450
monooxygenase isoforms.[49] β-catenin is thought
responsible for the localization of drug-metabolizing
enzymes in pericentral hepatocytes. Indeed, liver-
specific β-catenin knockout leads to a complete loss
of cytochrome CYP1A2 and CYP2E1 expression and
attenuated cytochrome P450 enzyme activity.[14] More-
over, gene-set analysis of pericentral hepatocytes
residing in hypoxic environments and exposed to
xenobiotics and toxic metabolites showed enrichment
for pathways regulating protein synthesis, proteasomal
activity, and mitophagy, most probably reflecting the
high need for recycling damaged mitochondria.[63]

Finally, hepatocytes suffer a gradual turnover under
homeostatic conditions. In the last few years, the concept
of hepatic zonation has been coupled with the homeo-
static renewal of hepatocytes by controversial mecha-
nisms. Zone-dependent transcriptome analysis of normal
human liver was performed using LCM to demonstrate
that the focal activation of the canonical Wnt pathway
sets in the pericentral zone as the site of homeostatic
renewal.[40] Alternatively, others identified the midlobular
zone as having the highest rate of homeostatic renewal
activity. In agreement, lineage tracing using the Wnt-
responsive gene Axin2 in mice identified a population of
proliferating and self-renewing cells adjacent to the CV in
the liver lobule.[64] On the opposite, periportal hepato-
cytes have been shown to ensure hepatocyte renewal,[65]

whereas others identified the midlobular zone as having
the highest rate of homeostatic renewal activity. The
latter suggests that midlobular hepatocytes are somehow
protected from toxic injuries and therefore gain an
advantage for regeneration activity. This midlobular zone
repopulation is driven by the insulin growth factor binding
protein 2—a mechanistic target of the rapamycin-cyclin
D1 axis.[66] Of relevance, the gene Hamp encoding for
hepcidin, a central regulator of systemic iron homeo-
stasis, has the highest expression in the mid-layers of the
lobule, and iron-regulatory gene expression during liver
regeneration has been proposed.[67]

Overall, metabolic zonation is a dynamic phenomenon
being compartmentalized spatiotemporally at the sub-
lobular scale.[63] Indeed, most hepatic gene expression
patterns and enzyme distributions change during the
daily feeding/fasting cycles and in response to drugs,
hormones, and other blood-borne factors. In addition, the
sexual dimorphic expression of a variety of zonated
genes and metabolic processes has been reported, at
least in the mouse liver.[68] Periportal hepatocytes,
existing in an oxygen and nutrient-rich environment,
carry out most of the liver metabolic functions with high
energetic demand, including fatty acid β-oxidation,
gluconeogenesis, urea, and protein synthesis, and lipid
metabolism. In contrast, pericentral hepatocytes, that
exist in a low oxygen environment, are characterized by
glycolysis, xenobiotic biotransformation reactions, and

SPATIAL METABOLOMICS AND ITS APPLICATION | 1163



glutamine synthesis, overall, less energy-demanding
processes (Figure 1B). Topographical distributions of
liver metabolic processes have been recently re-
examined by LCM approaches coupled with RNA
sequencing to provide a comprehensive transcriptome
analysis of human and mouse liver zonation.[40] In
addition, a recent study using MSI has shown
hepatocyte heterogeneity in terms of amino acid and lipid
composition.[69] Also, using MSI, liver metabolome was
shown to change with fasting in a localized pattern,
including increased levels of fatty acids and tricarboxylic
acid cycle intermediates.[70]

Spatial metabolic zonation of liver immune
cells

Most methodologies historically used to study liver
zonation select hepatocytes for analysis. Therefore, it is
not surprising that our current knowledge of hepatocyte
metabolic zonation stands out in contrast to our
contemporary understanding of the immune system of
the liver. In particular, the identity and precise local-
ization of most hepatic immune cells in healthy and
diseased human livers are unknown.

Recently, quantitative multiplex imaging, genetic
manipulations, transcriptomics, infection-based assays,
and mathematical modeling were used to reassess the
relationship between the localization of immune cells in
the liver and host protection in mice. These authors
revealed that periportal regions in the liver are enriched
with myeloid and lymphoid cells upon bacterial
infection.[71] Another study using spatial transcriptomics
demonstrated unaltered proportions of KCs in the
periportal cluster, although an enrichment in genes
related to immune system processes was found in this
zone.[42] The localization of proinflammatory responses
in periportal regions may help to protect unique cell
populations in the pericentral region. In addition, spatial
proteogenomics has been used to unravel a population
of lipid-associated macrophages that surround the bile
ducts in the healthy liver and that during steatosis
are preferentially recruited to the steatotic regions of the
liver.[72]

In the quest for a better characterization of immune
cells in the liver, doublets of hepatocytes and liver
sinusoidal endothelial cells were sequenced and
hepatocyte single-cell zonation data were used to infer
the zonation of the latter. This analysis showed that
LSEC genes are significantly zonated in the pericentral
region and enriched with Wnt signaling genes and
modulators.[36,73] Indeed, much evidence shows that
diffusible Wnt morphogens are secreted by endothelial
cells surrounding the CV and act upon nearby
hepatocytes.[36,64,73–75] In addition, liver sinusoidal
endothelial cells were demonstrated to sense gut-
derived bacteria, triggering a signaling cascade

mediated by MYD88 and chemokine secretion, which
ultimately orchestrates immune cell localization to
periportal regions.[71]

Altogether, a spatiotemporally complex intracellular
crosstalk is crucial for shaping liver zonation. In
addition, deregulated immune zonation and/or disrupted
intracellular crosstalk leading to altered liver zonation
often underlies the liver disease and vice versa, mean-
ing that several types of liver injury may disrupt
metabolic features of liver zonation.

DECIPHERING METABOLIC
HETEROGENEITY

The diversity of the metabolites is based on chemical
structures and biochemical functions,[1] and also on the
wide range of abundances. A clear example is found
among lipids, which highly dominate the diverse
composition of the human metabolome. Triglycerides,
fatty acids, and phospholipids, such as phosphatidyl-
cholines, are highly abundant, while other lipids that
play a role in signaling, such as phosphoinositides[76]

and ceramide phosphates,[77] are at trace level in
biological samples.

Bulk metabolomics

Although metabolomics is considered the youngest
among the omics sciences, it has evolved into a well-
established discipline built on the advances made in the
analytical chemistry, biochemistry, and bioinformatics
fields. Despite the noteworthy technological develop-
ments over the past 2 decades, metabolite diversity
poses a technical challenge for analytical science, as
there is no single methodology that is able to
comprehensively, or even broadly, cover the metab-
olome of complex biological samples. The extensive
array of techniques available in the field, although
robust and reproducible, are biased with respect to the
coverage of metabolites, being more sensitive to
specific classes of metabolite of interest. Thus, cohe-
sive workflows, combining different extraction techni-
ques and complementary analytical platforms, are
required to cover the metabolome diversity without
compromising the data output quality.

Nuclear magnetic resonance (NMR) spectroscopy
and MS are the 2 most common analytical techniques
used in metabolomics.[78,79] Both techniques can also
provide structural information on the molecules
detected.[80] A summary of the main features of MS
versus NMR-based metabolomics is presented in
Table 1.

Widely used in the structural characterization of small
organic compounds, NMR spectroscopy is a robust and
reliable technique for the application of metabolomics.

1164 | HEPATOLOGY



The main analytical characteristics of this technique
are its inherently quantitative character, high level of
reproducibility, and instrument stability.[78,81–83] NMR is
a nondestructive technique and the analysis of biofluids
requires minimal sample preparation, often limited to
dissolving the sample in a buffered solution. However,
the analysis of tissue samples requires further sample
preparation, to obtain hydrophilic and lipophilic fractions
of the tissue extracts. Both fractions can be analyzed by
1H NMR[84] and 31P NMR[85] spectroscopy, with the
latter enabling specific quantification of phosphorylated
compounds, such as those involved in central carbon
metabolism and phospholipid metabolism.

The number of MS-based metabolomics studies is
rapidly increasing, and it is currently the most widely
used technique for the analysis of metabolites, mainly
due to its sensitivity and versatility. Based on the
analysis of gas-phase ions, the metabolite coverage
is not only dependent on sample extraction method-
ology, but also on the choice of ionization technique
(for ion formation), mass analyzer (for ion selection),
or acquisition mode.[78,86] However, as ionization
efficiency differs among compounds due to their
chemical structure, MS is not equally sensitive for
metabolites.[87]

Mass spectrometers can be coupled to separation
techniques or use direct flow injection. Without prior
separation, direct infusion (shotgun) MS is valuable for

high-throughput screening studies as it reduces the time
of analysis and improves inter-sample reproducibility.
However, this approach cannot differentiate between
isomeric compounds and is subjected to ion suppres-
sion effects.[87] These technical limitations can be
mitigated by interfacing MS with separation techniques.
Among them, liquid chromatography (LC) coupled to
MS is the gold standard, particularly for lipidomics, with
high sensitivity and dynamic range. As for NMR
analysis, LC-MS analysis of hepatic tissue first requires
prior metabolite extraction of the homogenized tissue.
The main characteristics of the most common analytical
approaches for MS-based metabolomics are summar-
ized in Table 2.

While the strengths of NMR are its reproducibility and
direct quantification, NMR has lower sensitivity than
MS, which limits its application to detect lower abun-
dance metabolites. However, despite the high sensitiv-
ity of MS, the relative intensity of the MS-measured
metabolites does not necessarily correlate to absolute
concentrations, being dependent on ionization effi-
ciency and ion suppression effects in complex matrices.
Considering their advantages and drawbacks, both
techniques are highly complementary. However, NMR
and LC-MS metabolomic approaches provide a bulk
analysis of homogenized liver tissue or cell cultures,
and cannot determine the spatial localization of the
metabolites.

TABLE 1 Mass spectrometry-based bulk metabolomics and nuclear magnetic resonance spectroscopy: strengths and weaknesses

Method Description Advantages Limitations

MS • Based on the analysis of gas-phase
ions and measurement of the mass-to-
charge ratio of the ions

• Different configurations are available
depending on:
– Ionization technique, used for
generation of gaseous ions from the
sample/extract

– Mass analyzer, used for separation of
analytes according to mass-to-charge
ratio

– Direct injection or coupled to
separations-based techniques: gas
chromatography, liquid
chromatography, supercritical fluid
chromatography or capillary
electrophoresis

• High sensitivity and versatility
• High throughput
• Broad coverage of metabolites or
tailored analysis associated with
specific sample preparation,
separation method, and chosen
MS-configuration

• Wide dynamic range
• Low amount of sample

• Noninherently quantitative
• Not equally sensitive for all the
metabolites: the ionization
efficiency differs among
compounds

• Matrix effect on complex
samples such as hepatic tissue

• High competition for the
ionization of the metabolites,
generating ion suppression of
molecules less prone to be
ionized

• Destructive technique

NMR
spectroscopy

• Based on the magnetic properties of
atomic nuclei

• It can be applied to the analysis of small
molecules to large macromolecular
complexes (ie, lipoprotein profiling):
– 1H NMR: distinctive signal for each
proton or group of equivalent protons

– 31P NMR: analysis of phosphorylated
compounds involved in central
carbon and phospholipid metabolism

– 13C NMR: flux analysis

• Quantitative technique
• High level of reproducibility and
instrument stability

• Low experimental variability between
laboratories

• Nondestructive
• Minimal sample preparation of
biofluids or analysis of intact tissue
using 1H magic angle spinning NMR

• Low sensibility
• Requires higher amount of
sample

• Lower metabolite coverage

Abbreviations: MS, mass spectrometry; NMR, nuclear magnetic resonance.
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Spatial metabolomics and emerging
technologies

The first application of MSI on the tissue was carried out
in 1997 by Caprioli et al.[88] Subsequently, there have
been substantial technological advances and an ever-
increasing range of applications.[6,89–92] MSI can meas-
ure endogenous molecules, such as lipids, nucleotides,
peptides, and intact proteins, and study drug uptake
and distribution.[93] Recent improvements in instrument
design have enabled single-cell and subcellular
imaging,[94–97] and 3D molecule imaging.[94,98]

Technology overview

MSI instrumentation has two main functions: first, the
generation of ions from biomolecules in the tissue; and
second, the separation and detection of the generated
ions (Figure 2). There are several means of generating
ions for MSI, with secondary ion mass spectrometry,
desorption electrospray ionization (DESI), and matrix-
assisted laser desorption ionization (MALDI) being the
most frequently used (Figure 2A).

In secondary ion mass spectrometry, a focused
primary ion beam is fired at the tissue under ultrahigh
vacuum conditions. Gold, gallium, bismuth, and full-
erene (C60) cations are used as primary ions. Applying
these over the tissue induces the generation and
sputtering of secondary ions. Secondary ion mass

spectrometry offers the best spatial resolution (nano-
meter) capabilities that can reach subcellular distribu-
tions; however, the high-energy beam may induce
molecular fragmentation, making this technique more
commonly used to study low molecular weight or
inorganic species.

DESI is the so-called ambient ionization technique,
meaning that no sample preparation is required, and
ions are formed at atmospheric conditions. During
DESI, an electrically charged solvent stream is sprayed
at the tissue surface while the X-Y stage, holding the
sample, moves. Ions are desorbed from the surface and
enter the mass spectrometer through the inlet capillary.
DESI has the advantage of being a “soft” ionization
method; therefore, intact molecules can be readily
analyzed. The pixel-to-pixel resolution achieved using
DESI is typically 50–200 µm. However, higher spatial
resolution is achievable with newer designs and/or
over-sampling methodologies.[99]

MALDI first requires the application of an organic
chemical matrix to the tissue, which aids ionization
and desorption of the analyte. MALDI can be
performed under vacuum or at atmospheric pressure.
Typically a laser (eg, Nd:YAG; N2) is rastered across
the tissue of interest. The matrix absorbs the laser
energy and through localized disintegration and
charge transfer, analyte ions are released. Matrix
adducts can give rise to interfering peaks in the low
mass to charge (m/z) range; in addition, the process
of applying the matrix can introduce variability.

TABLE 2 Most common analytical methodologies for mass spectrometry-based bulk metabolomics

Method Description Advantages Limitations

Direct infusion
(shotgun) MS

• Direct infusion of sample
extracts to the MS detector

• Mainly used as a fingerprinting
method

• Relative quantification
• Used with low-resolution, high-
resolution MS, or tandem MS
instruments

• Increased analytical throughput
• Increased intersample reproducibility

• Matrix-dependent signal suppression
or enhancement in the analysis of
complex samples; ion suppression
may lead to decreased sensitivity,
especially of less abundant species

• Difficulties in resolving isobaric
metabolites (compounds with the same
nominal mass) in low resolution MS

• No resolution of isomeric compounds

LC-high
resolution
MS

• LC interfaced with the MS
detector: metabolites are
separated before their detection

• Nontarget analysis or broad
profiling of aqueous and lipid
metabolites, typically covering
400–2000 compounds

• High sensitivity
• Broad coverage of metabolites or
tailored analysis associated with
specific sample preparation,
separation method

• Ideally suited to lipidomics
• Possible combination of relative
(semiquantitative) and quantitative
analysis of some selected
metabolites

• Separation of isomeric compounds

• Usually semiquantitative; full
quantification of all detected
compounds is not possible

• Matrix effect and ion suppression,
although reduced compared with
shotgun-MS

• Generation of large amounts of data

Targeted LC-
MS

• Typically, LC coupled with a
triple quadrupole MS detector
for the analysis of preselected
metabolites

• High selectivity and sensitivity
• Approach of choice for quantitative
analysis

• Suitable for the analysis of
metabolites at low concentration

• Information of preselected compounds
only

• Specific sample preparation focused on
the selected metabolites

Abbreviations: LC, liquid chromatography; MS, mass spectrometry.
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However, MALDI tends to offer higher spatial reso-
lution than DESI, typically in the range of 5–20 µm,
but recent advances have seen a lateral resolution of
less than 2 µm.[98,100]

Following ionization, ions enter the high vacuum
region of the mass spectrometer, where they are
separated in the mass analyzer before detection. The
choice of mass analyzer will depend on the required
sensitivity, mass resolution and accuracy, scan speed,
and the need for ion fragmentation. The highest mass
resolving power can be achieved with a Fourier trans-
form ion cyclotron resonance mass spectrometer,
whereas time-of-flight mass spectrometers offer fast
scanning speeds but lower mass resolution. Excellent
mass accuracy can be achieved using Orbitrap mass
spectrometers; when coupled with a quadrupole or
linear ion trap mass analyzer, this enables tandem MS
(MS/MS) for selected fragmentation of ions to aid
metabolite assignment.

Workflow

The typical workflow for MSI (Figure 2B) would first
involve tissue collection and preservation. Fresh frozen
tissue is preferable over formalin-fixed and paraffin-
embedded tissue as the molecular availability is
decreased, and deparaffinization may give rise to the
loss of specific molecular species such as lipids.[101]

Next, tissue is cut into slices using a cryomicrotome
(10–20 µm thickness). The use of an “optimal cutting
temperature” compound for embedding before cryosec-
tioning is to be avoided as this gives rise to ion
suppression and background signal on the mass
spectrometer. When samples are fragile, alternative
MS-compatible embedding agents may be used, such
as gelatin or a hydrogel matrix composed of hydrox-
ypropyl methylcellulose and polyvinylpyrrolidone.[102]

Tissue sections are thaw mounted onto glass micro-
scope slides.

F IGURE 2 Mass spectrometry imaging (MSI) modalities and typical workflow. (A) Schematic drawing of the main ion sources used in MSI.
From left to right; secondary ion mass spectrometry (SIMS), desorption electrospray ionization (DESI), and matrix-assisted laser desorption
ionization (MALDI). In SIMS, a primary ion beam is applied to sputter secondary analyte ions off the sample. DESI uses an electrically charged
stream of solvent, which is sprayed over the tissue surface to desorb analyte ions. To aid ionization, MALDI requires the coating of the sample with
an energy-absorbing matrix. A laser is then rastered over the sample to desorb and release analyte ions. (B) A typical workflow for MALDI-MSI. (1)
Frozen tissue specimens are cryosectioned, mounted onto glass slides, and (2) coated with an energy-absorbing matrix such as 2,5-dihydrox-
ybenzoic acid using a robotic sprayer. (3) Once loaded on the instrument, a laser beam is rastered across the tissue on a pixel-by-pixel basis,
producing a mass spectrum per (x, y) coordinate or pixel. For any m/z value, a heatmap can be generated by mapping the ion intensity values
across the coordinates analyzed. (4) The resulting MSI data set is customarily interrogated in the context of the specimen histology (top).
Spatial segmentation can be carried out by clustering pixels based on their spectral similarity (bottom left). MSI can also be integrated with
other molecular imaging modalities such as immunofluorescence, imaging mass cytometry, and spatial transcriptomics (bottom right). Created
with BioRender.com.
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Before MALDI-MSI, it is necessary to apply a matrix to
the tissue surface. These are small organic compounds,
which aid the ionization and desorption of the analyte. In
positive ionmode, 2,5-dihydroxybenzoic acid and α-cyano-
4-hydroxycinnamic acid are popular choices, whereas, for
negative ion mode, 9-aminoacridine and 1,5-diaminonaph-
thalene are commonly used.[103] The matrix application
method is critical as this needs to be applied homoge-
neously, forming small crystal sizes, and without introduc-
ing any delocalization effects in the sample. The main
approaches include sublimation and robotic spraying, the
latter being the most common method.

Data analysis

During MSI, biomolecular species are ionized across a
tissue slice at distinct points in a grid-like manner,
generating complex data sets, where each coordinate or
pixel is associated with a mass spectrum, a list of m/z
values, and their corresponding intensities. These data
sets are large and complex due to their high dimension-
ality. Data are converted into a universal (imzML) format,
which can then be interrogated with commercial or open-
source software or parsed into a programming language of
choice for further analysis. Raw data requires preprocess-
ing steps, such as “binning,” baseline correction, normal-
ization, smoothing, and potentially transformation and
scaling.[89] Data processing pipelines can plot the intensity
for a single m/z value across the area sampled. This
results in a heatmap image, which shows the abundance
of the selected species across the tissue, with spatial
resolution governed by the acquisition of pixel-to-pixel
distance and area ablated. This “single ion” image can be
compared or overlaid with histological staining of an
adjacent tissue slice to match the ion images with tissue
architecture. Alternatively, where acquisition has been
nondestructive (eg, DESI), the same section can be
stained after MSI, which aids image co-registration.[104]

Analysis of MSI data can also be performed on the entire
data set with dimensionality reduction (eg, principal
component analysis, t-distributed stochastic neighbor
embedding, uniform manifold approximation, and projec-
tion) or clustering pixels with similar spectral properties.[6]

Molecular identification is one of the major bottlenecks in
metabolomics; annotation is facilitated by matching
experimentally obtained accurate mass with databases
such as the LIPID MAPS Structure Database[105] and the
HumanMetabolomeDatabase.[1] Information from isotopic
patterns and adducts can add confidence in metabolite
annotation, which is exploited in Metaspace.[106]

Multimodal imaging

The combination of multiple MSI methods applied to the
same sample can offer complementary information and

significantly extended molecular coverage.[107] MSI can
be integrated with numerous analytical modalities such
as microscopy, imaging mass cytometry, and spatial
transcriptomics. This is referred to as multimodal
imaging.[102,108] Classically, MSI data has been inter-
preted in conjunction with morphological assessment
through histological staining such as hematoxylin and
eosin and visualization by optical microscopy. In
addition, immunohistochemistry and immunofluores-
cence allow for comparing protein expression and
MSI-detected metabolite distribution.[109,110] However,
the availability of chromogens or fluorophores is a
limiting factor for multiplexing. By coupling laser ablation
to elemental MS, imaging mass cytometry allows the
detection of up to 40 targets labeled with metal-tagged
antibodies.[111] Interpretation of MSI data in the context
of spatially resolved endogenous cell markers can
provide a powerful strategy to elucidate metabolic
microenvironments and their relationship to distinct cell
subpopulations. Furthermore, the integration of MSI
(spatial metabolomics) with rapidly developing spatial
transcriptomics and proteomics methodologies can
facilitate multiomics for a spatial systems understanding
of cell and tissue organization in the liver.[112]

APPLICATIONS IN LIVER DISEASE

With ~2 million deaths per year worldwide, liver disease
represents a major economic and societal burden that is
expected to increase in the next years. Liver disease
includes a broad spectrum of pathologies including
alcohol-associated liver disease, NAFLD, viral hepatitis,
cholangitis, cirrhosis, and HCC, among others.[113]

While viral hepatitis constitutes the leading cause of
acute liver disease, the generalized adoption of the so-
called Western diet is contributing to the swift rise of
NAFLD as the leading cause of chronic liver disease,
progressing to HCC and becoming the number 1
indication for liver transplantation.[114]

In recent years, the dawn of metabolomics and
lipidomics has brought novel tools to the understanding
of liver disease, including the pathophysiology of NAFLD.
Changes in the liver lipid composition associated with
NAFLD development have been characterized[115] and
used to establish NAFLD plasma signature.[116] Consid-
ering that around 40% of cases with NASH progress
to liver fibrosis, a significant risk factor for HCC
development[117] understanding the molecular changes
at the metabolic and lipidic levels is paramount for
disease diagnosis and management, where metabolo-
mic-based and lipidomic-based approaches have been
increasingly used.[118–120] By combining genetic and
dietary murine models of NAFLD, the role of receptor-
interacting protein 3 in NAFLD pathophysiology was
demonstrated,[121] which impacted necroptosis and
hepatic lipid profiles associated with NAFLD.[122,123]
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Animal models have also been used to deepen the
knowledge of organ-organ communication and its impact
on liver metabolism, where the relevance of the gut
microbiota is emerging. Changes in mouse gut micro-
biota and metabolites can drive NAFLD progression to
HCC.[124] Moreover, cecum and liver metabolic signa-
tures have been described in obese mice using the
high-fat diet (HFD) model.[125] Interestingly, circulating
microRNAs are known modulators of metabolic
profiles[45,126,127] and might also influence gut
microbiota,[128–130] which in turn may alter the systemic
metabolome. Therefore, it is crucial to localize the origin
of specific metabolites to precisely address the influence
of each factor on liver disease onset and progression.

Metabolic liver disease

The application of spatial metabolomic methodologies
such as MALDI-MSI aids in the understanding of
metabolic zonation in the liver tissue and metabolite
spatial distribution changes associated with (patho)
physiological processes (Table 3). Many of these
efforts have focused on NAFLD and its progression to
NASH.[131,133,134] Changes in specific phospholipid
distributions were linked to the upregulation of enzymes
involved in membrane remodeling and eicosanoid
formation.[133] This resulted in the exacerbation of
inflammation contributing to regional oxidative damage
in NASH. In another study, alterations in N-linked
glycosylation were linked to histopathological features
of NASH, with an increase in fucosylated and high
mannose glycans in the fibrotic and steatotic regions of
the tissue, respectively.[143] MALDI-MSI has also been
used to differentiate macro and micro steatosis in the
human liver by their constituent lipids. Macrosteatosis
was found to be enriched in saturated triglyceride
species, indicating that the origin of these may be from
de novo lipogenesis.[135]

As referred to previously, liver zonation contributes to
specific protein, glucose, and lipid metabolism patterns
across the tissue. In 2013, using this evidence and the
possible role of phosphatidylcholine in NASH patho-
genesis, phosphatidylcholine specimens with 32, 34,
and 36 carbons were found to be decreased in simple
steatosis and NASH patients compared with controls.
Using MALD-MSI, the authors determined that the
distribution of these phosphatidylcholines was highly
zonated and that this feature was lost in simple
steatosis and NASH. This work highlighted the impor-
tance of phospholipid zonation and its implications for
the onset and progression of NAFLD.[131] In line with
this, zonation of lipid species in human and murine
NAFLD was linked to the colocalization of calcium-
dependent lysophosphatidylcholine acyltransferase
2 enzyme. Lysophosphatidylcholine acyltransferase
2 enzyme had a higher expression adjacent to

pericentrally located lipid droplets and infiltrating
macrophages, suggesting an interplay between lipid
zonation and macrophage infiltration in liver disease
progression.[133]

An HFD is known to alter the all-body metabolome,
which in turn influences interorgan communication.
Using an HFD mouse model, metabolic dysregulation
was analyzed in a variety of tissues including adipose
and liver, before and after HFD. White and brown
adipose tissue and liver suffered higher metabolomic
alterations when comparing HFD with the chow diet. In
liver tissue, carbohydrates were the main metabolites
reaching 53% of all metabolites on chow contrary to
only 8% on HFD, while on the other hand lipids rose
from 11% to 52% on the chow diet and HFD,
respectively. Overall, this study contributed to mapping
the interorgan communication within selected tissues
after HFD and during the mouse circadian circle, which
was essential for the chronological reconstruction of the
complex metabolome across tissues.[144] In another
study, spatially resolved lipids were measured by
MALDI-MSI in the liver tissue with varying degrees of
NAFLD progression. A profound difference was shown
between steatotic and nonsteatotic zonated liver
tissues. Nonsteatotic regions were predominantly asso-
ciated with phosphatidylinositols and arachidonic acid
metabolism, while steatotic areas were more prone to
metabolize low-density and very LDLs.[134] Using
human liver samples with no alterations, simple
steatosis, steatosis, and cirrhosis, saturated triglycer-
ides were found to accumulate in hepatocytes with
macrovesicular steatosis. During short-term steatosis,
this effect might be beneficial as it may protect cells
against high levels of saturated fatty acids. However, if
this becomes chronic, macrovesicular steatotic areas
enriched with saturated triglycerides will undergo
ballooning, suggesting a crucial role for saturated
triglycerides in the development of NASH.[135]

In the same line, to understand how lipid metabolism
modulates liver steatosis, sodium adduct ions were
used along with gold and stable isotope tracer protocol
coupled with laser desorption ionization–mass spec-
trometry (LDI-MS) to capture the spatial character-
ization of triglyceride isotopic patterns (lipogenic flux) at
50 μm spatial resolution. Gold LDI−MS showed, in an
in vivo model of diet-induced obesity mice, an increase
in lipogenesis with the highest average isotope ratio
observed in chow-fed mice across 2 triglycerides (TG
52:2 and TG 54:3) and 1 cholesterol ester (CE 18:1).
Indeed, lipogenic activity was region specific; however,
contrary to what would be expected, this activity was not
determined by triglyceride pool size.[137]

Recently, another important discovery was the spatial
distribution of abundances of released N-glycans during
NASH. Using both human samples and mice models, a
correlation was identified between fibrotic and fatty areas
within the tissue and a significant alteration of complex/
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TABLE 3 Application of spatial metabolomics in the study of liver pathophysiology and its implication in zonation

Sample/study description Technique Metabolic differences Year References

Liver tissue from obese normal, simple steatosis and
NASH of class III obese women

MALDI-MSI • Zonal distributions for 32, 34, and 36 carbon PC in controls lost in
simple steatosis or NASH

2013 Wattacheril et al[131]

Primary liver cells from ethanol-treated and silymarin-
treated mice

MFD-MD • Hydrogen peroxide, glutathione, and cysteine were detected
simultaneously with high specificity and sensitivity

• Identification of significant cell diversity or cell heterogeneity among
primary liver cells

2016 Li et al[132]

Liver tissue from mice under HFD, WD, and MCD; human
liver biopsies from control, simple steatosis, NASH, and
patients with cirrhosis

MALDI-MSI • Zonal location of arachidonic acid-containing phospholipids; loss of
lipid zonation in NASH

2017 Hall et al[133]

Fresh frozen human liver biopsies from obese subjects
undergoing bariatric surgery with various degrees of
NAFLD

MALDI-TOF MSI • Marked differences between spatially resolved lipid profiles from
nonsteatotic and steatotic tissues

• PI and arachidonic acid metabolism in nonsteatotic regions
• LDL and VLDL metabolism associated with steatotic tissue

2018 Ščupáková et al[134]

Human liver biopsies from control, simple steatosis,
NASH, and patients with cirrhosis

Au-CBS-LDI MS • Differential distribution of TGs: in low steatosis levels, TG
accumulated around the pericentral zone

• Macro lipid droplets hepatocytes enriched in fully saturated TG
• In NASH and cirrhosis biopsies, TG enrichment observed in
ballooned areas

2019 Alamri et al[135]

Liver tissue from mice exposed or not to a single dose of B
[a]P

MALDI-MSI • B[a]P exposed mice with an altered abundance of PI, PC, TG, PE,
LysoPEs, LysoPC, FFA, and eicosanoids

2020 Li et al[136]

Liver tissue from mice under HFD (Au)LDI−MS • The lipogenic activity is shown to be regiospecific and not always
associated with the TG pool size in a given region

2020 Downes et al[137]

OCT-embedded and snap-frozen wild-type mouse and
human fibrotic liver tissues

TOF-SIMS • Different ion species associated as metabolic markers for different
liver cell types:
– hepatocytes: m/z 255, 279, and 281
– endothelial cells: m/z 60, 76, and 77
– KCs: m/z 134, 181, and 91

• Hepatocytes subclassified by C1–C4 each presenting different
metabolic fingerprints:

• hepatocytes C1 localized around the CV and near fibrotic
boundaries, and associated with metabolic markers m/z 69, 55, and
57

2021 Yuan et a.[138]

Differentiated human hepatocytes cell line; liver tissue
from mice under WD

MALDI-MSI • Steatotic hepatocytes presented aberrant accumulation of lipid
droplets and neutral lipids (TG and DG), and glycerophospholipid
ER-enrichment

• Inflammatory steatotic hepatocytes with increased sphingomyelins

2021 Rappez et al[139]

Liver tissues from mice exposed to third-hand smoke
treated or not with antioxidants

LDI-MSI • Third-hand smoke-exposed mice presented increased TG and
decreased PC and SM lipid species, accumulating in larger and
more abundant lipid droplets

• Third-hand smoke mainly dysregulated glutathione metabolism,
D-glutamine and D-glutamate metabolism, and oxidative
phosphorylation

2021 Torres et al[140]
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fucosylated glycans and high mannose glycans. Here,
the authors suggested that during early stages of liver
disease, significant changes in the core fucosylation
might drive liver damage progression to NASH.[143]

The spatial single-nuclear metabolomics method was
the first to allow the segmentation and analysis of a
single nuclear metabolic profile directly on tissue
sections. This new multiscale spatial resolution platform
combines experiments and computational algorithms to
quantitatively characterize the metabolic intracellular or
intercellular features. In a recent study, spatial single-
nuclear metabolomics was applied to mice liver and
human fibrotic liver samples.[138] In mice, 9 zones were
arithmetically determined from the CV to the periportal
vein, and 6 metabolic markers showed a gradient
decrease from the CV to zone 9. In human fibrotic liver
tissue samples, 7 subpopulations were identified
(3 hepatocytes, KCs, immune cell, fibroblast, and
endothelial cell populations). Among the 3 different
populations of hepatocyte subtypes, the differential
metabolic states were associated with spatial local-
ization. Interestingly, one subtype is closer to the fibrotic
tissue, proving that the proximity to the fibrotic tissue
alters the metabolic profile of the neighbor
hepatocytes.[138]

Alexandrov and his team have recently developed a
new method for spatially resolved single-cell metabolo-
mics that integrates metabolic profile, morphometric, and
fluorescence intensities, named SpaceM.[139] By combin-
ing light microscopy and MALDI-MSI, they characterized
the metabolic states of lipid-stimulated hepatocytes in an
inflammatory environment, revealing populations with
distinct metabolic states that were constituent with murine
models of NASH. This method can be used for a wide
range of adherent cell cultures and enables the analysis of
thousands of cells, each sampled in situ. The use of
SpaceM in human hepatocyte fatty acids allowed the
separation of hepatocytes into 2 distinct subpopulations,
high and low steatotic levels. Among the high-fat
hepatocyte subpopulation, it was possible to distinguish
between “benign” and “inflammatory” steatotic hepato-
cytes, as both presented different metabolic profiles, with
ceramide phosphocholines (sphingomyelins) being highly
enriched in the “inflammatory” steatotic hepatocytes.
Thus, the SpaceM method allows single-cell metabolo-
mics of in vitro cell cultures and contributes to deciphering
in vivo results.

Spatial liver metabolomics was recently used in
another study to achieve broad coverage of central
carbon, nucleotide, and lipid metabolism pathways.[70] A
workflow was implemented to prepare tissue specimens
for MALDI-MSI. This technique allowed the visualization
of the liver zonates up to 30 μm pixel resolution and
enabled the identification of the disruption of highly
organized metabolic liver zonates in mice. This method
was validated using 2 mice models, fasted versus
nonfasted and regular chow diet versus HFD. In the firstLi
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model, hepatocyte fatty acid content within the liver
microenvironment was specific to proximity to the
vasculature under nonfasting conditions. Specifically,
fatty acid docosahexaenoic and arachidonic acid were
spatially distributed, with docosahexaenoic closer to the
blood vessels opposing to the arachidonic acid location.
Under fasting conditions, this feature was abolished,
with increased docosahexaenoic and decreased glyco-
lytic intermediates, indicating a metabolic switch from
glucose to lipid metabolism. During HFD, the pentose
phosphate pathway and purine metabolism were
increased, which represents a response to increased
oxidative stress through NADH production, supported in
part by the detection of glutathione in extracellular
tissue areas. Reinforcing the unbalance in the redox
state is the increase in purine metabolism, which can be
triggered to repair DNA damage. This technique
revealed new perspectives of looking at spatial liver
zonation to better understand how liver cells cope with
different nutrient supplies and how it modulates liver
disease.[70]

The alleviation effect of the Asian herb Eurycoma
longifolia on HFD-fed mice resulted in weight loss with
beneficial effects for the treatment of NAFLD, namely
enhanced decomposition and inhibition of accumulation
of lipids.[141] Using DESI, HFD mice treated with E.
longifolia showed an altered metabolic profile, mainly
affecting the levels of amino acids, organic acids,
phospholipids, and glycerolipids. Combining these
results with optical images of hematoxylin and eosin–
stained liver sections exhibiting cell-originated imaging
signal, extracted heatmaps, and differential metabolites,
the authors demonstrated the importance of the
metabolomics approach in understanding the effect of
a therapeutic approach through metabolite analysis and
bioactivity assessment.[141]

Toxin-induced liver injury

As one of the main organs for blood clearance, the
liver is highly impacted by environmental toxins, such
as third-hand smoke, that cause liver metabolic
dysfunction. To disclose the intracellular impact of
third-hand smoke, an untargeted metabolomics multi-
platform method, including NMR, LC coupled to high-
resolution MS, and LDI-MSI, was applied in mice liver
samples.[140] In third-hand smoke-exposed mice, this
strategy allowed the detection of 88 significant
metabolites included in 21 metabolic pathways,
among which D-glutamine and D-glutamate metabo-
lism, glycerophospholipid metabolism, oxidative phos-
phorylation, and glutathione metabolism, being the
last 2 related to oxidative stress. These were
associated with increased lipid accumulation and
choline deficiency, mimicking NAFLD and steatosis.
Indeed, the lipid droplet layer in liver tissue of

third-hand smoke-exposed mice was formed by
phosphatidylethanolamine (36.6) and phosphatidyl-
choline (36.6), while TG (52:6), TG (54:7), and TG
(52:6) were located at the center of the lipid droplet.
Antioxidant treatment, in turn, reduced TG droplet
content but not phosphatidylethanolamine (36.6) or
phosphatidylcholine (36.6) droplet layers.[140] This
agrees with the fact that both lipid accumulation and
the specific lipid content are crucial to aggravate liver
disease.

In another study, the effects of benzo[a]pyrene, a
polycyclic aromatic hydrocarbon known to have detri-
mental effects on human health, was evaluated on the
liver through the combination of LC-MS-based and
MALDI-MSI-based lipidomics platforms.[136] Hepatic
lipid metabolic disorders induced by intratracheally
instilled polycyclic aromatic hydrocarbons were inves-
tigated, and distinctly altered glycerophospholipids,
glycerolipids, and fatty acid metabolism were found in
the mouse liver, with increasing triacylglycerol,
phosphatidylinositol, and phosphatidylcholine, and
decreasing lysophosphatidylcholines, lysophosphatidy-
lethanolamine, free fatty acids, and eicosanoids, thus
concluding that benzo[a]pyrene might induce NAFLD
and contribute to hepatocyte membrane injury and
inflammation.[136]

The use of weight-loss pills containing aristolochic
acids, a chemical derived from Aristolochia plants, was
highly detrimental to human health, having been related to
urothelial and renal diseases and cancers. Atmospheric
pressure MALDI-MS was used to analyze metabolic
alterations in aristolochic acid I-induced liver damage,
which found a high abundance of small metabolites
combined with lower abundances of lipid species com-
pared with the control.[142] Indeed, glycerol phosphate,
glyceryl-phophorylethanolamine, and taurocholic acid
exhibited significant increases, while phosphatidic acids,
phosphatidylethanolamine, and phosphatidylinositols
were considerably reduced in the liver after aristolochic
acid I exposure. Machine learning metabolomics pathway
analysis allowed the authors to observe evidence of
altered taurine and hypotaurine metabolism, glycerophos-
pholipid metabolism, D-glutamine and D-glutamate
metabolism, and arachidonic acid.[142]

Multicolor fluorescence detection-based microfluidic
device for single-cell metabolomics was another
technique that improved the understanding of alco-
hol-associated liver disease. A device with 2-laser
excitation and 3-channel fluorescence has been
developed to analyze liver cells from acute ethanol-
stimulated mice.[132] This technique enabled the study
of oxidative stress through single-cell analysis of
H2O2, GSH, and Cys, revealing a high metabolic
variance within primary liver cells, while accurately
improving our view of the intercellular oxidative/
antioxidative molecular mechanism in response to
external stimuli.[132]

1172 | HEPATOLOGY



Liver cancer

The heterogeneity of cancer cells within a specific tissue
offers several potential targets for the use of spatial
metabolomics. Using HCC patient samples, a recent
study evaluated tumor heterogeneity using mass spec-
trometry-based proteomics and metabolomics, single-
cell analysis, whole-exome sequencing, cytometry by
time-of-flight, and RNA sequencing.[145] Although high
heterogeneity was described with the use of genomes,
transcriptomes, proteomes, and metabolomes, less
variability was found within the HCC microenvironmental
immune status. Indeed, 3 novel HCC immunophenotypic
subtypes were identified, including immunocompetent
(subtype 1), immunodeficient (subtype 2), and immuno-
suppressive (subtype 3). Further, the metabolome was
the best correlator for the immunome subtype contrary to
transcriptome or proteome. Subtype 1 was characterized
by upregulated urea cycle, subtype 2 showed increased
activity of nucleotide biosynthesis, and subtype 3
showed inhibited glycolysis and enhanced mitochondrial
respiration.[145] Thus, through amultiomics approach, this
study dissected tumor heterogeneity, revealing the land-
scape of tumor cells and the spatial microenvironment.

The studies highlighted above reflect only the begin-
ning of an exciting era in spatial metabolomics and its
application to liver biology and disease pathology.

CHALLENGES AND FUTURE
DIRECTION

The successful adoption of spatial metabolomics to
characterize pathobiological phenomena in situ and,
more specifically, in the liver pathology space, depends
on the collaboration between (i) technology developers
to improve the sensitivity, coverage, and resolution of
MSI and analysis of metabolites in specific regions of
tissue, at the edges of lesions or at single-cell
resolution; (ii) experimentalists knowledgeable of the
key biological unknowns, able to design meaningful
experiments about specific biological and pathobiolog-
ical problems to generate the “ground truth data”; and
(iii) experts in data science needed to develop artificial
intelligence (AI), machine learning, or deep learning
algorithms to deal with the vast amount of information
generated by the MSI technology.[6]

MSI is still suboptimal due to the overlap of signals,
noise, and variability of spectrum intensities. Also, there
are important issues in data handling and signal
processing, data storage and export, comparability of
data, and the need to optimize for each type of
tissue.[6,146] However, there is a considerable incentive
to solve these problems because of its potential large
market in biomedicine and, more specifically, in liver
disease with potential relevance for diagnosis, treat-
ment, and prognosis in NAFLD/NASH and liver cancer.

In the context of liver disease, the great opportunity is
the convergence with current efforts in molecular digital
pathology. Spatial metabolomics is well positioned to
contribute to cancer simply because there are high-
quality histology data that, if combined with spatial
metabolomics, could be used in supervised AI, con-
necting in situ specific metabolic signatures with already
validated clinical, histopathology, and molecular profil-
ing as well as documented responses to treatments with
known mechanism of action. This structure of data
permits AI-based supervised approaches, as the avail-
ability of the outcome allows labeling of the cases
required for supervised algorithms to be predictive,
according to the metabolic signature of specific cells,
with inferences about prognosis and potential treat-
ments. The viability of this approach might be enhanced
by the sufficient availability of data to train the machine
and by independent data validation.

Spatial metabolomics might generate unique insights
on cancer treatments[147–150] based on characterizing the
vulnerabilities resulting from specific tumor cell reprog-
ramming as well from the adaptation of the ancillary
supportive systems (eg, vascularization, immune) sup-
porting cell growth, proliferation, differentiation, and other
factors that affect cancer progression. Identifying the cell-
specific metabolic signatures in typically heterogeneous
tumors might identify cell-specific Achilles heel tumor
metabolism, providing the rationale for relatively targeted
therapeutic interventions based on potential metabolic
vulnerabilities of selected types of cells. Thus, a higher-
throughput spatial metabolomics imaging method is a
technological challenge but might add enormous value to
diagnosis, prognosis, and personalized treatment.

The approach to NAFLD/NASH seems more
complex[5] at this stage as its diagnosis is usually
based on histopathology, and evolution takes a long
time with insufficient well-characterized intermediate
diagnostic time points and no biomarkers indicating the
likelihood of progression toward more severe stages or
early responsiveness to treatments. There is an
opportunity to address these shortcomings by combin-
ing digital pathology with spatial metabolomics to
identify heterogeneity behind the current boundaries
defined by morphological-based diagnostic stages. The
combination of digital pathology and spatial metabolo-
mics aims for better stratification of the patients for
diagnostic, prognostic, and therapeutic approaches.
This approach is, in principle, technologically feasible,
but it requires upscaling the information available,
training on the technology for this indication, increasing
the technological demand, and hopefully adjusting the
prices to make the technology more broadly available.
This is required to generate background data required
to accelerate the development of the data analysis tools
able to make sense of the NAFLD/NASH information. In
some way, the experience in the cancer field might
contribute to facilitating transfer to NAFLD/NASH.
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Spatial metabolomics can also successfully thrive
thanks to the current success of other spatial omics
technologies. Laser capture microdissection-based, in situ
hybridization imaging-based, or spatial barcoding-based
transcriptomics have successfully been applied to study
liver physiology and disease biology.[151] Although the
spatially resolved study of the proteome remains limited by
the existence and performance of antibodies, great strides
have been made toward the improvement of the techno-
logy multiplexity. These mainly consist of the utilization of
MS to image photocleavable, metal, or peptide-tagged
antibodies.[152] Nonetheless, such strategies introduce a
bias resulting from the choice of the antibody panel and do
not suffice for proteome-wide studies. However, the
current throughput could potentially be increased to
proteome-wide using MALDI-MSI to analyze protease-
treated specimens.[153] One of the greatest challenges
remains the coupling and integration of the technologies
hitherto discussed, although multimodal MS has already
successfully been applied to define liver metabolic zones
and single-cell identity beyond histological anno-
tation (Tian et al. unpublished data, 2022).

The explosion of data at single-cell resolution also
entails a key event on the progress of spatial
metabolomics. Although cells are part of their niche
and do not work in isolation, single-cell studies have
confirmed the existence of heterogeneity among spe-
cific types of cells in healthy liver, NAFLD, NASH, and in
cancer, highly determined by their topographic location
in the functional liver structure. Characterization of the
functional relevance of cellular heterogeneity would
help to understand better the natural history of NAFLD/
NASH or liver cancer and more specifically about their
diverse trajectories.

Identifying specific subsets of immune cells or SCs
in situ with unique transcriptomes, proteomes, and
functionality, raises the unresolved questions of which,
how, and where the different subtypes of cells might
accumulate and exert their unique functional roles
influencing the progression of the disease. Associating
cellular metabolomic information with their spatial
context might be used to deconvolute each subset of
cells according to their metabolome as a surrogate of
their functional state or capabilities. Moreover, learning
about the metabolites in different types of cells, in their
specific location in the liver combined with other
molecular data at single-cell resolution opens an
excellent opportunity to learn about the pathogenesis
of the disease, unexpected cellular cross talks, chro-
nological sequence of cellular events and hot spots,
triggering the initiation of fibroinflammatory changes
in response to hepatocyte injury. From a metabolic
perspective, it should be possible to identify “primary
movers” triggering irreversible fibroinflammatory
responses representing putative targets that, if con-
tained, might limit the progression of NASH, accele-
rated tumoral growth, or dissemination. Moreover, by

coupling spatial cellular information with the metabolic
fingerprints of specific types of cells, it might be possible
to do targeted nutritional/metabolic substrate-based
treatments, cell therapy to selectively enrich some cells,
or gene therapy to lockdown the configuration of
specific subtypes preventing the progression of the
disease. This information might help to identify essential
cross talk within the niche cells in each zone and devise
novel approaches aiming at restoring their functional
homeostasis.

The success of spatial metabolomics depends on
the quality of the data and their analysis. Whereas the
technological revolution leading to MS-based spatial
imaging started 20 years ago, the main innovation of
the last 10 years has occurred in the domain of AI-
based data analysis. This is easily understood if we
consider AI development depends on data availability.
The amount of data generated, and their complexity
are useless without the parallel development of
powerful tools to handle, analyze, visualize, and
interpret them. AI offers a unique opportunity, but it
departs from available trustable data that can be used
to train the AI machine. Whereas the data related to
cancer is more complete, the data available on NASH
are typically not sufficient nor of standardized quality
to allow supervised AI approaches to deliver the whole
potential of MSI. Conversely, the scarcity of AI
expertise in the context of the excessive demands
from many biomedical and nonbiomedical domains
creates a bottleneck for a fully developed optimized
tissue-specific platform generating high-quality data
quickly. For this to succeed, it is essential the
connectivity between computing data analysts and
experimentalists to ensure that the experimental
design enables high-quality data with an appropriate
structure for AI analysis. The success in using data
also represents an incentive to improve the resolution
of the technology by increasing the boundaries of
sensitivity, time of resolution, and technology innova-
tion. The current cost of the technology and expertise
required is another brake to the broader adoption and
upscaling of technology.

CONCLUSIONS

Technology is a primary driver for innovation in biomedi-
cine. It takes years to advance the precompetitive
technological development before it reaches the level of
maturity required to be derisked enough to enter the clinical
application and industrial adoption and upscaling. In the
case of spatial metabolomics, the technology has reached
enough academic maturity to penetrate the many fields in
biomedicine. The liver, due to its well-defined spatial
functional organization, is well suited to exploit this
technology in cancer and also in highly prevalent NAFLD/
NASH, providing a unique opportunity to reach landmarks
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in diagnosis, prognosis, and treatment. However, its
definitive validation requires AI-based data analysis tools
and high-quality datasets. We are optimistic concerning its
future incorporation in health care, not only because of
the quality of the information it generates but also because
its excellent market size provides unique incentives for
collaboration and open innovation between academics, the
pharma industry, private and governmental funders, and
technology and data-driven ventures to generate the
evidence-based validation required for its global adoption.
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