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Abstract

Background: The accurate identification of the functional elements in the bovine genome is a fundamental requirement for
high-quality analysis of data informing both genome biology and genomic selection. Functional annotation of the bovine
genome was performed to identify a more complete catalog of transcript isoforms across bovine tissues. Results: A total of
160,820 unique transcripts (50% protein coding) representing 34,882 unique genes (60% protein coding) were identified
across tissues. Among them, 118,563 transcripts (73% of the total) were structurally validated by independent datasets
(PacBio isoform sequencing data, Oxford Nanopore Technologies sequencing data, de novo assembled transcripts from RNA
sequencing data) and comparison with Ensembl and NCBI gene sets. In addition, all transcripts were supported by
extensive data from different technologies such as whole transcriptome termini site sequencing, RNA Annotation and
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2 Enhanced bovine genome annotation through integration

Mapping of Promoters for the Analysis of Gene Expression, chromatin immunoprecipitation sequencing, and assay for
transposase-accessible chromatin using sequencing. A large proportion of identified transcripts (69%) were unannotated, of
which 86% were produced by annotated genes and 14% by unannotated genes. A median of two 5′ untranslated regions
were expressed per gene. Around 50% of protein-coding genes in each tissue were bifunctional and transcribed both coding
and noncoding isoforms. Furthermore, we identified 3,744 genes that functioned as noncoding genes in fetal tissues but as
protein-coding genes in adult tissues. Our new bovine genome annotation extended more than 11,000 annotated gene
borders compared to Ensembl or NCBI annotations. The resulting bovine transcriptome was integrated with publicly
available quantitative trait loci data to study tissue–tissue interconnection involved in different traits and construct the first
bovine trait similarity network. Conclusions: These validated results show significant improvement over current bovine
genome annotations.

Keywords: functional genomics; transcriptomics; epi-genetics; multi-omics integration; trait-similarity network; QTL

Introduction

Domestic bovine (Bos taurus) provide a valuable source of nu-
trition and an important disease model for humans [1]. Fur-
thermore, cattle have the greatest number of genotype asso-
ciations and genetic correlations of the domesticated livestock
species, which means they provide an excellent model to close
the genotype-to-phenotype gap. Furthermore, the functional el-
ements of the genome provide a means whereby complex bio-
logical pathways responsible for variation in a particular pheno-
type can be identified. Therefore, the accurate identification of
these elements in the bovine genome is a fundamental require-
ment for high-quality analysis of data from which both genome
biology and genomic selection can be better understood.

Current annotations of farm animal genomes largely focus
on the protein-coding regions [2] and fall short of explaining the
biology of many important traits that are controlled at the tran-
scriptional level [3–5]. In humans, 93% of trait-associated sin-
gle nucleotide polymorphisms (SNPs) identified by genome-wide
association studies (GWASs) are found in noncoding regions
[6]. Therefore, elucidating noncoding functional elements of the
genome is essential for understanding the mechanisms that
control complex biological processes.

Untranslated regions play critical roles in the regulation of
messenger RNA (mRNA) stability, translation, and localization
[7], but these regions have been poorly annotated in farm ani-
mals [2, 8]. A recent study of the pig transcriptome using single-
molecule long-read isoform sequencing technology resulted in
the extension of more than 6,000 annotated gene borders com-
pared to Ensembl or NCBI annotations [2].

Small noncoding RNAs, such as microRNAs (miRNA), are
known to be involved in gene regulation through posttranscrip-
tional regulation of expression via silencing, degradation, or se-
questering to inhibit translation [9–11]. The number of anno-
tated miRNAs in the current bovine genome annotation (En-
sembl release 2018–11; 951 miRNAs) is much lower than the
number reported in the highly annotated human genome (En-
sembl release 2021–03; 1,877 miRNAs).

This study used a comprehensive set of transcriptome and
chromatin state data from 50 cattle tissues and cell types to (i)
increase the complexity of the bovine transcriptome, compara-
ble to that reported for the highly annotated human genome;
(ii) improve the annotation of protein-coding, noncoding, and
miRNA genes; (iii) integrate transcriptome data with publicly
available quantitative trait loci (QTL) and gene association data
to study tissue–tissue interconnection involved in different
traits; and (iv) construct the first bovine trait similarity network
that recapitulates published genetic correlations.

Results

The diversity of RNA and miRNA transcripts among 50 differ-
ent bovine tissues, developmental stages, and cell types was as-
sessed using polyadenylation (poly(A)) selected Illumina high-
throughput RNA sequencing (RNA-seq) data (47) and/or miRNA-
seq (46) and data (Supplemental File 1). Most of the tissues stud-
ied were from Hereford cattle closely related to L1 Dominette
01449, the individual from which the bovine reference genome
(ARS-UCD1.2) was sequenced. The 50 tissues and cell samples
included follicular cells, myoblasts, 14 mammary gland samples
from various stages of mammary gland development and lacta-
tion, 8 fetal tissues (78 days of gestation), 8 tissues from adult
digestive tract, and 16 other adult organs (Supplemental File 1).
A total of approximately 4.1 trillion RNA-seq reads and 1.2 bil-
lion miRNA-seq reads were collected, with a minimum of 27.5
million RNA-seq and 9.3 million miRNA-seq reads from each tis-
sue/cell type (average 87.8 ± 49.7 million and 27.6 ± 12.9 million,
respectively) (Supplemental File 2: Fig. S1 and Supplemental Fi
le 3).

Transcript-based analyses

The summary of predicted transcript/genes is presented in Ta-
ble 1. All of the predicted splice junctions across tissues were
supported by RNA-seq reads that spanned the splice junction,
substantiating the accuracy of the transcript definition from
RNA-seq reads.

A total of 31,476 transcripts appeared tissue specific by virtue
of being assembled from RNA-seq reads in just a single tissue,
but 20,100 of those transcripts (64%) were actually expressed in
multiple tissues. Thus, reliance solely on assembled transcripts
in a given tissue to predict a tissue transcript atlas may overesti-
mate tissue specificity due to a high false-negative rate for tran-
script detection. To solve this problem of overprediction of tissue
specificity, we marked a transcript as “expressed” in a given tis-
sue only if (i) it had been assembled from RNA-seq data in that
tissue or (ii) its expression and all of its splice junctions had been
quantified using RNA-seq reads in the tissue of interest with
an expression level more than 1 read per kilobase of transcript
per million reads mapped (RPKM) (see Methods section). This
resulted in 145,258 transcripts (90%) expressed in more than 1
tissue (Fig. 1), among which 9,024 transcripts (5%) were found in
all 47 tissues examined.

The unique transcripts identified were equally distributed
between protein-coding transcripts and noncoding transcripts
(ncRNAs) (Fig. 2). Noncoding transcripts were further classified
as long noncoding RNAs (lncRNAs), nonsense-mediated decay
(NMD) transcripts, nonstop decay (NSD) transcripts, and small
noncoding RNAs (sncRNAs). While the majority of expressed
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Table 1: Summary of expressed transcripts/genes

Feature Annotation∗

Current project
Ensembl

(release 2021–03)
NCBI

(release 106)

Number of genes 34,882 (21,116) 27,607 (21,880) 35,143 (21,355)
Number of transcripts 160,820 (79,957) 43,984 (37,538) 83,195 (47,280)
Number of spliced transcripts 130,531 37,299 73,423
Number of transcripts per gene 4.9 1.5 2.3
Median number of 5′ UTRs per gene 2 1 1
Median number of 3′ UTRs per gene 1 1 1

∗Numbers in parentheses indicate the number of protein-coding genes/transcripts.

Figure 1: Distribution of the number of expressed transcripts (A) and genes (B)

across tissues.

Figure 2: Classification of the predicted transcripts into different biotypes.

transcripts in each tissue were protein coding (median of 62%
of tissue transcripts), NMD transcripts and antisense lncRNAs
each made up more than 10% of the transcripts (Supplemental

File 2: Fig. S2A and B, Supplemental Files 4 and 5). Fetal muscle
and fetal gonad tissues showed the highest proportion of anti-
sense lncRNAs compared to that observed in other tissues, and
around 60% of antisense lncRNAs were expressed from these 2
tissues (Supplemental File 2: Fig. S2B). Compared to noncoding
transcripts, protein-coding transcripts were more likely to have
spliced exons (P < 2.2e-16) and were expressed in a higher num-
ber of tissues (P < 2.2e-16; Supplemental File 2: Fig. S2C).

There were no significant correlations between the number
of RNA-seq reads for a given tissue and the number of tran-
scripts identified, except for a modest correlation for the anti-
sense lncRNA class (Supplemental File 2: Fig. S3A). There was a
significant positive correlation (P = 1.3e-04) between the num-
ber of NMD transcripts in a tissue and the number of protein-
coding transcripts, and the NMD transcript class showed the
lowest median expression level across tissues compared to other
transcript biotypes (Supplemental File 2: Fig. S2D and Fig. S3B).

Transcript similarity to other species
Protein/peptide homology analysis of transcripts with an open
reading frame (protein-coding transcripts, lncRNAs, and sncR-
NAs) revealed a higher conservation of protein-coding tran-
scripts compared to lncRNA and sncRNA transcripts (P < 2.2e-
16) (Table 2). Bovine noncoding transcripts had significantly (P <

2.2e-16) less similarity to other species than protein-coding tran-
scripts (Table 2 and Table 3). Within noncoding transcripts, sense
intronic lncRNAs showed the highest conservation rate (Table 4).

Transcript expression diversity across tissues
A median of 70% of protein-coding transcripts were shared be-
tween pairs of tissues (Supplemental File 2: Fig. S4A), which
was significantly higher than that observed for noncoding tran-
scripts (53%; P < 2.2e-16; Supplemental File 2: Fig. S5). Cluster-
ing of tissues based on protein-coding transcripts was different
from that observed based on noncoding transcripts (Suppleme
ntal File 2: Fig. S4B and Fig. S5B, Fig. S35F). The fetal tissues clus-
tered together and were generally more similar to one another
than to the corresponding adult tissue in both dendrograms.
In addition, fetal tissues had significantly higher proportions of
noncoding transcripts compared to protein-coding transcripts (P
< 2.2e-16; Supplemental File 6).

Transcript validation
Prediction of transcripts and isoforms from RNA-seq data may
produce erroneous predicted isoforms. The validity of tran-
scripts was therefore examined by comparison to a library of
isoforms taken from Ensembl (release 2021–03) and NCBI gene
sets (release 106), as well as isoforms identified through com-
plete isoform sequencing with Pacific Biosciences, a de novo as-
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Table 2: Protein/peptide homology of transcripts with coding potential

Transcript biotype Number of transcripts
Transcripts with protein/peptide

homology to other species∗

Protein-coding transcripts 85,658 73,268 (86%)
sncRNAs and lncRNAs that encode short peptides† 48,425 4,054 (8%)

∗Number in parentheses indicates the percentage of each transcript biotype.
†Open reading frame of 9 to 43 amino acids.

Table 3: Sequence homology of noncoding transcripts

Transcript biotype Number of transcripts

Transcripts with sequence
homology to ncRNAs in other

species∗

Long noncoding RNAs 48,661 23,707 (49%)
Small noncoding RNAs 526 194 (37%)
Nonstop decay RNAs 4,359 1,551 (35%)
Nonsense-mediated decay RNAs 32,781 18,195 (55%)

∗Number in parentheses indicates the percentage of each transcript biotype.

Table 4: Sequence homology of different types of lncRNAs

lncRNA biotype Number of transcripts

Transcripts with sequence
homology to ncRNAs in other

species∗

Antisense lncRNAs 29,987 13,793 (46%)
Sense-intronic lncRNAs 1,694 1,029 (60%)
Intragenic lncRNAs 5,569 2,314 (41%)
Intergenic lncRNAs 11,841 5,820 (49%)

∗Number in parentheses indicates the percentage of each transcript biotype.

sembly produced from its matched RNA-seq reads, and isoforms
identified from Oxford Nanopore platforms (see Methods sec-
tion). A total of 118,563 transcripts (73% of predicted transcripts)
were structurally validated by independent datasets (Pacific Bio-
sciences single-molecule long-read isoform sequencing [PacBio
Iso-seq], Oxford Nanopore Technologies sequencing [ONT-seq]
data, de novo assembled transcripts from RNA-seq data) and
comparison with Ensembl and NCBI gene sets. A total of 145,258
transcripts were expressed in multiple tissues (90% of predicted
transcripts), providing further support for their validity (Fig. 3).
All transcripts were also extensively supported by data from dif-
ferent technologies such as whole transcriptome termini site
sequencing (WTTS-seq), RNA Annotation and Mapping of Pro-
moters for the Analysis of Gene Expression (RAMPAGE), histone
modification (H3K4me3, H3K4me1, H3K27ac), CTCF-DNA bind-
ing, and assay for transposase-accessible chromatin using se-
quencing (ATAC-seq) (Fig. 3).

Comparison of predicted transcript structures with anno-
tated transcripts in the current bovine genome annotations (En-
sembl release 2021–03 and NCBI release 106) resulted in a to-
tal of 48,906 annotated transcripts that exactly matched previ-
ously annotated transcripts (30% of all transcripts), including
44,097 annotated NCBI transcripts, 29,179 annotated Ensembl
transcripts, and 24,370 transcripts that were common to both
annotated gene sets (Fig. 3). The median expression level of
annotated transcripts in their expressed tissues was similar to
that observed for unannotated transcripts (Supplemental File 2:
Fig. S6). Annotated transcripts were expressed in a higher num-
ber of tissues than that observed for unannotated transcripts (P
= 7.4e-03; Supplemental File 2: Fig. S6). In addition, compared

to unannotated transcripts, annotated transcripts were en-
riched with protein-coding (P = 1.37e-02) and spliced transcripts
(P = 3.76e-02).

The median length of the coding sequence (CDS) of anno-
tated transcripts was significantly longer than that observed in
unannotated transcripts (P = 0.0) (Supplemental File 2: Fig. S7A).
In addition, unannotated transcripts had longer 5′ untranslated
regions (UTRs) compared to annotated transcripts (P = 2.631E-06;
Supplemental File 2: Fig. S7A). Annotated protein-coding tran-
scripts showed a higher GC content in their 5′ UTRs than unan-
notated transcripts (P = 5.562E-18), but both classes of tran-
scripts showed similar GC content within their CDS (Suppleme
ntal File 2: Fig. S7B).

Gene-based analyses

The transcripts correspond to a total of 34,882 genes, which
were classified into protein-coding, noncoding, and pseudo-
genes (Supplemental Files 4 and 5, and Fig. 4). Genes that tran-
scribed at least a single “expressed” transcript (see Transcript-
level analysis section) in a given tissue were marked as an
“expressed gene” in that tissue. Most genes expressed in each
tissue were protein-coding genes, followed by noncoding and
pseudogenes (Supplemental File 2: Fig. S8). Testis showed the
highest number of expressed genes compared to other tissues
(Supplemental File 2: Fig. S8). In addition, the proportion and
number of transcribed pseudogenes was higher in the testis
than in other tissues (Supplemental File 2: Fig. S8). Fetal brain
and fetal muscle tissues showed the highest number and per-
centage of noncoding genes compared to that observed in other
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Figure 3: Support of predicted transcripts using data from different technologies and datasets.

Figure 4: Classification of the predicted genes into different biotypes.

tissues (Supplemental File 2: Fig. S8). There was no significant
correlation between the number of input reads and the num-
ber of expressed genes across tissues, but the numbers of genes
from different coding potential classes were significantly corre-
lated across tissues (Supplemental File 2: Fig. S9).

Transcripts corresponding to the predicted genes that had at
least 1 exon overlapping an Ensembl- or NCBI-annotated gene
were considered to belong to an annotated gene. This supports
an intersection analysis of predicted and previously annotated
genes that indicated 22,452 (64%) of our predicted genes cor-

respond to previously annotated genes. Approximately 86% of
unannotated transcripts (96,412) were associated with this set
of annotated genes. The remaining 12,430 genes (36% of pre-
dicted genes) represent unannotated genes, that is, genes not
found on Ensembl (release 2021–03) or NCBI (release 106), with
which 14% of unannotated transcripts (15,502 transcripts) were
associated. The median number of unique transcripts per anno-
tated gene (tpg) was 4, which was higher than that observed in
either the Ensembl (1.5 tpg) or NCBI (2.3 tpg) annotated gene sets,
while the median number of transcripts per unannotated gene
was 1, with an average of 1.31 and standard deviation of 1.36.
Most of the transcripts identified were transcribed from anno-
tated genes, including 95% of protein-coding transcripts (76,492),
79% of lncRNA transcripts (37,683), 80% of sncRNA transcripts
(281), and more than 95% of NMD transcripts (27,511). Annotated
genes were enriched with protein-coding genes (P < 2.2e-16).
The median transcript abundance from annotated genes in their
expressed tissues was significantly higher than that observed for
unannotated genes (P < 2.2e-16; Supplemental File 2: Fig. S10A).
The median number of tissues in which annotated genes were
expressed was also significantly higher than that observed for
unannotated genes (P < 2.2e-16; Supplemental File 2: Fig. S10B).

More than a third (37%) of genes with at least 1 predicted
protein-coding transcript displayed either multiple 5′ UTRs or
multiple 3′ UTRs among associated transcript isoforms (Fig. 5).
The 496 genes with the highest number of UTRs (the top 5% in
this metric) were highly enriched (q = 1.7E-7) for the “response
to protozoan” Biological Process (BP) Gene Ontology (GO) term
(Supplemental File 2: Fig. S11 and Supplemental File 7).

A median of 51% of the expressed protein-coding genes
in each tissue transcribed both protein-coding and noncoding
transcripts and were denoted as bifunctional genes. These genes
were mostly previously annotated (95%) and had both coding
and noncoding transcripts in a median of 21 tissues, represent-
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Figure 5: Distribution of the number of 5′ UTRs and 3′ UTRs per gene in genes
with multiple UTRs.

ing 57% of their expressed tissues (Fig. 6A, B). Protein-coding
transcripts and NMD transcripts covered more than 90% of the
exonic length in bifunctional genes (Fig. 6C). This percentage
was significantly lower for other types of noncoding transcripts
transcribed from bifunctional genes (Fig. 6C). Although tran-
script terminal sites (TTSs) of transcripts encoded by bifunc-
tional genes were centralized around these genes’ 3′ ends, tran-
script start sites (TSSs) varied greatly among transcript bio-
types (Fig. 6C). The TTSs of NSD transcripts, sncRNAs, and in-
tragenic lncRNAs were shifted from their protein-coding genes’
start sites (Fig. 6C). Genes that transcribed both protein-coding
and noncoding transcripts in all of their expressed tissues were
highly enriched for “mRNA processing” (q = 6.08E-16) and “RNA
splicing” (q = 1.35E-14) BP GO terms that were mostly (65%) re-
lated to different aspects of transcription and translation (Fig. 6D
and Supplemental File 8).

A total of 3,744 genes were acting as noncoding in a median of
2 tissues (equivalent to 15% of their expressed tissues) and were
switched to protein coding in the remaining expressed tissues.
Detailed investigation of these bifunctional genes in tissues
from both adult and fetal samples (brain, kidney, muscle, and
spleen) revealed the total of 106 noncoding genes (90% anno-
tated) in fetal tissues that were switched to protein-coding genes
with only protein-coding transcripts in their matched adult tis-
sues (Supplemental File 2: Fig. S12). Functional enrichment anal-
ysis of these genes resulted in the identification of enriched BP
GO terms related to “humoral immune response,” “sphingolipid
biosynthetic process,” “negative regulation of wound healing,”
“cellular senescence,” “symporter activity,” “regulation of lipid
biosynthetic process,” and “filopodium assembly” (Supplement
al File 2: Fig. S12, Supplemental File 9).

A median of 32% of protein-coding genes in each tissue ex-
pressed at least a single potentially aberrant transcript (PAT),
that is, NMDs and NSDs. In this group of genes, the number
of PATs was strongly correlated with the total number of tran-
scripts (median correlation of 0.61 across all tissues). The me-
dian expression level of these genes in their expressed tissues
(11.52 RPKM) was significantly higher (P < 2.2e-16) than for
protein-coding genes with no PATs (4.48 RPKM). In each tissue,
protein-coding genes with PATs showed a significantly higher
number of introns (P < 2.2e-16; median of 65 introns per gene)
than that observed in the remainder of protein-coding genes
(median of 15 introns per gene). In addition, genes from this
group were expressed in a median of 47 tissues, significantly
higher (P < 2.2e-16) than that observed for the other group of
genes (Supplemental File 2: Fig. S13A, B). These genes tran-
scribed a median of 2 PATs in half of their expressed tissues,

equivalent to a median of 22% of all their transcripts in each tis-
sue. Protein-coding genes that transcribed PATs as their main
transcripts (PATs comprised >50% of their transcripts) in all of
their expressed tissues were highly enriched with RNA splicing–
related BP GO terms (Supplemental File 10).

Gene similarity to other species

Eighty-five percent of protein-coding genes (18,087) encoded ei-
ther homologous proteins or homologous ncRNAs (Supplement
al File 2: Fig. S14A). Nineteen percent of protein-coding genes
(4,043) encoded cattle-specific proteins (Supplemental File 2: Fi
g. S14A). Most of these genes (68%) were either annotated genes
or genes with homology to another cattle gene(s) that has es-
tablished homology to genes in other species (Supplemental Fi
le 2: Fig. S14C). The remaining 32% of cattle-specific, protein-
coding genes (1,293) were denoted as protein-coding orphan
genes (Supplemental File 2: Fig. S14C). A median of 70 protein-
coding orphan genes were expressed in each tissue. The expres-
sion level of these genes was significantly lower than other types
of protein-coding genes (Supplemental File 2: Fig. S15A, B). The
median number of expressed tissues for protein-coding orphan
genes was lower than for other types of protein-coding genes
(Supplemental File 2: Fig. S15C). In addition, protein-coding or-
phan genes only transcribed protein-coding transcripts in their
expressed tissue(s).

Fifty percent of noncoding genes (5,559) encoded either ho-
mologous short peptides (9–43 amino acids) or homologous ncR-
NAs (Supplemental File 2: Fig. S14B). There were 5,546 noncod-
ing genes (51% of noncoding genes) that encoded cattle-specific
ncRNAs (Supplemental File 2: Fig. S14B). Ninety-nine percent of
these genes were either annotated genes or genes with homol-
ogy to another cattle gene(s) that has established homology to
genes in other species (Supplemental File 2: Fig. S14C). The re-
maining 1% (9 noncoding genes) were denoted as noncoding or-
phan genes (Supplemental File 2: Fig. S14C). The median num-
ber of expressed tissues for noncoding orphan genes was was
higher (P < 2.2e-16) than for homologous noncoding genes and
protein-coding orphan genes (Supplemental File 2: Fig. S15C).

A total of 2,990 pseudogenes were expressed. The median
expression level of these genes in their expressed tissues was
lower than that observed for protein-coding genes and simi-
lar to that observed for noncoding genes (Supplemental File 2:
Fig. S16A). Pseudogenes were expressed in a median of 4 tis-
sues (Supplemental File 2: Fig. S16B). In addition, a total of 1,002
pseudogene-derived lncRNAs were expressed. The median ex-
pression of pseudogene-derived lncRNAs was similar to that ob-
served for other lncRNAs (Supplemental File 2: Fig. S17A). In ad-
dition, pseudogene-derived lncRNAs were expressed in fewer
tissues than observed for other lncRNAs (Supplemental File 2:
Fig. S17B).

Testis had the highest number of expressed pseudogene-
derived lncRNAs compared to other tissues (Supplemental File 2:
Fig. S8A, B). The correlation between the number of input reads
and the number of pseudogene-derived lncRNAs was not signif-
icant (0.25, P = 0.09).

Gene expression diversity across tissues
Tissue similarities increased dramatically from transcript level
to gene level (Supplemental File 2: Fig. S4A, Fig. S5A, Fig. S18A,
Fig. S19A). The median percentage of shared genes between
pairs of tissues was significantly higher in protein-coding genes
compared to noncoding genes (P < 2.2e-16; Supplemental File 2:
Fig. S18A, Fig. S19A). Clustering of tissues based on protein-
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Figure 6: (A) Classification of protein-coding genes based on their novelty and types of encoded transcripts. (B) Number of expressed tissues for bifunctional genes.
Dots have been color coded based on their density. (C) Location of different transcript biotypes on bifunctional genes. (D) Functional enrichment analysis of genes that
remained bifunctional in all of their expressed tissues.

coding genes was similar to that observed based on protein-
coding transcripts (Supplemental File 2: Fig. S18B, Fig. S19B). The
same result was observed in noncoding genes and transcripts.
In addition, clustering of tissues based on protein-coding genes
was different from that of noncoding genes (Supplemental File 2:
Fig. S4B, Fig. S5B, Fig. S18B, Fig. S19B, Fig. S35F).

Tissues with both fetal and adult samples (brain, kidney,
muscle, and spleen) were used to investigate gene biotype differ-
ences between these developmental stages. Similar to what was
observed at the transcript level, fetal tissues were significantly
enriched for noncoding genes and pseudogenes and were de-
pleted for protein-coding genes (P < 2.2e-16; Supplemental File
10). These results were consistent across all tissues with both
adult and fetal samples (Supplemental File 11).

Gene validation
A total of 32,460 genes (93% of predicted genes) were struc-
turally validated by independent datasets (PacBio Iso-seq data,
ONT-seq data, de novo assembled transcripts from RNA-seq data)
and comparison with Ensembl and NCBI gene sets (see Methods
section). In addition, a total of 31,635 genes (90% of predicted
genes) were expressed in multiple tissues (31,635 genes or 90%)
(Fig. 7). All genes were extensively supported by data from differ-
ent technologies such as WTTS-seq, RAMPAGE, histone modifi-
cation (H3K4me3, H3K4me1, H3K27ac) and CTCF-DNA binding,
and ATAC-seq data generated from the samples (Fig. 7).

Identification and validation of annotated gene border extensions
This new bovine gene set annotation extended (5′ end extension,
3′ end extension, or both) more than 11,000 annotated Ensembl
or NCBI gene borders. Extensions were longer on the 3′ side, but
the median increase was 104 nt for the 5′ end (Table 5). To vali-
date gene border extensions, independent WTTS-seq and RAM-
PAGE datasets were utilized. More than 80% of annotated gene
border extensions were validated by independent data (Fig. 8).
The extension of annotated gene borders on both ends resulted
in an approximate 9-fold expression increase of these genes in
the new bovine gene set annotation compared to their matched
Ensembl and NCBI genes (Table 6).

Alternative splicing events

A total of 102,502 transcripts (85% of spliced transcripts) were
involved in different types of alternative splicing (AS) events
(see Methods section and Supplemental File 1: Fig. S20A), a large
increase over Ensembl (63% of spliced transcripts) and NCBI
(75% of spliced transcripts) annotations (Supplemental File 2:
Fig. S20B). Skipped exons were observed in a greater number of
transcripts compared to other types of AS events (Supplemental
File 2: Fig. S21).

A median of 60% of tissue transcripts showed at least 1 type
of AS event (Supplemental File 1: Fig. S22A). There was no sig-
nificant correlation between the number of input reads and the
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Figure 7: Support of predicted genes using data from different technologies and datasets.

Table 5: Gene border extensions in current ARS-UCD1.2 genome annotations by de novo assembled transcriptome from short-read RNA-seq
data

Annotation Type of gene extension Number of genes
Median extension

(nucleotides)

Ensembl (release 2021–03) 5′ extension only 1,848 128
3′ extension only 5,701 422

Both ends extended 4,874 122, 5′

439, 3′

NCBI (release 106) 5′ extension only 2,214 80
3′ extension only 5,496 126

Both ends extended 3,613 66, 5′

210, 3′

Table 6: Median number of reads mapped to the extended region of annotated genes∗

Annotation 5′ end extension 3′ end extension Both ends extension

Ensembl (release 2021–03) 92 (1.10) 220 (1.24) 1,766 (8.90)
NCBI (release 106) 72 (1.05) 95 (1.10) 2,009 (9.05)

∗Numbers in parentheses indicate the median fold change in expression level resulting from gene extensions.

number of AS event transcripts across tissues (Supplemental Fi
le 2: Fig. S22B).

The median expression level of AS transcripts (111,366) was
similar to that observed for other types of transcripts (Suppleme
ntal File 2: Fig. S23A). In addition, AS transcripts were expressed
in a higher number of tissues compared to the other transcript
types (Supplemental File 2: Fig. S23B). Alternatively spliced tran-
scripts were enriched with protein-coding transcripts (P < 2.2e-

16). A switch from protein-coding to ncRNAs was the main bio-
type change resulting from AS events (Supplemental File 2: Fig.
S24).

A median of 4 AS events were expressed in alternatively
spliced genes (14,260 genes) (Supplemental File 2: Fig. S25). The
top 5% of genes with the highest number of AS events were
highly enriched for several BP GO terms related to different as-
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Figure 8: Functional enrichment analysis of noncoding genes in fetal tissues that were switched to protein coding with only coding transcripts in their matched adult
tissue.

pects of RNA splicing (Supplemental File 2: Fig. S26B, Suppleme
ntal File 12).

Comparison of tissues with both fetal and adult samples
(brain, kidney, longissimus dorsi [LD] muscle, and spleen) re-
vealed a significantly higher rate of AS events in fetal tissues
(only genes expressed in both fetal and adult samples were in-
cluded in this analysis) (Supplemental File 2: Fig. S27).

Tissue specificity

Nine percent of all genes and transcripts were only ex-
pressed in a single tissue and were denoted as tissue specific
(Supplemental File 2: Fig. S28A). Most tissue-specific genes (75%)
and transcripts (84%) were unannotated. Forty-nine percent of
tissue-specific transcripts (11,748) were produced by annotated
genes. Most tissue-specific genes and transcripts were protein
coding (Supplemental File 2: Fig. S28A, B). In addition, more than
70% of tissue-specific transcripts (11,222) were transcribed from
non-tissue-specific genes. Compared to other tissues, testis and
thymus had the highest number of tissue-specific genes and
transcripts (Supplemental File 2: Fig. S28C, Supplemental File
12). The expression level of tissue-specific genes and transcripts
was significantly lower than that of their non-tissue-specific
counterparts (P < 2.2e-16; Supplemental File 2: Fig. S28D). A me-
dian of 71% of tissue-specific transcripts showed any type of AS
event in their expressed tissues (Supplemental File 2: Fig. S29).
This was only 3.9% for tissue-specific genes (Supplemental File 2:
Fig. S29). Testis, myoblasts, mammary gland, and thymus had
the highest proportion of tissue-specific genes displaying any
type of AS event (Supplemental File 2: Fig. S29).

A total of 6,744 multitissue expressed genes (21% of
all multitissue expressed genes) and 71,662 multitissue ex-
pressed transcripts (49% of all multitissue expressed tran-
scripts) showed Tissue Specificity Index (TSI) scores greater
than 0.9 and were expressed in a tissue-specific manner (Su
pplemental File 14). These genes and transcripts were ex-

pressed in a median of 6 tissues and 4 tissues, respec-
tively (Supplemental File 2: Fig. S30A, B). Functional enrich-
ment analysis of the top 5% of genes with the highest TSI
score resulted in the identification of “sexual reproduction”
(P = 3.06e-24) and “fertilization” (P = 1.04e-8) as their top
enriched BP GO terms (Supplemental File 2: Fig. S30C–E, Supp
lemental File 15).

Tying genes to phenotypes

There was a median of 7,263 predicted genes identified as
the closest expressed gene to an existing QTL (QTL-associated
genes) per tissue (Supplemental File 16). These genes had either
QTLs located inside (median of 4,563 genes) or outside (median
of 4,678 genes) their genomic borders (either from their 5′ end or
3′ end) with a median distance of 51.9 kilobases (KB) and a max-
imum distance of 2.6 million bases (MB) (Supplemental File 2: Fi
g. S31). Most QTL-associated genes were annotated genes (8,130
genes or 83%). In addition, the median number of AS events in
these genes (8) was significantly higher than that observed in
other genes (median of 7 AS events; P = 5.69e-09).

Potential testis–pituitary axis

Testis tissue was not clustered with any other tissues and had
the highest number of tissue-specific genes compared to the rest
of the tissues (Supplemental File 2: Fig. S4, Fig. S5, Fig. S18, and
Fig. S19). Testis-specific genes were highly enriched with differ-
ent traits related to fertility (e.g., percentage of normal sperm
and scrotal circumference), body weight (e.g., body weight gain
and carcass weight), and feed efficiency (e.g., residual feed in-
take) (Supplemental File 17). The extent of testis–pituitary axis
involvement in the “percentage of normal sperm” was inves-
tigated using animals with both testis and pituitary samples
(3 samples per tissue). The SPACA5 gene was the only testis-
specific gene encoded protein with a signal peptide (SP) that was
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close to the “percentage of normal sperm” QTLs. The expression
of this gene in testis samples showed significant positive corre-
lation with 70 pituitary expressed genes that were closest to the
“percentage of normal sperm” QTLs (Supplemental File 2: Fig.
S32, Supplemental File 18). These pituitary genes were enriched
with the “signal transduction in response to DNA damage” BP GO
term (Supplemental File 2: Fig. S32). In addition, the expression
of testis genes that encoded protein with a signal peptide that
were close to the “percentage of normal sperm” QTLs was signif-
icantly correlated with expression of pituitary genes close to this
trait (Fig. 9, Supplemental File 19). The same result was observed
for the pituitary–testis tissue axis (Supplemental File 2: Fig. S33,
Supplemental File 20).

Trait similarity network

The extent of genetic similarity between different bovine traits
was investigated using their associated QTLs. A total of 1,857 sig-
nificantly similar trait pairs (184 different traits) were identified
and used to create a bovine trait similarity network (Suppleme
ntal File 21).

miRNAs

A total of 2,007 miRNAs (at least 10 mapped reads in each tis-
sue) comprising 973 annotated and 1,034 unannotated miRNAs
were expressed (Supplemental File 22). In each tissue, a me-
dian of 704 annotated miRNAs and 549 unannotated miRNAs
were expressed (Fig. 10A). The median expression of unanno-
tated miRNAs was significantly lower than that observed for an-
notated miRNAs (P = 3.25e-25; Fig. 10B). In addition, unanno-
tated miRNAs were expressed in a significantly lower number
of tissues than for annotated miRNAs (P = 1.00e-45; Fig. 10C). A
median of 84.53% of miRNAs were shared between pairs of tis-
sues (Supplemental File 2: Fig. S34). Clustering of tissues based
on miRNAs was similar to what was observed based on noncod-
ing genes (Supplemental File 2: Fig. S35).

A total of 113 miRNAs (5.6%) were expressed in a single
tissue and were denoted as tissue specific (Supplemental Fi
le 2: Fig. S36A). The proportion of tissue-specific miRNAs was
higher for unannotated miRNAs, such that 75% of the tissue-
specific miRNAs were unannotated. The number of unanno-
tated miRNAs was higher in preadipocytes compared to other
tissues, followed by fetal gonad and testis (Supplemental Fi
le 2: Fig. S36B). Unannotated miRNAs showed a significantly
lower expression level compared to annotated miRNAs (P =
1.4e-19; Supplemental File 2: Fig. S36C). In addition, a total of
1,047 multitissue expressed miRNAs were expressed in a tissue-
specific manner (Supplemental File 2: Fig. S36D). These miRNAs
were expressed in a median of 19 tissues (Supplemental File 2:
Fig. S36E).

Chromatin features across 500-bp windows surrounding up-
stream of miRNA precursors’ start sites or downstream of
miRNA precursors’ terminal sites from independent cattle ex-
periments were used to investigate the relationship between
miRNAs and chromatin accessibility. More than 99% of unan-
notated miRNAs and 94% of annotated miRNAs were supported
by at least one of the H3K4me3, H3K4me1, H3K27ac, CTCF-DNA
binding, or ATAC-seq peaks (Fig. 11).

Summary of expressed transcripts, genes, and miRNAs

The number of expressed transcripts, genes, and miRNAs in dif-
ferent tissues is summarized in Supplemental File 2: Fig. S37.

In addition, the number of annotated and unannotated genes,
transcripts, and miRNAs in different tissues is summarized in
Supplemental File 2: Fig. S38.

Discussion

Despite many improvements in the current bovine genome an-
notation ARS-UCD1.2 assembly (Ensembl release 2021–03 and
NCBI release 106) compared to the previous genome assembly
(UMD3.1), these annotations are still far from complete [12, 13].
In this study, using RNA-seq and miRNA-seq data from 50 differ-
ent bovine tissues, developmental stages, and cell types, 12,444
unannotated genes and 1,034 unannotated miRNAs were iden-
tified that have not been reported in current bovine genome an-
notations (Ensembl release 2021–03, NCBI release 106, and miR-
base [14]). In addition, we identified protein-coding transcripts
with a median open reading frame (ORF) length of 270 nt for 822
annotated bovine genes that have been annotated as noncod-
ing in current bovine genome annotations (Supplemental File 2:
Fig. S14C). The high frequency of validation of these unanno-
tated genes and unannotated miRNAs using multiple indepen-
dent datasets from different technologies verifies the improve-
ment in terms of the number of genes and miRNAs using our
methods.

The 5′ and 3′ UTR length plays a critical role in regulation of
mRNA stability, translation, and localization [7]. However, only a
single 5′ UTR and 3′ UTR per gene is annotated in current bovine
genome annotations (Ensembl release 2021–03 and NCBI release
106), and variations in UTR length are not available. In this study,
7,909 genes (22% of predicted genes) with multiple UTRs were
identified. Genes with multiple 5′ UTRs are common, primar-
ily due to the presence of multiple promoters [15] or alternative
splicing mechanisms within 5′ UTRs [15]. Fifty-four percent of
human genes have multiple transcription start sites [15]. In ad-
dition, the length of 3′ UTRs often varies within a given gene,
due to the use of different poly(A) sites [7, 16].

In this study, around 50% of expressed protein-coding genes
in each tissue transcribed both coding and noncoding transcript
isoforms. Several studies have shown evidence of the existence
of bifunctional genes with coding and noncoding potential us-
ing RNA-seq and ribosome footprinting followed by sequencing
(Ribo-seq) [17–19]. For example, steroid receptor RNA activator
(SRA), a known bifunctional gene, acts as a lncRNA while also
encoding a conserved protein SRAP, both of which contribute to
the development and progression of prostate and breast can-
cers [20]. More than 20% of human protein-coding genes have
been reported to transcribe noncoding isoforms, often generated
by alternative splicing [21] and recurrently expressed across tis-
sues and cell lines [19]. A considerable number of noncoding iso-
form variants of protein-coding genes appear to be sufficiently
stable to have functional roles in cells [22]. It has been shown
that the proportion of noncoding isoforms from protein-coding
genes dramatically increases during myogenic differentiation of
primary human satellite cells and decreases in myotonic dys-
trophy muscles [23]. In this study, 106 noncoding genes were
identified in fetal tissues that switched to protein-coding genes
in their matched adult tissues. Taken together, this supports
the notion that protein-coding/noncoding transcript switching
plays an important role in tissue development in cattle as well.

Nonsense-mediated RNA decay is an evolutionarily con-
served process involved in RNA quality control and gene regu-
latory mechanisms [24]. For instance, the RNA-binding protein
polypyrimidine tract binding protein 1 (PTBP1) can promote the
transcription of NMD transcripts via alternative splicing, which
negatively regulates its own expression [25]. In this study, NMD
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Figure 9: (A) Correlation between testis genes encoded protein with a signal peptide that were close to the “percentage of normal sperm” QTL and pituitary expressed

genes closest to this trait (reference correlations). (B) Distribution of P values resulting from a right-sided t-test between reference correlation coefficients and corre-
lation coefficients derived from random chance (see Methods for details).

Figure 10: (A) Distribution of the number of expressed annotated and unanno-
tated miRNAs across tissues. (B) Expression of annotated and unannotated miR-
NAs across their expressed tissues. (C) Number of expressed tissues for anno-

tated and unannotated miRNAs.

transcripts comprised 18% of bovine transcripts that were tran-
scribed from 30% of bovine genes (10,380). In humans, NMD-
mediated degradation can affect up to 25% of transcripts [26]
and 53% of genes [27]. As expected, in this study, most genes
that transcribed NMD transcripts were protein coding (83% or
8,610 genes), while a considerable portion (17%) were pseudo-
genes. Many pseudogenes are annotated to give rise to NMD

transcripts [28, 29]. Bioinformatic study of the human transcrip-
tome revealed that 78% of NMD transcript–producing genes were
protein coding, followed by pseudogenes (9%), long intergenic
noncoding RNAs (6%), and antisense transcripts (4%) [29].

Despite the important regulatory function of lncRNAs and
miRNAs, very low numbers of these elements have been anno-
tated in the current bovine genome annotations (Table 7). In this
study, a total of 10,689 lncRNA genes and 2,007 miRNA genes
were expressed in the bovine transcriptome, which is similar to
what has been reported for the human transcriptome (Table 7),
while a total of 3,770 human miRNAs and 1,203 cattle miRNAs
have been reported in miRbase [14].

In this study, 1,002 pseudogene-derived lncRNAs were
identified that were recurrently expressed across tissues and
cell types. Ever-increasing evidence from different studies
suggests pseudogene-derived RNAs are key components of
lncRNAs [30–32]. lncRNAs expressed from pseudogenes have
been shown to regulate genes with which they have sequence
homology [30, 31] or to coordinate development and disease in
metazoan systems [30].

Correct annotation of gene borders has an important role in
defining promoter and regulatory regions. Our novel transcrip-
tome analysis extended (5′-end extension, 3′-end extension,
or both) more than 11,000 annotated Ensembl or NCBI gene
borders. Extensions were longer on the 3′ side, which was
relatively similar to that we observed in the pig transcriptome
using PacBio Iso-seq data [2].

A growing body of evidence indicates that a considerably
large portion of lncRNAs encode microproteins that are less con-
served than canonical ORFs [33–37]. In this study, most (98%) of
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Figure 11: Support of annotated (A) and unannotated (B) miRNAs using different histone marks and CTCF-DNA binding data.

the predicted lncRNAs had short ORFs (<44 amino acids) that
were less conserved than canonical ORFs (Table 2).

Alternative splicing is the key mechanism to increase the di-
versity of the mRNA expressed from the genome and is therefore

essential for response to diverse environments. In this study,
skipped exons and retained introns were the most prevalent AS
events identified in the bovine transcriptome, similar to what
has been observed in other vertebrates and invertebrates [38]. A
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Table 7: Comparison of different gene builds based on gene biotypes

Species Gene build
Protein-coding

genes lncRNA genes miRNA genes

Other types of
small noncoding

genes∗ Pseudogenes

Bovine (ARS-UCD1.2) Ensembl (release
2021–03)

21,880 1,480 951 2,209 492

NCBI (release 106) 21,039 5,179 797 3,249 4,569
Current project 21,116 10,689 2,007 87 3,029

Human (GRCh38.104) Ensembl (release
2021–03)

20,442 16,876 1,877 2,930 15,266

∗Small nucleolar RNAs, small noncoding RNAs, small Cajal body–specific RNAs, small conditional RNAs, and transfer RNAs.

higher rate of AS events was observed in fetal tissues compared
to their adult tissue counterparts. The same result has been ob-
served in a recently published study in humans [39].

We hypothesized that the integration of the gene/transcript
data with previously published QTL/gene association data would
allow for the identification of potential molecular mechanisms
responsible for (i) tissue–tissue communication as well as (ii) ge-
netic correlations between traits. To test the first hypothesis, we
developed a novel approach to study the involvement of tissue–
tissue interconnection in different traits based on the integra-
tion of the transcriptome with publicly available QTL data. In
particular, the interconnection between testis and pituitary tis-
sues with respect to the “percentage of normal sperm” trait was
investigated in more detail. This resulted in the identification
of the regulation of ubiquitin-dependent protein catabolic pro-
cess, the regulation of nuclear factor–κB (NF-κB) transcription
factor activity, and Rab protein signal transduction as key com-
ponents of this tissue–tissue interaction (Supplemental Files 19
and 20). Interestingly, expressed genes that were closest to “per-
centage of normal sperm” QTLs, and also encoded protein with
a signal peptide (short peptide present at the N-terminus of pro-
teins that are destined toward the secretory pathway [40]) in
both testis and pituitary tissues, were highly enriched for the
BP GO term “regulation of ubiquitin-dependent protein catabolic
process” (Supplemental Files 18 and 19). The expression of these
genes in testis tissue was significantly correlated with expres-
sion levels of pituitary expressed genes closest to “percentage
of normal sperm” QTLs that were highly enriched for the “posi-
tive regulation of NF-kappaB transcription factor activity” BP GO
term (Supplemental File 2: Fig. S32 and Supplemental File 19).
Activation of NF-κB requires ubiquitination, and this modifica-
tion is highly conserved across different species [41]. NF-κB in-
duces secretion of adrenocorticotropic hormone from the pi-
tuitary [42], which directly stimulates testosterone production
by the testis [43]. In addition, ubiquitinated proteins in testis
cells are required for the progression of mature spermatozoa
[44]. The expression levels of pituitary expressed genes closest
to “percentage of normal sperm” QTLs that also encoded signal
peptides were significantly correlated with expression levels of
testis expressed genes closest to “percentage of normal sperm”
QTLs (Supplemental File 2: Fig. S33). These testis genes were
highly enriched for the “Rab protein signal transduction” BP GO
term (Supplemental File 20). Rab proteins have been reported to
be involved in male germ cell development [45]. Thus, it appears
that integration of gene data with QTL/association data can be
used to identify putative molecular pathways underlying tissue–
tissue communication mechanisms.

To test the second hypothesis, we also developed a novel ap-
proach to study trait similarities based on the integration of the
transcriptome with publicly available QTL data. Using this ap-

proach, we could identify significant similarity between 184 dif-
ferent bovine traits. For example, clinical mastitis showed signif-
icant similarity with 23 different cattle traits that were greatly
supported by published studies, such as milk yield [46], milk
composition traits [47], somatic cell score [48], foot traits [49],
udder traits [50], daughter pregnancy rate [51], length of produc-
tive life [52], and net merit [53]. Similar results were observed for
residual feed intake, which showed significant similarity with
14 different traits such as average daily feed intake [54], aver-
age daily gain [55], carcass weight [56], feed conversion ratio [57],
metabolic body weight [58], subcutaneous fat [59], and dry mat-
ter intake [60].

Taken together, these results identify a list of candidate
genes that might be controlled by genetic variation responsi-
ble for the genetic mechanisms underlying genetic correlations
(Supplemental Files 19 and 20). If this is the case, in the future,
these novel methods should be able to predict the impact of a
given set of genetic variants that are associated with a trait of
interest on other traits that were not measured in a given study.
This might then lead to the optimization of variants used (or
not used) in genomic selection to minimize any nonbeneficial
effect of selection on selected traits. However, it is important
to acknowledge that (i) the nearest neighbor gene to a geno-
type association may not necessarily be the causal gene, (ii) the
breed/gender differences between this study and the data from
Animal QTLdb may impact the results, and (iii) due to experi-
mental limitations, the genetic and phenotypic association data
were not used in this study. Nonetheless, these results are in-
triguing in that meaningful genetic correlation can be recapitu-
lated. Furthermore, these results indicate the potential for gene
mechanisms whereby traits that have genetic correlations to be
identified.

Conclusions

In-depth analysis of multiomics data from 50 different bovine
tissues, developmental stages, and cell types provided evidence
to improve the annotation of thousands of protein-coding,
lncRNA, and miRNA genes. These validated results increase
the complexity of the bovine transcriptome (number of tran-
scripts per gene, number of UTRs per gene, lncRNA transcripts,
AS events, and miRNAs), comparable to that reported for the
highly annotated human genome. The predicted unannotated
transcripts extend existing annotated gene models, by verifying
such extensions using independent WTTS-seq and RAMPAGE
data. The integrated transcriptome data with publicly available
QTL data revealed putative molecular pathways that may un-
derlie tissue–tissue communication mechanisms and candidate
genes responsible for the genetic mechanisms that may under-
lie genetic correlations between traits. This integrative approach
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is particularly important in the selection of indicator traits for
breeding purposes, study of artificial selection side effects in
livestock species, and functional annotation of poorly annotated
livestock genomes.

Methods

Tissue sample collection and sequencing library preparation
methods are summarized in Supplemental File 23. The overview
of the bioinformatics analysis steps is presented in Supplement
al File 2: Fig. S39.

RNA-seq data analysis and transcriptome assembly

Single-end Illumina RNA-seq reads (75 bp) from each tissue sam-
ple were trimmed to remove the adaptor sequences and low-
quality bases using Trim Galore (RRID:SCR 011847) (version 0.6.4)
[61] with –quality 20 and –length 20 option settings. The re-
sulting reads were aligned against ARS-UCD1.2 bovine genome
using STAR (RRID:SCR 004463) (version 020201) [62] with a cut-
off of 95% identity and 90% coverage. FeatureCounts (RRID:SC
R 012919) (version 2.0.2) [63] was used to quantify genes re-
ported in the NCBI gene build (version 1.21) with -Q 255 -s 2
–ignoreDup –minOverlap 5 option settings. The resulting gene
counts were adjusted for library size and converted to counts
per million (CPM) values using SVA R package (version 3.30.0)
[64]. In each tissue, sample similarities were checked using hi-
erarchical clustering and regression analysis of gene expres-
sion values (log2-based CPM), and outlier samples were removed
from downstream analysis. Samples from each tissue were com-
bined to get the most comprehensive set of data in each tis-
sue. To reduce the processing time due to huge sequencing
depth, the trimmed reads were in silico normalized using insil-
ico read normalization.pl from the Trinity package (RRID:SCR 0
13048) (version 2.6.6) [65] with –JM 350 G and –max cov 50 op-
tion settings. Normalized RNA-seq reads were aligned against
the ARS-UCD1.2 bovine genome using STAR (version 020201)
[62] with a cutoff of 95% identity and 90% coverage. The nor-
malized reads were assembled using de novo Trinity software
(version 2.6.6) [65] combined with massively parallelized com-
puting using HPCgridRunner (v1.0.1) [66] and GNU parallel soft-
ware [67]. The resulted transcript reads were mapped against the
ARS-UCD1.2 bovine genome using GMAP (RRID:SCR 008992) [68]
with a cutoff of 95% identity and 90% coverage. In the next step,
transcript reads were collapsed and grouped into putative gene
models (clustering transcripts that had at least a 1-nucleotide
overlap) by the pbtranscript-ToFU from SMRT Analysis soft-
ware (v2.3.0) [69] with min-identity = 95%, min-coverage = 90%
and max fuzzy junction = 15 nt, whereas the 5′-end and 3′-end
differences were not considered when collapsing the reads.
Base coverage of the resulting transcripts was calculated using
mosdepth (RRID:SCR 018929) (version 0.2.5) [70]. Predicted tran-
scripts were required to have a minimum of 3 times base cov-
erage in their assembled tissues. The predicted acceptor and
donor splice sites were required to be canonical and supported
by Illumina-seq reads that spanned the splice junction with a
5-nt overhang. Spliced transcripts with the exact same splice
junctions as their reference transcripts but that contained re-
tained introns were removed from analysis, as they were likely
pre-RNA sequences. Unspliced transcripts with a stretch of at
least 20 As (allowing 1 mismatch) in a genomic window covering
30 bp downstream of their putative terminal site were removed
from analysis, as they were likely genomic DNA contamina-
tions. To decrease the false-positive rate, unspliced transcripts

that were only expressed in a single tissue were removed from
downstream analysis. In addition, single-exon genes without hi-
stone mark (H3K4me3, H3K4me1, H3K27ac) or ATAC-seq peaks
mapped to their promoter (see Relating transcripts and genes to
epigenetic data section) were removed from downstream analy-
sis as they were likely transcriptional noise. The resulting tran-
scripts from each tissue were regrouped into gene models us-
ing an in-house Python script. Structurally similar transcripts
from the different tissues (see Comparison of transcript struc-
tures across datasets/tissues section) were collapsed using an
in-house Python script to create the RNA-seq–based bovine tran-
scriptome.

The resulting transcripts and genes were quantified using
align and estimate abundance.pl from the Trinity package (ver-
sion 2.6.6) [65] with –aln method bowtie –est method RSEM –
SS lib type R option settings. The quantified counts were nor-
malized for sequencing depth using the RPKM method.

“Isoform” and “transcript” terms are used interchangeably
throughout the article.

PacBio Iso-seq data analysis

Publicly available PacBio Iso-seq reads and matched RNA-seq
reads (PRJNA386670) were used in this study. In brief, a total of 6
tissues from L1 Dominette 01449 (aged 11 years) and testis from
SuperBull 99375 (aged 9 years) were used in this experiment (Su
pplemental File 24). RNA was extracted using TRIzol reagent as
directed by the manufacturer (Invitrogen) with integrity exam-
ined using a BioAnalyzer (Agilent). Libraries for RNA-seq short-
read sequencing were prepared using the TruSeq RNA Kit follow-
ing the “TruSeq RNA Sample Preparation v2 Guide” as recom-
mended by the manufacturer (Illumina). RNA-seq libraries were
sequenced on a NextSeq500 instrument. Iso-seq libraries for
long-read sequencing were prepared using the SMRTbell Tem-
plate Prep Kit 1.0. Complementary DNA (cDNA) was converted
to the SMRTbell template library following the “Iso-Seq using
Clontech cDNA Synthesis and BluePippin Size Selection” pro-
tocol as directed by the manufacturer (Pacific Biosciences). The
sequences were processed into HQ isoforms using SMRT Analy-
sis v6.0 for each tissue independently but with all size fractions
within tissue included in the analysis.

PacBio Iso-seq data have been processed as described for the
pig transcriptome [2] with the following exceptions. Errors in the
full-length, nonchimeric (FLNC) cDNA reads were corrected with
the preprocessed RNA-seq reads from the same tissue samples
using the combination of proovread (RRID:SCR 017331) (v2.12)
[71] and FMLRC (v1.0.0) [72] software packages. Error rates were
computed as the sum of the number of bases of insertions,
deletions, and substitutions in the aligned FLCN error-corrected
reads divided by the length of aligned regions for each read (Ta-
ble 8).

The RNA-seq–based transcriptome was assembled as de-
scribed in the previous section.

Oxford Nanopore data analysis

Assembled isoforms from a previously published Oxford
Nanopore experiment were used in this study [12]. In brief, a to-
tal of 32 tissues (Supplemental File 24) from 2 male and 2 female
Line 1 Hereford cattle, aged 14 months, were used in this exper-
iment. Barcoded cDNAs extracted from frozen tissues (−80◦C)
were pooled at the University of California, Davis and sequenced
using the Oxford Nanopore Technologies SQK-DCS109 kit ac-
cording to the manufacturer’s protocol [12].
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Table 8: Summary of error-corrected, FLNC Iso-seq reads and their matched RNA-seq reads

Tissue
Error-corrected FLNC Iso-seq

reads∗
Median error rate in

error-corrected FLNC Iso-seq reads
Normalized RNA-seq reads
used for error correction†

Thalamus 664,900 (90%) 0.21% 32,452,612
Testes 711,821 (86%) 1.43% 31,939,024
Liver 1,064,146 (84%) 1.84% 13,657,156
Medulla 380,531 (86%) 0.43% 48,256,918
Subcutaneous fat 215,759 (93%) 0.45% 42,043,313
Cerebral cortex 440,797 (87%) 1.01% 21,285,864
Jejunum 604,436 (90%) 2.331% 34,457,447

∗Number in parentheses indicates mapping rate (90% coverage and 95% identity).
†In silico normalized using insilico read normalization.pl from Trinity (version 2.6.6) with the following settings: –max cov 50 –max pct stdev 100 –single.

Comparison of transcript structures across
datasets/tissues

The structure of transcripts predicted from RNA-seq data was
compared across tissues and independent datasets, including
a library of annotated isoforms (Ensembl release 2021–03 and
NCBI Release 106), as well as isoforms identified through com-
plete isoform sequencing with Pacific Biosciences, a de novo as-
sembly produced from its matched RNA-seq reads, and isoforms
identified from Oxford Nanopore platforms. Transcripts whose
5′ and 3′ borders were supported by RAMPAGE and/or WTTS
data (see Transcript and gene border validation section) and
whose splice junctions were identical (maximum fuzzy junc-
tion was set to 15 bp) were considered “structurally equivalent
transcripts.” The maximum of 100 nt fuzzy 5′ and 3′ transcript
borders were applied when comparing transcripts was not sup-
ported by RAMPAGE and/or WTTS data. Other transcripts that
did not met these criteria were considered “structurally differ-
ent transcripts.”

A pair of genes was considered structurally equivalent across
datasets if they transcribed at least a single “structurally equiv-
alent transcript.”

Prediction of transcript and gene biotypes

Transcripts’ ORFs were predicted using the stand-alone version
of ORFfinder [73] with “ATG and alternative initiation codons”
as the ORF start codon. The longest 3 ORFs were matched to
the Uniprot (RRID:SCR 002380) vertebrate database using Blastp
(RRID:SCR 001010) [73] with an E-value cutoff of 10− 6, min cov-
erage of 60%, and min identity of 95%. The ORFs with the low-
est E-value to a protein were used as the representative, or if
no matches were found, the longest ORF was used. Putative
transcripts that had representative ORFs longer than 44 amino
acids were labeled as protein-coding transcripts. If the repre-
sentative ORF had a stop codon that was more than 50 bp up-
stream of the final splice junction, it was labeled as a nonsense-
mediated decay transcript [74]. Transcripts with a start codon
but no stop codon before their poly(A) site were labeled nonstop
decay RNAs. Putative noncoding transcripts (ORFs shorter than
44 amino acids and lack of coding potential predicted by CPC2
[75]) with lengths less than 200 bp that did not overlap with an-
notated or unannotated miRNA precursors (see miRNA-seq data
analysis section) were labeled as small noncoding RNAs [74]. Pu-
tative noncoding transcripts with lengths greater than 200 bp
were labeled as long noncoding RNAs [74]. Long noncoding RNAs
overlapping 1 or more coding loci on the opposite strand were la-
beled as antisense lncRNAs. Long noncoding RNAs located in in-
trons of coding genes on the same strand were labeled as sense-

intronic lncRNAs. Long noncoding RNAs that had an exon(s) that
overlapped with a protein-coding gene were labeled as intra-
genic lncRNAs. Long noncoding RNAs located in intergenic re-
gions of the genome were labeled as intergenic lncRNAs.

Putative genes that transcribed at least a single protein-
coding transcript were labeled as protein-coding genes. Puta-
tive genes with homology to existing vertebrate protein-coding
genes (Blastx [73], E-value cutoff 10−6, min coverage of 90%, and
min identity of 95%) but containing a disrupted coding sequence
(i.e., transcribe only nonsense-mediated decay or nonstop decay
transcripts in all of their expressed tissues) were labeled as pseu-
dogenes. The rest of the putative genes were labeled as noncod-
ing.

ncRNA homology analysis

Putative noncoding transcripts were matched to NCBI and En-
sembl vertebrate ncRNA databases using Blastn (RRID:SCR 001
598) [73] with an E-value cutoff of 10− 6, min coverage of 90%, and
min identity of 95%. Transcripts with at least 1 hit were consid-
ered homologous ncRNAs.

Transcriptome termini site sequencing data analysis

T-rich stretches located at the 5′ end of each WTTS-seq raw read
were removed using an in-house Perl script, as described pre-
viously [76]. T-trimmed reads were error-corrected using Coral
(version 1.4.1) [77] with -v -Y -u -a 3 option settings. The re-
sulting reads with length greater than 300 nt were quality
trimmed using the FASTX Toolkit (RRID:SCR 005534) (version
0.0.14) [78] with -q 20 and -p 50 option settings. High-quality,
error-corrected WTTS-seq reads were aligned against the ARS-
UCD1.2 bovine genome using STAR (version 020201) [62] with a
cutoff of 95% identity and 90% coverage.

Chromatin immunoprecipitation sequencing data
analysis

Regions of signal enrichment (“peaks”) from a previously pub-
lished chromatin immunoprecipitation sequencing (ChIP-seq)
experiment were used in this study [79]. In brief, total 8 tissue
(Supplemental File 24) from 2 male Line 1 Hereford cattle, aged
14 months, were used in this experiment. ChIP-seq experiments
were performed on frozen tissue (−80◦C) using the iDeal ChIP-
seq kit for Histones (Diagenode, cat. C01010059) based on a pro-
tocol described in [79]. The following antibodies used were from
Diagenode: H3K4me3 (in kit), H3K27me3 (#C15410069), H3K27ac
(#C15410174), H3K4me1 (#C15410037), and CTCF (#15410210).
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ATAC-seq data analysis

The UC Davis FAANG Functional Annotation Pipeline was ap-
plied to process the ATAC-seq data, as previously described [79].
Briefly, the ARS-UCD1.2 genome assembly and Ensembl genome
annotation (v100) were used as references for cattle. Sequenc-
ing reads were trimmed with Trim Galore! [61] (v.0.6.5) and
aligned BWA [80]) (v0.7.17) to the ARS-UCD1.2 genome assem-
bly with the –fr option. Alignments with mapping quality score
(MAPQ) scores <30 were filtered using Samtools (RRID:SCR 005
227) (v.1.9). Duplicate reads were marked and removed using Pi-
card (RRID:SCR 006525) (v.2.18.7). Regions of signal enrichment
were called by MACS2 (RRID:SCR 013291) (v.2.1.1).

Relating transcripts and genes to epigenetic data

The promoter was defined as the genomic region that spans
from 500 bp 5′ to 100 bp 3′ of the gene/transcript start site. Hi-
stone mark (H3K4me3, H3K4me1, H3K27ac), CTCF-DNA bind-
ing, or ATAC-seq peaks mapped to the promoter of a given
gene/transcript were related to that gene/transcript.

Transcript and gene border validation

RAMPAGE peaks from a previously published experiment [13]
were used to validate gene/transcript start site (Supplement
al File 24). Peaks within the genomic region spanning from
30 bp 5′ to 10 bp 3′ of a gene/transcript start site were as-
signed to that gene/transcript. WTTS-seq reads (median length
of 161 bp) within the genomic region spanning from 10 bp 5′ to
165 bp 3′ of a gene/transcript terminal site were assigned to that
gene/transcript.

Functional enrichment analysis

The potential mechanism of action of a group of genes was deci-
phered using ClueGO (RRID:SCR 005748) [81]. The latest update
(May 2021) of the Gene Ontology Annotation database (GOA) [82]
was used in the analysis. The list of genes with at least 1 tran-
script expressed in a given tissue was used as background for
that tissue. The GO tree interval ranged from 3 to 20, with the
minimum number of genes per cluster set to 3. Term enrichment
was tested with a right-sided hyper-geometric test that was cor-
rected for multiple testing using the Benjamini–Hochberg pro-
cedure [83]. The adjusted P value threshold of 0.05 was used to
filter enriched GO terms. Enriched GO terms were grouped based
on kappa statistics [84].

Alternative splicing analysis

Alternative splicing (AS) events (Supplemental File 2: Fig. S20A)
are commonly distinguished in terms of whether RNA tran-
scripts differ by inclusion or exclusion of an exon, in which case
the exon involved is referred to as a “skipped exon” (SE) or “cas-
sette exon,” “alternative first exon,” or “alternative last exon.”
Alternatively, spliced transcripts may also differ in the usage of
a 5′ splice site or 3′ splice site, giving rise to alternative 5′ splice
site exons (A5Es) or alternative 3′ splice site exons (A3Es), re-
spectively. A sixth type of alternative splicing is referred to as
“mutually exclusive exons” (MXEs), in which 1 of 2 exons is re-
tained in RNA but not both. However, these types are not nec-
essarily mutually exclusive; for example, an exon can have both
an alternative 5′ splice site and an alternative 3′ splice site, or
have an alternative 5′ splice site or 3′ splice site, but be skipped
in other transcripts. A seventh type of alternative splicing is “in-

tron retention,” in which 2 transcripts differ by the presence of
an unspliced intron in one transcript that is absent in the other.
An eighth type of alternative splicing is “unique splice site ex-
ons” (USEs), in which 2 exons overlap with no shared splice junc-
tion. Alternative splicing events, except unique splice site ex-
ons, were detected using generateEvents from SUPPA (version
2.3) [85] with default settings. Unique splice site exons were de-
tected using an in-house Python script.

miRNA-seq data analysis

Single-end Qiagen miRNA-seq reads (50 bp) from each tissue
sample were trimmed to remove the adaptor sequences and
low-quality bases using Trim Galore (version 0.6.4) [61] with –
quality 20, –length 16, –max length 30 -a AACTGTAGGCACCAT-
CAAT option settings. miRNA reads were aligned against the
ARS-UCD1.2 bovine genome using mapper.pl from mirDeep2
(RRID:SCR 010829) (version 0.1.3) [86] with -e -h -q -j -l 16 -o 40 -r
1 -m -v -n option settings. miRNA mature sequences along with
their hairpin sequences for B. taurus species were downloaded
from miRbase [14]. These sequences, along with the aligned
miRNA reads, were used to quantify annotated miRNAs in each
sample using miRDeep2.pl from mirDeep2 (version 0.1.3) [86]
with -t bta -c -v 2 setting options. miRNA normalized reads per
million (RPM) were used to check sample similarities using hi-
erarchical clustering and regression analysis of gene expression
values (log2-based CPM). Outlier samples, which did not cluster
together, indicating the potential for tissue mislabeling, were de-
tected and removed from downstream analysis. In order to pre-
dict the most comprehensive set of unannotated miRNAs, sam-
ples from different tissues were concatenated into a single file
that were aligned against the ARS-UCD1.2 bovine genome using
mapper.pl from mirDeep2 (version 0.1.3) [86] with the aforemen-
tioned settings. Aligned reads from the previous step were used,
along with annotated miRNAs’ mature sequences and their hair-
pins, to predict unannotated miRNAs using miRDeep2.pl from
mirDeep2 (version 0.1.3) [86] with the aforementioned settings.
Samples from each tissue were combined to get the most com-
prehensive set of data for that tissue. Mature miRNA sequences
and their hairpins for both annotated and predicted unanno-
tated miRNAs’ sequences along with the aligned miRNA reads
from each tissue were used to quantify annotated and unanno-
tated miRNAs in each tissue using mirDeep2 (version 0.1.3) [86]
with the aforementioned settings.

Tissue Specificity Index

Tissue Specificity Index (TSI) calculations were utilized
to present more comprehensive information on tran-
script/gene/miRNA expression patterns across tissues. This
index has a range of zero to 1 with a score of zero correspond-
ing to ubiquitously expressed transcripts/genes/miRNAs (i.e.,
“housekeepers”) and a score of 1 for transcripts/genes/miRNAs
that are expressed in a single tissue (i.e., “tissue specific”) [87].
The TSI for a transcript/gene/miRNA j was calculated as [87]

T SI j =
∑N

i=1 (1 − xj,i )
N − 1

where N corresponds to the total number of tissues measured,
and xj,i is the expression intensity of tissue i normalized by the
maximal expression of any tissue for transcript/gene/miRNA j.

https://scicrunch.org/resolver/RRID:SCR_005227
https://scicrunch.org/resolver/RRID:SCR_006525
https://scicrunch.org/resolver/RRID:SCR_013291
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae019#supplementary-data
https://scicrunch.org/resolver/RRID:SCR_005748
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae019#supplementary-data
https://scicrunch.org/resolver/RRID:SCR_010829
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QTL enrichment analysis

Publicly available bovine QTLs were retrieved from Animal
QTLdb (RRID:SCR 001748) [88]. Closest expressed genes to a
given trait’s QTLs were denoted as QTL-associated genes for that
trait. The median distance of QTLs located outside gene borders
to the closest expressed gene was 51.9 kilobases and the maxi-
mum distance was 2.6 million bases. QTL enrichment was tested
with a right-sided Fisher exact test using an in-house Python
script. The resulting P values were corrected for multiple testing
by the Benjamini–Hochberg procedure [83]. The adjusted P value
threshold of 0.05 was used to filter QTLs.

Trait similarity network

For a given pair of traits, trait A was denoted as “similar” to
trait B if a significant portion of trait A’s QTL-associated genes
were also the closest expressed genes to trait B’s QTLs based on
1,000 permutation tests. The resulting P values were corrected
for multiple testing using the Benjamini–Hochberg procedure
[83]. The same procedure was used to test trait B’s similarity to
trait A. The adjusted P value threshold of 0.05 was used to fil-
ter significant trait similarities. A graphical presentation of the
method used to construct the tissue similarity network is pre-
sented in Supplemental File 2: Fig. S40. The resulting network
was visualized using Cystoscape software [89].

Testis–pituitary axis correlation significance test

The presence of signal peptides on representative ORFs of
protein-coding transcripts was predicted using SignalP-5.0 [90].
Spearman correlation coefficients were used to study expres-
sion similarity between testis genes encoding signal peptides
that were closest to the “percentage of normal sperm” QTLs (62
genes) and pituitary expressed genes closest to the “percent-
age of normal sperm” QTLs (246 genes). To test the statistical
difference between these correlation coefficients (reference cor-
relations) and random chance, 1,000 random sets of 246 pitu-
itary genes were selected, and their correlation coefficients with
62 previously described testis genes were calculated (random
correlations). The reference correlations were compared with
1,000 sets of random correlations using a right-sided t-test. The
resulting P values were corrected for multiple testing by the
Benjamini–Hochberg procedure [83]. The distribution-adjusted P
values were used to determine the significance level of expres-
sion similarities for genes involved in the testis–pituitary axis
related to “percentage of normal sperm.” The same analysis was
conducted to determine the significance of pituitary–testis axis
involvement in this trait.

Tissue dendrogram comparison across different
transcript and gene biotypes

Tissues were clustered based on the percentage of their tran-
scripts/genes that were shared between tissue pairs using the
hclust function in R. Cophenetic distances for tissue dendro-
grams were calculated using the cophenetic R function. The de-
gree of similarity between dendrograms constructed based on
different gene/transcript biotypes was obtained using the Spear-
man correlation coefficient between the dendrograms’ Cophe-
netic distances.

Additional Files

Supplemental File 1. List of different datasets generated in the
experiment.
Supplemental File 2. Fig. S1. Distribution of the number of RNA-
seq reads across tissues. Fig. S2. (A) Comparison of tissues based
on number of transcript biotypes and (B) percentage of tran-
script biotypes. (C) Comparison of transcript biotypes based on
their number of expressed tissues and (D) their expression level
across expressed tissues. Fig. S3. (A) Relation between the num-
ber of input reads and the number of transcript biotypes. (B)
Comparison of expression level between different transcript bio-
types. Fig. S4. Tissue similarities (A) and clustering (B) based
on the percentage of protein-coding transcripts shared between
pairs of tissues. Fig. S5. Tissue similarities (A) and clustering (B)
based on the percentage of noncoding transcripts shared be-
tween pairs of tissues. Fig. S6. Comparison of annotated and
unannotated transcripts based on their expression (A) and num-
ber of expressed tissues (B). Fig. S7. Comparison of annotated
and unannotated protein-coding transcripts based on the length
(A) and GC content (B) of their 5′ UTR, CDS, and 3′ UTR. Fig. S8.
(A) Comparison of tissues based on number of gene biotypes and
(B) percentage of gene biotypes. Fig. S9. Relation between the
number of input reads and the number of gene biotypes. Fig.
S10. Comparison of annotated and unannotated genes based on
their expression (A) and number of expressed tissues (B). Fig.
S11. Functional enrichment analysis of the top 5% of genes with
the highest number of UTRs. Fig. S12. Similarity of tissues based
on the number of noncoding genes in their fetal samples that
switched to protein-coding genes with only coding transcripts
in their adult samples. Fig. S13. (A) Distribution of genes that
transcribed PATs, based on their number of expressed tissues,
percentage of genes’ transcripts that are PATs, and percentage
of genes’ expressed tissues in which PATs were transcribed. (B)
Comparison of genes that transcribed PATs with other gene bio-
types. Fig. S14. (A) Homology analysis of protein-coding genes.
(B) Homology analysis of noncoding genes. (C) Detection of or-
phan genes based on homology classification of cattle-specific
protein-coding genes and noncoding genes. Fig. S15. Compar-
ison of the expression level of homologous and orphan genes
across (A) and within (B) their expressed tissues. (C) Comparison
of homologous and orphan genes based on the number of ex-
pressed tissues. Fig. S16. Comparison of different gene biotypes
based on the expression (A) and the number of expressed tissues
(B). Fig. S17. Comparison of different pseudogene-derived lncR-
NAs and non-pseudogene-derived lncRNAs based on the expres-
sion level (A) and the number of expressed tissues (B). Fig. S18.
Tissue similarities (A) and clustering (B) based on the percentage
of protein-coding genes shared between pairs of tissues. Fig. S19.
Tissue similarities (A) and clustering (B) based on the percentage
of noncoding genes shared between pairs of tissues. Fig. S20.
(A) Different types of alternative splicing events. (B) Compari-
son of bovine genome builds based on the number of transcripts
that showed any type of alternative splicing (AS) events. Fig. S21.
Comparison of tissues based on the number (A) and the percent-
age (B) of transcripts that showed different types of alternative
splicing events. Comparison of tissues based on the number (C)
and the percentage (D) of alternative splicing events. Fig. S22.
(A) Comparison of tissues based on the percentage of transcripts
that showed any type of alternative splicing events, spliced tran-
scripts from single-transcript genes, and unspliced transcripts
and (B) the relation between the number of input reads and the
number of these transcripts across tissues. Fig. S23. Comparison
of transcripts that showed different types of alternative splic-

https://scicrunch.org/resolver/RRID:SCR_001748
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae019#supplementary-data
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ing events based on (A) the expression level in the expressed
tissues and (B) the number of expressed tissues. Fig. S24. Tran-
script biotype switching due to alternative splicing events. Fig.
S25. Comparison of tissues based on the number of alternative
splicing events per alternatively spliced gene. Fig. S26. (A) Distri-
bution of the number of alternative splicing events per alterna-
tively spliced gene. The 5% quantile is shown using a dashed red
line. (B) Functional enrichment analysis of the top 5% of genes
with the highest number of alternative splicing events. Fig. S27.
Comparison of the alternative splicing rate between adult and
fetal tissues. Fig. S28. (A) Distribution of a gene’s number of ex-
pressed tissues. Tissue-specific gene biotypes are shown in the
pie chart. (B) Distribution of a transcript’s number of expressed
tissues. Tissue-specific transcript biotypes are shown in the pie
chart. (C) Comparison of tissues based on the number of tissue-
specific genes and transcripts. (D) Comparison of the expres-
sion level of tissue-specific genes and transcripts versus their
non-tissue-specific counterparts. Fig. S29. Relationship between
tissue specificity and alternative splicing events. Fig. S30. Re-
lationship between Tissue Specificity Index and the number of
multitissue expressed genes (A) and transcripts (B). Distribution
of Tissue Specificity Iindexes in multitissue expressed genes (C)
and transcripts (D). The 5% quantile is shown using dashed red
lines. (E) Functional enrichment analysis of the top 5% of mul-
titissue expressed genes with the highest Tissue Specificity In-
dexes. Fig. S31. Distribution of QTLs located outside gene bor-
ders in relation to the closest expressed gene. Fig. S32. (A) Dis-
tribution of correlation coefficients between SPACA5 gene ex-
pression and pituitary expressed genes closest to “percentage of
normal sperm” QTLs. Dashed lines show the minimum signifi-
cant positive and negative correlation (P < 0.05). (B) Expression
atlas of SPACA5 gene in human tissues from the Human Pro-
tein Atlas [91]. Fig. S33. (A) Correlation between pituitary genes
with signal peptides that were close to the “percentage of nor-
mal sperm” QTL and testis expressed genes closest to this trait’s
QTL (reference correlations). (B) Distribution of P values result-
ing from right-sided t-test between reference correlation coeffi-
cients and correlation coefficients derived from random chance
(see Methods for details). Fig. S34. Tissue similarities (A) and
clustering (B) based on the percentage of miRNAs shared be-
tween pairs of tissues. Fig. S35. Clustering of tissues based on
protein-coding genes (A), protein-coding transcripts (B), non-
coding genes (C), noncoding transcripts (D), and miRNAs (E). (F)
Comparison of tissue dendrograms based on the correlation be-
tween their Cophenetic distances. Fig. S36. (A) Distribution of
the number of expressed tissues for annotated and unannotated
miRNAs. Classification of miRNAs as annotated or unannotated
is presented in the pie chart. (B) Comparison of tissues based
on their number of tissue-specific miRNAs. (C) Expression of an-
notated and unannotated miRNAs in their expressed tissues.
(D) Distribution of multitissue expressed miRNAs’ Tissue Speci-
ficity Indexes. (E) Relationship between Tissue Specificity Index
and number of expressed tissues in multitissue expressed miR-
NAs. Dots have been color coded based on their density. Fig. S37.
Distribution of the number of expressed genes (A), transcripts
(B), and miRNAs (C) across tissues. Fig. S38. Distribution of the
number of annotated and unannotated genes (A), transcripts
(B), and miRNAs (C) across tissues. Fig. S39. Overview of the
bioinformatics steps used in this study. Fig. S40. Graphical repre-
sentation of the method used to construct the tissue similarity
network.
Supplemental File 3. Summary of RNA-seq and miRNA-seq
reads.

Supplemental File 4. Detailed description of the number of tran-
scripts, genes, and miRNAs expressed in each tissue.
Supplemental File 5. List of transcripts and genes expressed
in each tissue and their expression values (RPKM). Indi-
vidual tissue files are labeled as Supplemental file5 <TISSUE
NAME> <Genes/Transcripts>.tsv.
Supplemental File 6. Transcript biotype enrichment analysis in
adult and fetal tissues.
Supplemental File 7. Functional enrichment analysis of the top
5% of genes with the highest number of UTRs.
Supplemental File 8. Functional enrichment analysis of genes
that remained bifunctional in all their expressed tissues.
Supplemental File 9. Functional enrichment analysis of noncod-
ing genes in fetal tissues that were switched to protein coding
with only coding transcripts in their matched adult tissue.
Supplemental File 10. Functional enrichment analysis of
protein-coding genes that transcribed PATs as their main tran-
scripts (PATs comprised >50% of their transcripts) in all their ex-
pressed tissues.
Supplemental File 11. Gene biotype enrichment analysis in adult
and fetal tissues.
Supplemental File 12. Functional enrichment analysis of the
top 5% of genes with the highest number of alternative splicing
events.
Supplemental File 13. List of tissue-specific genes and tran-
scripts.
Supplemental File 14. Genes’ and transcripts’ Tissue Speci-
ficity Indexes. Individual tissue files are labeled as Supplemen-
tal file14 <Genes/Transcripts>.tsv.
Supplemental File 15. Functional enrichment analysis of the top
5% of multitissue expressed genes with the highest Tissue Speci-
ficity Indexes.
Supplemental File 16. List of QTLs’ closest expressed genes in
each tissue. Individual tissue files are labeled as Supplemen-
tal file16 <TISSUE NAME>.tsv.
Supplemental File 17. Trait enrichment analysis of testis-
specific genes.
Supplemental File 18. Pituitary expressed genes closest to “per-
centage of normal sperm” QTLs that showed positive significant
correlation with SPACA5 gene in testis.
Supplemental File 19. List of expressed genes closest to “per-
centage of normal sperm” QTLs that were involved in testis–
pituitary tissue axis and their functional enrichment analysis
results.
Supplemental File 20. List of genes expressed closest to “per-
centage of normal sperm” QTLs that were involved in pituitary–
testis tissue axis and their functional enrichment analysis re-
sults.
Supplemental File 21. Similarity of traits based on the integra-
tion of the assembled bovine transcriptome with publicly avail-
able QTLs.
Supplemental File 22. List of miRNAs expressed in each tissue
and their expression values. Individual tissue files are labeled as
Supplemental file22 <TISSUE NAME>.tsv.
Supplemental File 23. Tissue sample collection and sequencing
library preparation methods.
Supplemental File 24. List of independent omics datasets used
in the experiment.

Abbreviations

A3E: alternative 3′ splice site exon; A5E: alternative 5′ splice site
exon; AFE: alternative first exon; ALE: alternative last exon; AS:
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alternative splicing; ATAC-seq: assay for transposase-accessible
chromatin using sequencing; bp: base pair; BP: Biological Pro-
cess; CDS: coding sequence; ChIP-seq: chromatin immunopre-
cipitation sequencing; CPM: counts per million; CTCF: CCCTC-
binding factor; DMEM: Dulbecco’s modified Eagle medium; FLNC:
full-length, nonchimeric; GO: Gene Ontology; GOA: Gene On-
tology Annotation database; GWAS: genome-wide association
study; H3K27ac: N-terminal acetylation of lysine 27 on his-
tone H3; H3K4me1: trimethylation of lysine 4 on histone H1;
H3K4me3: trimethylation of lysine 4 on histone H3; IACUC: In-
stitutional Animal Care and Use Committee; LD: longissimus
dorsi; lncRNA: long noncoding RNA; MAPQ: mapping quality;
miRNA: microRNA; MXE: mutually exclusive exon; NCBI: Na-
tional Center for Biotechnology Information; ncRNA: noncod-
ing RNA; NMD: nonsense-mediated decay; NSD: nonstop de-
cay; ONT-seq: Oxford Nanopore Technologies sequencing; ORF:
open reading frame; PacBio Iso-seq: Pacific Biosciences single-
molecule long-read isoform sequencing; PAT: potentially aber-
rant Transcript; poly(A): polyadenylation; PTBP1: polypyrimidine
tract binding protein 1; QTL: quantitative trait loci; RAMPAGE:
RNA Annotation and Mapping of Promoters for the Analysis of
Gene Expression; Ribo-seq: ribosome footprinting followed by
sequencing; RIE: retained intron exon; RNA-seq: Illumina high-
throughput RNA sequencing; RPKM: reads per kilobase of tran-
script per million reads mapped; RPM: reads per million; SE:
skipped exon; sncRNA: small noncoding RNA; SNP: single nu-
cleotide polymorphism; tpg: transcripts per annotated gene; TSI:
Tissue Specificity Index; TSS: transcript start site; TTS: transcript
terminal site; UCD: University of California, Davis; USE: unique
splice site exon; UTR: untranslated region; WTTS-seq: whole
transcriptome termini site sequencing.
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46. Rajala-Schultz PJ, Gröhn YT, McCulloch CE, et al. Effects
of clinical mastitis on milk yield in dairy cows. J Dairy
Sci 1999;82(6):1213–20. https://doi.org/10.3168/jds.S0022-03
02(99)75344-0.

47. Martı́ De Olives A, Dı́az JR, Molina MP, et al. Quantification of
milk yield and composition changes as affected by subclini-
cal mastitis during the current lactation in sheep. J Dairy Sci
2013;96(12):7698–708. https://doi.org/10.3168/jds.2013-6998.

48. Halasa T, Kirkeby C. Differential somatic cell count: value for
Udder Health Management. Front Vet Sci 2020;7:609055. http
s://doi.org/10.3389/fvets.2020.609055.

49. Remnant J, Green MJ, Huxley J, et al. Association of lameness
and mastitis with return-to-service oestrus detection in the
dairy cow. Vet Rec 2019;185(14):442. https://doi.org/10.1136/
vr.105535.

50. Miles AM, McArt JAA, Leal Yepes FA, et al. Udder and
teat conformational risk factors for elevated somatic cell
count and clinical mastitis in New York Holsteins. Prev Vet
Med 2019;163:7–13. https://doi.org/10.1016/j.prevetmed.2018
.12.010.

51. Lima FS, Silvestre FT, Peñagaricano F, et al. Early genomic
prediction of daughter pregnancy rate is associated with im-
proved reproductive performance in Holstein dairy cows. J
Dairy Sci 2020;103(4):3312–24. https://doi.org/10.3168/jds.20
19-17488.

52. Hertl JA, Schukken YH, Tauer LW, et al. Does clinical mastitis
in the first 100 days of lactation 1 predict increased mastitis
occurrence and shorter herd life in dairy cows? J Dairy Sci
2018;101(3):2309–23. https://doi.org/10.3168/jds.2017-12615.

53. Kaniyamattam K, De Vries A, Tauer LW, et al. Economics of
reducing antibiotic usage for clinical mastitis and metritis
through genomic selection. J Dairy Sci 2020;103(1):473–91. ht
tps://doi.org/10.3168/jds.2018-15817.

54. Green TC, Jago JG, Macdonald KA, et al. Relationships be-
tween residual feed intake, average daily gain, and feeding
behavior in growing dairy heifers. J Dairy Sci 2013;96(5):3098–
107. https://doi.org/10.3168/jds.2012-6087.

55. Elolimy AA, Abdelmegeid MK, McCann JC, et al. Residual feed
intake in beef cattle and its association with carcass traits,
ruminal solid-fraction bacteria, and epithelium gene expres-
sion. J Anim Sci Biotechnol 2018;9:67. https://doi.org/10.118
6/s40104-018-0283-8.

56. Weber C, Hametner C, Tuchscherer A, et al. Variation in fat
mobilization during early lactation differently affects feed
intake, body condition, and lipid and glucose metabolism
in high-yielding dairy cows. J Dairy Sci 2013;96(1):165–80.
https://doi.org/10.3168/jds.2012-5574.

57. Yi Z, Li X, Luo W, et al. Feed conversion ratio, residual
feed intake and cholecystokinin type A receptor gene poly-
morphisms are associated with feed intake and average
daily gain in a Chinese local chicken population. J Anim Sci
Biotechnol 2018;9:50. https://doi.org/10.1186/s40104-018-026

1-1.
58. Liu E, VandeHaar MJ. Relationship of residual feed intake and

protein efficiency in lactating cows fed high- or low-protein
diets. J Dairy Sci 2020;103(4):3177–90. https://doi.org/10.3168/
jds.2019-17567.

59. Clare M, Richard P, Kate K, et al. Residual feed intake phe-
notype and gender affect the expression of key genes of the
lipogenesis pathway in subcutaneous adipose tissue of beef
cattle. J Anim Sci Biotechnol 2018;9:68. https://doi.org/10.118
6/s40104-018-0282-9.

60. Houlahan K, Schenkel FS, Hailemariam D, et al. Effects of in-
corporating dry matter intake and residual feed intake into
a selection index for dairy cattle using deterministic model-
ing. Animals (Basel) 2021;11(4):1157 https://doi.org/10.3390/
ani11041157.

61. Krueger F. Trim Galore; 2019.https://www.bioinformatics.b
abraham.ac.uk/projects/trim galore/. Accessed 8 June 2020.

62. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast univer-
sal RNA-seq aligner. Bioinformatics 2013;29(1):15–21. https:
//doi.org/10.1093/bioinformatics/bts635.

63. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general
purpose program for assigning sequence reads to genomic
features. Bioinformatics 2014;30(7):923–30. https://doi.org/10
.1093/bioinformatics/btt656.

64. Leek J, Johnson W, Parker HS, et al. The sva package for re-
moving batch effects and other unwanted variation in high-
throughput experiments. Bioinformatics 2012;28(6):882–3.

65. Grabherr MG, Haas BJ, Yassour M, et al. Full-length tran-
scriptome assembly from RNA-seq data without a reference
genome. Nat Biotechnol 2011;29(7):644–52. https://doi.org/10
.1038/nbt.1883.

66. Hass B. HPC GridRunner; 2015. https://hpcgridrunner.github
.io/. Accessed 8 June 2019.

67. Tange O. GNU Parallel; 2018. https://doi.org/10.5281/zenodo
.1146014. Accessed 8 June 2019.

68. Wu TD, Watanabe CK. GMAP: a genomic mapping and align-
ment program for mRNA and EST sequences. Bioinformatics
2005;21(9):1859–75. https://doi.org/10.1093/bioinformatics/b
ti310.

69. PacificBiosciences. SMRT Analysis module; 2018.
https://www.pacb.com/products-and-services/analytica
l-software/smrt-analysis/. Accessed 8 June 2019.

70. Pedersen BS, Quinlan AR. Mosdepth: quick coverage
calculation for genomes and exomes. Bioinformatics
2018;34(5):867–68. https://doi.org/10.1093/bioinformatics/b
tx699.

71. Hackl T, Hedrich R, Schultz J, et al. proovread: large-scale
high-accuracy PacBio correction through iterative short read
consensus. Bioinformatics 2014;30(21):3004–11. https://doi.
org/10.1093/bioinformatics/btu392.

72. Wang JR, Holt J, McMillan L, et al. FMLRC: hybrid long read
error correction using an FM-index. BMC Bioinf 2018;19(1):50.
https://doi.org/10.1186/s12859-018-2051-3.

73. Wheeler DL, Church DM, Federhen S, et al. Database re-
sources of the National Center for Biotechnology. Nucleic
Acids Res 2003;31(1):28–33. https://doi.org/10.1093/nar/gkg0
33.

74. Aken BL, Ayling S, Barrell D, et al. The Ensembl gene an-
notation system. Database (Oxford) 2016;2016:1–19. https:
//doi.org/10.1093/database/baw093.

75. Kang YJ, Yang DC, Kong L, et al. CPC2: a fast and accurate
coding potential calculator based on sequence intrinsic fea-
tures. Nucleic Acids Res 2017;45(W1):W12–W6. https://doi.or
g/10.1093/nar/gkx428.

https://doi.org/10.1074/jbc.M313063200
https://doi.org/10.1210/en.2003-0277
https://doi.org/10.1016/j.semcdb.2014.03.001
https://doi.org/10.1186/s12864-016-3145-9
https://doi.org/10.3168/jds.S0022-0302(99)75344-0
https://doi.org/10.3168/jds.2013-6998
https://doi.org/10.3389/fvets.2020.609055
https://doi.org/10.1136/vr.105535
https://doi.org/10.1016/j.prevetmed.2018.12.010
https://doi.org/10.3168/jds.2019-17488
https://doi.org/10.3168/jds.2017-12615
https://doi.org/10.3168/jds.2018-15817
https://doi.org/10.3168/jds.2012-6087
https://doi.org/10.1186/s40104-018-0283-8
https://doi.org/10.3168/jds.2012-5574
https://doi.org/10.1186/s40104-018-0261-1
https://doi.org/10.1186/s40104-018-0261-1
https://doi.org/10.3168/jds.2019-17567
https://doi.org/10.1186/s40104-018-0282-9
https://doi.org/10.3390/ani11041157
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1038/nbt.1883
https://hpcgridrunner.github.io/
https://doi.org/10.5281/zenodo.1146014
https://doi.org/10.1093/bioinformatics/bti310
https://www.pacb.com/products-and-services/analytical-software/smrt-analysis/
https://doi.org/10.1093/bioinformatics/btx699
https://doi.org/10.1093/bioinformatics/btu392
https://doi.org/10.1186/s12859-018-2051-3
https://doi.org/10.1093/nar/gkg033
https://doi.org/10.1093/database/baw093
https://doi.org/10.1093/nar/gkx428


22 Enhanced bovine genome annotation through integration

76. Zhou X, Li R, Michal JJ, et al. Accurate profiling of gene ex-
pression and alternative polyadenylation with whole tran-
scriptome termini site sequencing (WTTS-seq). Genetics
2016;203(2):683–97. https://doi.org/10.1534/genetics.116.188
508.
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