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Korea4K: whole genome sequences of 4,157 Koreans
with 107 phenotypes derived from extensive health
check-ups
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Abstract

Background: Phenome-wide association studies (PheWASs) have been conducted on Asian populations, including Koreans, but many
were based on chip or exome genotyping data. Such studies have limitations regarding whole genome-wide association analysis, mak-
ing it crucial to have genome-to-phenome association information with the largest possible whole genome and matched phenome
data to conduct further population-genome studies and develop health care services based on population genomics.

Results: Here, we present 4,157 whole genome sequences (Korea4K) coupled with 107 health check-up parameters as the largest
genomic resource of the Korean Genome Project. It encompasses most of the variants with allele frequency >0.001 in Koreans, indi-
cating that it sufficiently covered most of the common and rare genetic variants with commonly measured phenotypes for Koreans.
Korea4K provides 45,537,252 variants, and half of them were not present in KorealK (1,094 samples). We also identified 1,356 new
genotype-phenotype associations that were not found by the KorealK dataset. Phenomics analyses further revealed 24 significant
genetic correlations, 14 pleiotropic associations, and 127 causal relationships based on Mendelian randomization among 37 traits.
In addition, the Korea4K imputation reference panel, the largest Korean variants reference to date, showed a superior imputation
performance to KorealK across all allele frequency categories.

Conclusions: Collectively, Korea4K provides not only the largest Korean genome data but also corresponding health check-up param-
eters and novel genome-phenome associations. The large-scale pathological whole genome-wide omics data will become a powerful
set for genome-phenome level association studies to discover causal markers for the prediction and diagnosis of health conditions
in future studies.
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Background

check-up showing the value of whole genome data accompanied

South Korea has perhaps one of the most extensive and conve-
nient annual health check-up services. Every year, almost all Ko-
reans aged over 40 years receive a standardized health check-
up, yielding a wealth of individual clinical data [1]. In 2020, we
published 1,094 whole genomes with clinical information (Ko-
realK) by providing all the participants with a free standard health

by clinical information mapping the genome diversity with prac-
tical applications [2]. Here, we present the second phase of the
Korean Genome Project (KGP) with 4,157 sets of whole genome
data, Korea4K. It is accompanied by 107 types of clinical traits that
have been donated by 2,685 healthy participants who acquired the
health check-up reports from the hospitals of their choice in the
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past years. We manually annotated thousands of donated health
reports that are matched with the whole genome information.
Therefore, apart from the increased number of samples, the main
difference between KorealK and Korea4K is that Korea4K's clini-
calinformation is from very heterogeneous but fairly standard Ko-
rean health check-up centers, while KorealK was from one very
well-controlled university hospital health check-up center. This
was also a testbed to assess how difficult it would be to merge
data from the heterogeneous health check-up record system in a
nation for a large-scale genome to phenome association analysis.

Previously, there were a few phenome-wide association studies
(PheWASs) on Asian populations, but they were limited to chip-
or exome-based genotyping data. A Japanese PheWAS identified
the genetic links among clinical traits, complex diseases, and cell
type-specific patterns [3]. Another PheWAS using 10,000 Korean
cohorts’ health check-up data from multiple lab sources showed
network relationships between genes and phenotypes [4]. How-
ever, none of these studies covered the entirety of genomic vari-
ation, and they have limitations on genome-wide data analyses
[5, 6].

A scientific contribution of this version of KGP is that we pro-
vide extensive genome-to-phenome association information with
the largest genomic and clinical data from Korea to date to es-
timate how many samples and clinical parameters cover the
whole genomic and common phenotypic diversity of Koreans. Ko-
rea4K contains 4,157 Korean genomes from East Asian ances-
try, and 2,685 of them are accompanied by 107 types of clinical
information such as height, waist circumference, weight, albu-
min/globulin ratio, basophil, direct bilirubin, low-density lipopro-
tein, high-density lipoprotein, mean corpuscular volume, and
total cholesterol. The rest does not contain such kind of data be-
cause the biobank does not have phenotype information, or we
were not able to collect it from the participants. Korea4K extends
the efforts to completely map the totality of Korean genomic di-
versity, which can be a useful scope reference for disease risk pre-
diction, diagnosis, and treatments in the future for personalized
medicine.

As the second phase of the KGP, Korea4K not only extends
the previously reported KorealkK [2] but also includes new mul-
tiphenotypic association analyses, that is, analyses on markers
that are associated with multiple phenotypes (pleiotropy), the ge-
netic correlation between traits, and estimated causality relation-
ship among traits through Mendelian randomization (MR) and 3-
dimensional (3D) structure models for Korean-specific missense
variants. Combining these 2 omics data, we provide the commu-
nity with the most extensive genotype-phenotype association of
healthy Korean participants. We have also applied the genomic
variation data to the genotype imputation of low-frequency vari-
ants in the Korean population.

Data Description

The goal of our project was to create a genome dataset for Ko-
rea4K, which included newly sequenced genomic data from 2,848
participants as well as 1,309 whole genome sequencing (WGS)
datasets from KorealK and public data archives. Additionally, we
established a phenome dataset for Korea4K by gathering or com-
puting 107 clinical parameters and genome data from 2,685 sam-
ples. We collected a total of 3,383 clinical datasets, including mul-
tiple time points per sample, from regular health check-ups con-
ducted by various hospitals and clinics across Korea between 2016
and 2019. The genome and phenome datasets were produced and
curated by the protocol in Materials and Methods.

Analyses

The largest Korean whole genome variants data:
Korea4K variome

A total of 64,301,272 single nucleotide variants (SNVs) and
8,776,608 indels were called against the human genome refer-
ence (hg38) from the 4,157 Korean whole genomes, including 3,071
healthy controls (Supplementary Tables S1 and S2). It contains
3,063 newly added whole genomes sequenced by Illumina next-
generation sequencing (NGS) platforms (HiSeq X10 and Novaseq
6000), in addition to the previous KorealK dataset, which was
mostly generated by Illumina HiSeq X10. Using the variant data,
we selected 3,617 samples with no kinship after initial sample
filtering (see Materials and Methods). To exclude erroneous vari-
ants from sequencing batch effects from the heterogeneous Illu-
mina NGS platforms and library preparation, we applied an allele
balance bias measurement and finally acquired 12,713,580 erro-
neously called variant candidates (Supplementary Fig. S1). After
additional variant filtering (see Materials and Methods), we iden-
tified 45,537,252 variants, including 42,124,137 SNVs, 36,029 dou-
ble nucleotide variants (DNVs), 26,135 triple nucleotide variants
(TNVs), 3,261,682 indels, and 89,269 other types of small variants
from the 3,617 unrelated samples. We named this filtered Korean
dataset the Korea4K variome (Fig. 1). A total of 23,689,147 vari-
ants were not present in the previous KorealK variome. This un-
expectedly large difference is likely derived from different batch
effect filtering and variant calling and filtering procedures, as
well as new variants from the larger sample size. Consistent with
the KorealK study [2], most variants were located in intronic or
intergenic regions and rarely in splicing sites or coding regions
(Supplementary Fig. S2), which is a sign of negative selection
pressure in the population. Half of the total variants (21,941,879;
48.2%) were singleton or doubleton in the 3,617 unrelated sam-
ples, indicating that the Korean population’s genetic diversity is
very low as the population diversity could be covered by fewer
than 4,000 unrelated samples (Fig. 1A, Supplementary Table S3).
Almost all the common (allele frequency of >0.01 and allele fre-
quency of <0.05) and very common (allele frequency of >0.05)
variants were found to be already reported in the database of
single nucleotide polymorphisms (dbSNP) (99.70% and 99.97%, re-
spectively), while more than half of the singleton and doubleton
variants were newly discovered in this study (59.9% and 44.57%,
respectively), indicating the new variant pool is well exhausted in
the Korean population by the 3,617 samples, resulting in a large
portion of individual specific novel variants in the Korean variome
(Fig. 1A, Supplementary Table S3). Only 3,092 and 3,569 unrelated
individuals were needed to discover all the rare (allele frequency
of >0.001 and allele frequency of <0.01) and very rare (allele count
of >2 and allele frequency of <0.001) variants in the Korea4K var-
iome, respectively (Fig. 1B), indicating that the Korea4K variome
includes almost all the rare and very rare variants of Korean peo-
ple of East Asian ancestry. It is notable that in our previous Ko-
realK data, the accumulated variant number curves did not reach
a plateau [2]. Regarding common variants, only 481 and 161 unre-
lated individuals were necessary for common and very common
variants, respectively, to cover the diversity that is close to the Ko-
realK statistics (440 and 132 samples). Essentially, the Korea4K
variome statistics indicate the saturation of population diversity
detection among Koreans. However, as expected, in the case of
singleton and doubleton variants, the Korea4K variant discovery
curve did not reach a plateau. This is due to each individual’s novel
random variants, and we will never reach a point of no novel vari-
ant discovery even with increased sample numbers.
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Figure 1: Korean variome profile and imputation evaluation using Korea4K. (A) The number of variants in the Korea4K variome is categorized by AFs
among unrelated Korea4K genomes. “dbSNP” indicates the variants were reported in dbSNP database. “Novel” indicates the variants were not reported
in dbSNP. Singleton, allele count = 1; doubleton, allele count = 2; very rare, allele count of >2 and allele frequency of <0.001; rare, allele frequency of
>0.001 and allele frequency of <0.01; common, allele frequency of >0.01 and allele frequency of <0.05; very common, allele frequency of >0.05. (B)
The number of discovered variants as a function of unrelated genomes. (C) Imputation performance evaluation using the Korea4K and KorealK
panels. The x-axis indicates alternative (Alt) allele frequency in the Korea4K variome. The y-axis represents the aggregated R? values of variants. We

used variants that were overlapped by imputed results across 2 panels.

As a practical application, we constructed a Korea4K imputa-
tion reference panel from the 3,614 unrelated whole genomes that
showed a consistently better imputation performance than the
KorealK. The Korea4K panel was able to impute 198,805 more
genotypes than the KorealK panel (7,551,095 loci compared to
7,352,290) with the same dataset. Moreover, as expected, the Ko-
rea4K panel had better accuracy across all allele frequency cate-
gories than the KorealK panel (Fig. 1C). The difference in aggre-
gated R? became larger for variants with allele frequency (AF) in
Korea4K <0.05 than for those in Korea1k, indicating higher accu-
racy in rare variants (Fig. 1C). In particular, the Korea4K imputa-
tion panel improved the imputation accuracy by 6% for the rare
variants group compared to KorealK on average.

As in KorealK, the Korean population is genetically distinct
from the Chinese and Japanese populations, confirmed by princi-
pal component analysis (PCA) with few outliers (Fig. 2A). We also
found 62 missense variants out of 282,607 in Korea4K thathad AFs
significantly different from 10 populations in the 1000 Genomes
Project (1KGP) from the European Bioinformatics Institute (EBI)
(x? test P < 5 x 107> against each of the 10 populations; see Ma-
terials and Methods; Supplementary Table S4). The genes con-
taining such Korean-specific missense variants included LILRB3,
HLA-DRBS, IGLV5-48, and IGHV4-4, which are known to be asso-
ciated with adaptive immunity, and OR9G1 and OR8U1 for olfac-
tory receptors. Additionally, we found that 12 Korean-specific mis-
sense variants were in protein functional domains (Fig. 2B). Four
of them were predicted to facilitate increased structural stability
calculated in the protein 3D models built by AlphaFlod? [7], while
the other 8 variants were predicted to cause decreased stability
(Supplementary Table S5).

Whole genome-wide association study (WGWAS)

Whole genome-wide association studies (WGWASSs) revealed that
2,324 variants from 157 unique loci had significant associations
with 34 clinical traits from 37 WGWAS target traits (P < 5 x 107%;
Fig. 3A-F, Supplementary Table S6). Among the significantly asso-
ciated variants, 2,314 variants from 30 clinical traits still showed
significance after false discovery rate (FDR) correction using the
Benjamini-Hochberg approach (FDR < 0.05). We used 90 clini-
cal traits from the 107 phenotypes after filtering 27 traits with a
high missing rate and biased distribution for WGWASs (see Ma-
terials and Methods). Of the 90 traits, 54 were not confident in

quantile-quantile (QQ) plots and were excluded from further MR
and pleiotropy analyses (see Materials and Methods). Among the
2,324 WGWAS significant variants, only 85 variants (31 loci) were
reported in the genome-wide association studies (GWAS) catalog
database [8]. The trait with the largest number of significantly as-
sociated loci was carbohydrate antigen 19-9 (CA19-9), a cancer
antigen, with 16 loci. Uric acid had the second highest number
of significant loci with 14 loci.

Korea4K showed much stronger statistical power than the pre-
vious KorealK study, identifying 1,356 new WGWAS variants (107
loci) from 28 common traits between Korea4K and KorealK. Also,
Korea4K had much lower (i.e., more significant) P values than Ko-
realK for all the commonly found association variants between
the 2 datasets (Supplementary Fig. S3). Among the 107 loci con-
taining the 1,356 new WGWAS variants, 798 Korea4K significant
WGWAS variants from 73 loci had not been significant in Ko-
realK (Supplementary Table S6). Furthermore, 12 traits (albu-
min/globulin ratio, basophil, C-reactive protein, direct bilirubin,
height, low-density lipoprotein, mean corpuscular volume, right
hearing at 2000 Hz, thyroid stimulating hormone, total choles-
terol, waist, weight) had 425 WGWAS variants that were signifi-
cant uniquely in Korea4K, meaning no significant WGWAS vari-
ants from the 12 traits in KorealkK (Supplementary Table S6). For
example, a missense variant, rs6431625 (P = 1.41 x 102, FDR
=5.23 x 107%¥), in UGT1A3 was found to be associated with di-
rect bilirubin in Korea4K. It was previously reported to be associ-
ated with circulating bilirubin levels [9]. Another Korea4K-specific
missense variant is rs7412 (P = 2.86 x 107, FDR = 1.11 x 107/)
in APOE, which is associated with low-density lipoprotein (LDL)
levels. Its association with cholesterol levels has been previously
well established [10]. Finding novel WGWAS variants in Korea4K
was due to the increased sample size and subsequently increased
variant number compared to KorealK.

Genetic correlation and phenotypic correlation

We found 27 traits with significant heritability among 89 quan-
titative traits (Fig. 4A; the lower boundary of genetic heritability
>0 with 95% confidence interval [CI]; Supplementary Table S7).
A total of 24 pairs of traits showed a significant genetic correla-
tion (GC) (FDRgc < 0.05), measured as rG value, among 351 trait
pairs between the 27 traits that showed significant heritability
(Fig. 4, Supplementary Table S8). We found consistent results of
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Figure 2: Comparison of Korea4K and 1KGP. (A) The results from PCA of Korea4K and the 1KGP set of East Asian samples. (B) Allele frequency
information of Korea4K and the populations in the 1KGP for the 12 Korean-specific missense variants located in protein functional domains. AFR:
African; AMR: American; CDX: Dai Chinese; CHB: Han Chinese; CHS: Southern Han Chinese; EAS: East Asians; EUR: European; JPT: Japanese; KHV: Kinh

Vietnamese; KOR: Korea4K; SAS: South Asians.

weight-waist and body mass index (BMI)-waist pairs, showing a
significant genetic correlation in the UK Biobank data with the
same trend as our result (rG = 0.9, P = 1073% in UK Biobank; 1G =
0.9, P = 1073% in UK Biobank, respectively) [11]. We identified 2,274
trait-trait relationships that had a significant phenotypic correla-
tion (PC) (FDRp¢ < 0.05, its 95% CI does not include 0) from trait-
trait associations between 3,916 pairs of 89 quantitative traits
(Fig. 4B, Supplementary Table S9). Most genetic and phenotypic
correlations showed the same direction of correlation. The only
2 exceptions were waist/weight ratio (WWtR)-urine white blood
cell (U_WBC) and waist-creatinine, which showed opposite direc-
tions. This trend of waist-creatinine has also been reported in a
correlation database using UK Biobank data [12]. Such discrepan-
cies between the correlation estimates are possibly derived from
the shared environmental factors between a pair of traits, such
as dietary habits, that overwhelm the genotypic effects [13, 14].
This proves that the phenotypic correlation is not a mere proxy
for the genetic correlation, and consideration of the environmen-
tal effect is indispensable for the accurate interpretation of hu-
man phenomics [15].

Of the 37 WGWAS target traits, we detected 1,131 variants from
21 traits having suggestive associations (Pgwas < 107°) with at
least 2 traits, indicating pleiotropic variants (Fig. 5, red edges;
Supplementary Table S10). We devised the Variant-Sharing In-
dex (VSI) to measure the degree of intersection between 2 phe-
notypes (Table 1; see Materials and Methods). A VSI of zero signi-
fies that 2 traits share no suggestively associated variants (SSVs),
while 100 indicates they share all of them. The trait pairs with
SSVs and the corresponding VSIs are listed in Table 1. Notably, we
had only 1 variant, rs77913154, that was shared among 3 traits:
Globulin, AG_Ratio, and ESR (Supplementary Table S10). Interest-
ingly, we found 15 variants residing on the SOD2P1-AC095032.2—
AC095032.1 locus-forming pleiotropy between the serum amylase
level and the level of CA125, a known ovarian cancer marker (Ta-
ble 1, VSI = 2.3). Fourteen of the 15 variants conform to the al-
teration of AMY2B expression level, as per cis-expression quanti-
tative trait loci (cis-eQTL) results from the GTEx Portal (ver. 8), 4
of which were associated with expression in the pancreatic tissue
(see Materials and Methods). There have already been reports of
hyperamylasemia in patients with ovarian cancer [16-18]. In addi-
tion to the investigation on the general pleiotropic relationship, we
employed MR to detect vertical pleiotropy that can assert the di-

rection of the phenotypic relationships [19]. This provides indirect
evidence implying causality between the traits to discern spurious
phenotypic associations, such as confounding and collider bias
[20, 21]. We found that a total of 127 trait pairs among 1,332 pairs
of the 37 WGWAS traits were estimated to have significant causal
relationships (FDR < 0.05, Fig. 5, Supplementary Table S11). These
findings were supported by at least 2 of 3 different MR analysis
methods (IVW: 166 pairs; MRPRESSO: 139; MR-Egger: 23). Among
these, 59 trait pairs showed unidirectional relationships while 68
exhibited bidirectional causal relationships (Supplementary Table
S11).

We summarized the results of 4 phenomics analyses (GC, PC,
MR, and pleiotropy) through visualizing them in network plots
(Fig. 5). In general, the identified trait-trait pairs of GC, MR, and
pleiotropy analyses did not often overlap. Genetic correlation and
pleiotropy were found to be exclusive of each other, even though
both measures shared genetic components of 2 different traits. GC
was primarily observed among body measures such as waist cir-
cumference, weight, height, and left naked eyesight. On the other
hand, pleiotropy was more prevalent in the relationship between
metabolites in blood such as LDL, bilirubin, or carcinoembryonic
antigen (CEA). The only overlap between these two was waist-to-
heightratio (WHtR)-waist (circumference), where one was derived
from the other.

MR suggests a causal relationship between phenotypic corre-
lations through mediation effect by a genotype. In our casual di-
agram (Fig. 5, blue arrows), alkaline phosphatase (ALP) and CEA
showed potential causality, along with the shared genetic vari-
ants between them (pleiotropy near ABO gene). Numerous pre-
vious studies have consistently reported these markers together
for diagnosing cancer and monitoring metastasis [22-24]. Simi-
larly, CA125 and amylase also displayed causality via shared ge-
netic variants (pleiotropy near AMY2B gene). We propose that
CA125 and amylase might serve as complementary biomark-
ers for ovarian cancer, much like ALP and CEA. The biologi-
cal relationships between these clinical blood measures remain
unclear.

Our phenomics results also depicted distinguishable patterns
of association between secondary body measures, such as WHtR,
WWHR, and BMI, with other phenotypes. WHtR exhibited a causal
relationship with C-reactive protein (CRP), body fat percentage,
and high-density lipoprotein (HDL). The result is concordant with
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Figure 3: Whole genome-wide association studies in Korea4K. (A-F) Whole genome-wide association studies from 34 traits. Loci are presented only

when index variants of the loci had a significant P value (P <5 x 10~
The dotted line indicates the significant threshold (P < 5 x 107%).

previous reports that body fat percentage and CRP are correlated
(25, 26]. Conversely, WWtR had casual associations with measures
of lung capacity (forced expiratory volume in the first second
(FEV;) and forced vital capacity (FVC)), liver function (aspartate
aminotransferase (AST)), and inflammation (U_WBC). However,
WWIHR has yet to prove its utility in clinical studies. BMI serves
as an intermediate phenotype, sharing most of its associations
with WHtR and, to a lesser extent, with WWH1R via left naked eye-
sight. These findings suggest that the measurements reflect dis-
tinct biological mechanisms, warranting further studies. For in-
stance, WHtR is a well-known indicator of central adiposity, which
provides a better estimate of obesity and related morbidities than
BMI [27].

8) from the WGWAS. The dashed line indicates the suggestive threshold (P < 107°).

Discussion

Batch effect exacerbated by sequencing platform and library
preparation bias is a critical problem in very large population
genome association studies, especially with clinical data from
heterogeneous health check-up centers. In the future, more and
more diverse whole genome data with extensive clinical data will
be publicly available, and it is inevitable that they will be merged
for more precise whole genome-to-phenome association research.
Korea4K is not an exception in that regard, and in one homoge-
neous population WGWAS, it was necessary to consider and factor
in a great deal of sequencing and clinical data batch effects and er-
rors. We attempted to minimize the errors by using allele balance
with optimal filtering criteria and time-consuming manual checks
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on health reports that were donated by the participants (see Ma-
terials and Methods). The largest challenge of the Korea4K project
was cleaning up heterogeneous clinical data from different health
check-up centers. Another major issue was that the health check-
up data heterogeneity caused reduced numbers of participants’
common traits with which to compare. Some of the health data
were from past years’ health check-ups from heterogeneous hos-
pitals throughout South Korea. This heterogeneity in location and
time was not an intentional experimental design but was in or-
der to reduce the cost of performing expensive 1-center health
check-ups for the Korea4K participants. Therefore, WGWAS along

with standardized and unified national and public health check-
up data will greatly benefit future whole genome-wide association
studies.

Although 4,157 seems like a large number, we found the sample
sizein this study was still not large enough to detect weak associa-
tion signals. The Korea4K variome with matched phenotype infor-
mation has allowed us to estimate genomic correlation across var-
ious phenotypes using GREML [28]. GREML has been reported to
have higher accuracy compared to methods, such as linkage dis-
equilibrium score regression (LDSC), using only summary statis-
tics from GWAS [29]. For example, the minimum heritability score



Table 1: Pleiotropic associations and VSI
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Suggestive Suggestive

Trait 1 Trait 2 variants in trait 1 variants in trait 2 Shared variants Total variants VSI
D_bilirubin T_bilirubin 638 632 569 701 81.2
Globulin AG_Ratio 294 230 147 377 39

HDL Neutral_fat 348 398 191 555 34.4
CEA CA19_9 221 264 74 411 18

T_cholesterol LDL 74 238 38 274 13.9
WHtR Waist 177 100 31 246 12.6
ALP CEA 153 221 35 339 10.3
T3 GGT 542 125 23 644 3.6
CA125 Amylase 202 466 15 653 2.3
Weight Waist 123 100 5 218 2.3
Height Weight 173 123 2 294 0.7
ESR AG_Ratio 163 230 1 392 0.3
Globulin ESR 294 163 1 456 0.2
U_RBC Globulin 627 294 1 920 0.1

was 0.34 (degree of obesity) among the traits detected as statisti-
cally significant. The statistical power of our maximum 2,685 sub-
jects and FDR < 0.05 is estimated to be 0.72 for detecting traits
with heritability of 0.3 or higher (calculated from GCTA-GREML
Power Calculator) [30]. This will increase to 0.97 with 4,000 sub-
jects. In other words, phenomics analyses were limited and not
powerful enough to confidently discover novel phenotypic associ-
ations with the current dataset.

Nevertheless, our findings bear important practical implica-
tions. We described the utility of secondary body measures,
such as WHtR and WWItR, compared to BMI. We also elabo-
rated on the diagnostic and prognostic value of other serum pro-
teins, namely ALP and amylase, in conjunction with the exist-
ing cancer biomarkers. However, we plan to collect more sam-
ples for sequencing and health record data with a wider variety of
health-related categories to conduct a more powerful study in the
future. This will allow us to not only validate our findings but
also find correlations of medical importance that were missed
in the present study. While chip-based GWAS is a common ap-
proach, our study highlights the unique advantage of WGWAS
in genotype-phenotype association studies. An illustrative ad-
vantage of WGWAS is its whole genome-wide, unbiased cover-
age of genetic variants, which allowed us to assign specific vari-
ants accounting for pleiotropy. This was not achievable with con-
ventional methods. For example, we could identify the variants
in the well-known pleiotropic relationships such as ALP-CEA by
theABO locus (35 variants), Neutral _Fat-HDL by the LPL locus (181
variants), and total cholesterol-LDL by the TOMM40 and APOE
loci (4 and 2 variants, respectively) (Supplementary Table S7).
These loci and their corresponding trait pairs were previously re-
ported from chip-based GWAS summary results [31, 32]. Simi-
larly, we anticipate the fine-mapping analyses will also benefit
from WGWAS, pinpointing novel genetic variants of phenotypic
importance, as demonstrated in our prior work [33]. Taken to-
gether, whole genome sequencing with its genomic completeness
should be a well-considered choice for future genomic association
studies.

One of the main objectives of the Korea4K project was to
build a genomic and phenomic reference dataset to discover
unknown whole genome-to-phenome associations that can be de-
tected from samples of healthy people. This, however, is contra-
dictory and it limited us in discovering clear pathogenic associa-
tions because most of the participants examined in WGWAS were

healthy without any severe aberrant phenotypes or diseases that
could bring us clues for interesting omics analyses. Moreover, uti-
lizing recently introduced human genome references like the T2T
reference [34] and Human Pangenome reference [35], which offer
broader genomic coverage or have population-specific sequences
compared to the existing GRCh38 reference, could help identify
additional associations that might be overlooked. Nevertheless,
these new references lack functional annotations and need to be
connected to previous databases such as dbSNP and the GWAS
catalog.

As for the future directions, several key limitations have not
been met in our current study. The first is we failed to acquire long
DNA sequencing reads from the healthy participants for building
a structural variation reference set for the Korean population. The
second is the lack of epigenomic data from the 4,157 samples. This
was mostly due to high costs for generation and computing long-
read based assemblies and sequencing methylated DNA sites. The
third one, which is perhaps the most relevant for the purpose of
performing association studies for health care, is that we failed
to acquire more rare and severe disease data from patients, ac-
companied by precise clinical and multiomics data. We have ex-
cluded a small number of rare disease cases, as those required
a large amount of sequencing data from genome, transcriptome,
and methylome to perform precise functional analyses. Large-
scale pathological whole genome-wide omics data will become
a powerful set for genome-phenome level association studies to
detect causal markers for the prediction and diagnosis of health
conditions in future studies.

Potential Implications

The Korea4K dataset can be a valuable variome reference, as
it contains matched phenome data for personalized medicine,
large-scale population genome studies, and the understanding of
anthropologic history in Korea. This large-scale Korean genome-
phenome dataset can help identify the genetic basis for diseases
and phenotypes, enabling personalized treatment plans for indi-
viduals. Analyzing the genome-phenome association dataset can
also be used to develop new drugs that target specific genetic vari-
ations in the Korean population. The Korea4K dataset can also
be valuable for other populations, particularly East Asians, as it
can be used to identify population-specific genome-phenome pat-
terns by comparing the population’s genome-phenome data to
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the Korea4K dataset. Furthermore, the Korea4K reference panel
can be utilized for genotype imputation of DNA chip genotyping
data for the Korean population and other East Asians.

Materials and Methods

Sample collection and whole genome sequencing

We collected 2,848 blood samples or already processed DNA sam-
ples from Korean individuals. A total of 1,094 WGS datasets orig-
inating from our previous study (KorealK) and 215 WGS data
from publicly available Clinical & Omics Data Archive (CODA)
were added to the aforementioned dataset [2]. The genomic DNA
was extracted using the DNeasy Blood & Tissue kit (Qiagen) from
whole blood samples. We constructed the whole genome sequenc-
ing library from the DNA by using the TruSeq Nano DNA Sample
Prep kit (Illumina) kit. Whole genome sequences of the 2,848 sam-
ples were generated by the Illumina Nova-seq 6000 platform. All
the sequencing data that we used in this study had 151 bp as a
read length. Average sequencing amount per sample was 27.75x
(Supplementary Fig. S4).

Joint genotype calling

Adapter contamination was trimmed using Cutadapt
(RRID:SCR_011841, ver. 1.9.1) [36] with a forward adapter
(GATCGGAAGAGCACACGTCTGAACTCCAGTCAC) and re-
verse adapter (GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT')
and with a minimum read length of 50 bp after trimming
(Supplementary Fig. S4). The quality of trimmed reads was
screened by the FASTQC program (RRID:SCR_014583, ver. 0.11.5)
We mapped the whole genome sequencing reads from 4,157
samples to the human reference genome (hg38) using BWA-mem
(RRID:SCR_010910, ver. 0.7.17) with the “-M" option and alt-aware
mode [37]. The mapped reads were sorted by genomic coordina-
tion using Picard (RRID:SCR_006525, ver. 2.20.3). We marked the
PCR duplicates and recalibrated the base quality of the mapped
reads using the MarkDuplicates and BaseRecalibrator module in
Picard (RRID:SCR_006525, ver. 2.20.3), respectively. A total of 3,156
samples had a mapping depth of >20x (Supplementary Fig. S4).
Individual genotypes were called in GVCF format by Haplotype-
Caller in GATK (RRID:SCR_001876, ver. 4.1.3) with “—genotyping-
mode DISCOVERY -stand-call-conf 30 -ERC GVCF” options [38].
We merged the individual genotypes to a single GVCF for each
chromosome using CombineGVCFs in GATK (RRID:SCR_001876,
ver. 4.1.3) [38]. We jointly genotyped the merged GVCF with the
genotypeGVCF module in GATK (RRID:SCR_001876, ver. 4.1.3) [38].
Variant quality of the joint genotypes was recalibrated using the
VQSR module in GATK (RRID:SCR_001876, ver. 4.1.3) [38].

Sample and variant filtering

After joint genotyping, we filtered out a total of 540 participants
with the criteria listed below using SelectVariants in GATK (RRID:
SCR_001876, ver. 4.1.3) with the “—remove-unused-alternates” op-
tion to remove unused variants [38]. To explore kinship relations
among the samples, we assessed Identical by Descent (IBD) using
the Plink program (RRID:SCR_001757, ver. 1.90b3n) [39]. Samples
with a PI_HAT value exceeding 0.05 were considered to be in a
kinship relation.

1. Showing high missing genotype rate (>10%): 9 samples

2. Having a too high or low heterozygous variants ratio com-
pared to homozygous variants per sample (3 SD): 4 samples

3. Having relatedness to other samples: 428 samples

4. Having non-Korean genetic background from PCA analysis
with the 1KGP set: 7 samples

5. Reported to have a rare disease: 40 samples

6. 52 samples that became not applicable for this study

Finally, the Korea4K variome data included 3,617 participants’
genomes. To detect variants that were probably called because of
a sequencing batch effect, we measured average allele balance of
the genotyped alleles (the read count of the allele divided by the
total read count on a locus). Then, we excluded 12,713,580 vari-
ants that had average allele balance of the loci out of the range
of + 1 x SD from a genome-wide average of allele balance to re-
move the sequencing batch effect (Supplementary Fig. S1). We
also excluded the variants that had a genotyping rate of <0.9 for
downstream variant analysis. The variants in the final variome set
were annotated using Variant Effect Predictor (VEP) with Ensem-
ble database (RRID:SCR_007931, ver. 101) [40].

PCA with the EBI's 1IKGP genome data

The interpopulation genomic structure was evaluated by project-
ing the first 2 principal components determined via PCA of SNVs
from both Korea4K and East Asian populations from 1KGP. We
merged variants from the Korea4K and 1KGP sets and then filtered
out variants with the following criteria: (i) biallelic SNVs with a mi-
nor allele frequency (MAF) <1%, (ii) biallelic SNVs with a Hardy-
Weinberg equilibrium (HWE) P < 10~°, and (iii) biallelic SNVs with
a missing genotype rate of >0.01. Extracted variants were linkage
disequilibrium (LD) pruned using the “~indep 200 4 0.1” option in
PLINK (RRID:SCR_001757, ver. 1.90b3n) [39], yielding 330,350 sites.
PCA was carried out using PLINK (RRID:SCR_001757, ver. 1.90b3n)
[39].

Korean-specific missense variants

We collected allele frequency data from 10 populations (African
[AFR], American [AMR], European [EUR], South Asian [SAS], East
Asian [EAS], Japanese in Tokyo [JPT], Kinh Vietnamese [KHV], Han
Chinese in Beijing [CHB], Han Chinese Southern [CHS], and Chi-
nese Dai in Xishuangbanna [CDX]) from the EBI's 1KGP database
[41]. For each Korea4K variant, we compared its allele frequency
to the allele frequency of all 10 populations using the x? test. We
selected variants that were specific to the Korean one when the P
value of the x? test to the 10 populations was less than 5 x 107°.

Protein structure modeling and thermodynamic
stability measurement

We constructed the mutant-type (MT) protein sequences of the
Korean-specific missense variants by substituting the reference
protein sequences found in the Ensembl database (RRID:SCR_
002344, ver. 101) [42]. We modeled the structures of the wild-
type (WT) and mutant-type protein models using AlphaFold2
(ver. 2.0) with the “~max_template_data 2022-05-09 -db_preset
reduced_dbs” option with default databases downloaded by Al-
phaFold? [7]. We used the InterPro (RRID:SCR_006695) database
[43] to determine whether a missense variant was located in the
domain region within the protein sequence. We extracted the do-
main region from the WT and MT protein 3D models and ex-
cluded domains that had fewer than 50 amino acids. Afterward,
we calculated AGwr and AGyr using the “Stability” command of
foldX (RRID:SCR_008522) [44] to measure the protein thermody-
namic stability. Finally, we measured the change in protein ther-
modynamic stability between the 2 models by calculating the
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difference between the WT and MT domain models (AAG =
AGur — AGWT).

Imputation

We constructed an imputation reference panel of Korea4K and
KorealK sets, which includes 3,614 and 873 Korean individuals,
respectively. A total of 26,210,741 and 15,649,303 autosomal bial-
lelic variants with a missing genotype call rate of <0.1 and mi-
nor allele count >1 (not a singleton) were extracted for the Ko-
rea4K and KorealK panels, respectively. The extracted variomes
were phased into haplotype using SHAPEIT? (ver. v2.r904) [45]. We
used the same test dataset as in the previous study [2]. The phased
test data were imputed using the imputation reference panel by
Minimac3 (RRID:SCR_009292, ver. 2.0.1) [46]. We estimated impu-
tation accuracies using squared Pearson’s correlation coefficients
(R?) between the true genotypes and imputed genotype dosages.

Clinical information

We collected or calculated 107 clinical parameters (93 quantita-
tive and 14 qualitative traits; Supplementary Table S12) along with
genome data from 2,685 samples among the Korea4K samples. A
total of 3,383 clinical datasets (including multiple time points per
sample) from regular health check-ups carried out by various hos-
pitals and clinics throughout Korea were collected from 2,685 par-
ticipants between 2016 and 2019. When a single participant had
multiple clinical datasets, the most recent one was chosen for the
following analysis. Out of the final unrelated 3,617 samples, 2,374
samples had clinical data available and were included in the phe-
nomics analyses.

In the context of collecting data from over 200 diverse health
care institutions, standardizing clinical information on 107 traits
became imperative. We resolved discrepancies in unit measure-
ments, such as micrograms and nanograms, for specific traits. Fur-
thermore, certain clinical metrics, such as the estimated glomeru-
lar filtration rate (eGFR), were found to exhibit variability contin-
gent upon variables such as ethnicity, sex, and age. To maintain
consistency and ensure methodological uniformity, we enforced
the adoption of a singular clinical formula for the computation
of eGFR across all data samples. Such calculations were applied
to 26 traits, which are shown in Supplementary Table S13. Clini-
cal traits that exhibited values characterized by inequalities likely
due to the limit of detection (e.g., <5.0 and >99) were omitted from
the analytical procedures, as such values have the potential to in-
troduce disturbances to subsequent data analyses. Likewise, val-
ues that exhibited divergent formatting conventions across dis-
tinct health care institutions (e.g., 20 and a few or 999 and many)
were harmonized to conform with prevailing standard criteria ob-
served in most samples under investigation. Also, 4 quantitative
clinical traits and 12 qualitative traits were excluded from the fur-
ther analysis, since the traits were missing from more than 90% of
participants due to health check-up report heterogeneity, or the
traits that were qualitative and biased to 1 category (more than
1:4). Standard weight was also removed from the analysis, because
the trait was not an inherently correct representation of the sam-
ple’s clinical data but rather a recommended value. Three traits
(hepatitis B virus antibody, antigen, and hepatitis C antibody) con-
tained both quantitative and qualitative values. Therefore, both
of the values were utilized for analysis (i.e., Hbs_Ab_Quan and
Hbs_Ab_Binary). Phenotypic correlations were calculated by Pear-
son’s method. Benjamini-Hochberg method was used to adjust for
multiple comparisons when documenting confident phenotypic
correlations with FDR.
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WGWAS

SNVs and indels with a MAF <1%, HWE P < 107, and a miss-
ing genotype rate of >0.01 were excluded from the analysis using
PLINK (ver. 1.90b3n) [39]. A total of 90 WGWASs (88 quantitative
and 2 qualitative traits) were performed with a total of 3,617 indi-
viduals and 7,782,381 variants. Each WGWAS had a different num-
ber of individuals that included those who had the target clinical
traits. The WGWAS was performed using linear and logistic re-
gression under an additive genetic model with PLINK (ver. 2.00 al-
pha) [47] for quantitative and qualitative traits, respectively. Sex,
age, age? (age squared), BMI, and the top 10 principal components
of SNV genotypes were included in the model as covariates. Age
and BMI were chosen especially due to their known shared associ-
ations with multiple traits as previously documented by Shungin
and colleagues [48], which could lead to confounding biases in the
downstream interpretation of phenotypic relationships. BMI was
excluded from covariates in the WGWAS for BMI itself and de-
gree of obesity. Calculating the genomic inflation factor (Ayedian),
we found that all of the traits in the test reside below 1.1, in-
dicating there are minimal false positives caused by gross pop-
ulation structure or systematic biases (Supplementary Figs. S4-
S19) [49]. We rejected 53 traits from further analysis based on
QQ-plot analysis (Supplementary Figs. S5-520). We used 5 x 10~%
for a whole genome-wide significance threshold. The 7,782,381
variants were clumped into 466,938 loci based on LD information
using PLINK (ver. 1.90b3n) with “-clump-pl 1, —clump-p2 1, —
clump-12 0.1, —clump-kb 250, and —clump-index-first” options [39].
Statistical powers of the 90 WGWASs were calculated by the R
package “genpwr” under the assumption of an effect size of 0.5
and a minor allele frequency of 0.01 (Supplementary Table S14).

Measuring heritability and genetic correlation

We calculated genetic relatedness among individuals from single-
nucleotide polymorphisms (SNPs) by a genetic relationship matrix
in genome-wide complex trait analysis (GCTA) (ver. 1.93.2) with
“—autosome -maf 0.01 -make-grm” options [28]. We estimated
the genetic heritability of 87 quantitative traits using GCTA (ver.
1.93.2) with “—reml -grm” options [28]. We estimated the GCs using
the bivariate genome-based restricted maximum likelihood algo-
rithm [50] in the GCTA (ver. 1.93.2) with “-reml-bivar -grm -reml-
bivar-rt-rg” options [28]. Twwo of the 253 trait pairs were excluded
since the log-likelihood did not converge. The correction for mul-
tiple tests was done by a Benjamini-Hochberg approach when re-
porting confident GCs that suffice the threshold of an FDR below
0.05.

Calculation of VSI

The VSl is a Jaccard score to measure how many pleiotropic com-
ponents exist out of all significant variants from ith and jth traits,
which is defined as

VSI(I,D = |Si n SJ| / |Si U SJ|

where S; and S; denote sets of significant variants for the ith and
jth traits, respectively. The VSI increases as 2 traits have more
pleiotropic variants among their significant variants.

Pleiotropic variants with tissue-specific
expression regulatory function

We annotated the gene symbol of the pleiotropic variant by us-
ing the Ensemble database (ver. 101) [42]. In case of intergenic
variants, we annotated the genes that were located the nearest
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in both directions of the variant. The single tissue eQTL data
(RRID:SCR_013042, ver. 8) from the GTEx portal were used to in-
vestigate the eQTL of pleiotropic variants in Korea4kK.

We used the MR method to investigate potential causal relation-
ships among 1,332 combinations of an exposure trait and an out-
come trait among 37 clinical traits. MR is computed from the lin-
ear regression analysis between the effects of SNPs on an expo-
sure trait and their effects on an outcome trait. We chose the
SNPs with suggestive WGWAS results (P < 107°) with exposure
traits as the instrument variables. In case multiple SNPs existed
in the LD block, the one with the smallest P value was chosen.
We rejected 40 SNPs, which were detected as outliers of linear
regression from MR-PRESSO software (RRID:SCR_023697, ver. 1.0)
[51] with “NbDistribution=10000 and SignifThreshold=0.05" op-
tions, from further analysis. MR coefficients were computed us-
ing the chosen SNPs by 3 different methods: the inverse-variance
weighted (IVW) and MR-Egger method of the TwoSampleMR pack-
age (RRID:SCR_019010, v.0.5.6) [52] and MR-PRESSO software (ver.
1.0) [51]. Finally, we selected 36 significant causal relationships
that overlapped at least 2 of 3 methods (IVW, MR-Egger, and MR-
PRESSO). All analyses were performed with default options.

Supplementary Fig. S1. Variant batch effect of DNA sequences.
Supplementary Fig. S2. Variant distribution based on variant lo-
cation and allele frequency category in Korea4K.

Supplementary Fig. S3. Power comparison of whole genome-wide
association study between Korea4K and KorealK.
Supplementary Fig. S4. Sequencing data quality metrics of Ko-
rea4K genomes.

Supplementary Fig. S5. QQ plots for the whole genome-wide as-
sociation tests of the traits on the anthropometry category.
Supplementary Fig. S6. QQ plots for the whole genome-wide as-
sociation tests of the traits on the blood circulation biochemical
category.

Supplementary Fig. S7. QQ plots for the whole genome-wide
association tests of the traits on the blood circulation physics
category.

Supplementary Fig. S8. QQ plots for the whole genome-wide as-
sociation tests of the traits on the diabetes category.
Supplementary Fig. S9. QQ plots for the whole genome-wide as-
sociation tests of the traits on the electrolyte category.
Supplementary Fig. S10. QQ plots for the whole genome-wide as-
sociation tests of the traits on the hearing test category.
Supplementary Fig. S11. QQ plots for the whole genome-wide as-
sociation tests of the traits on the hematological category.
Supplementary Fig. S12. QQ plots for the whole genome-wide as-
sociation tests of the traits on the hepatitis category.
Supplementary Fig. S13. QQ plots for the whole genome-wide as-
sociation tests of the traits on the inflammation and etc. category.
Supplementary Fig. S14. QQ plots for the whole genome-wide as-
sociation tests of the traits on the kidney function category.
Supplementary Fig. S15. QQ plots for the whole genome-wide as-
sociation tests of the traits on the liver function category.
Supplementary Fig. S16. QQ plots for the whole genome-wide as-
sociation tests of the traits on the pulmonary function category.
Supplementary Fig. S17. QQ plots for the whole genome-wide as-
sociation tests of the traits on the thyroid function category.

Supplementary Fig. S18. QQ plots for the whole genome-wide as-
sociation tests of the traits on the tumor biomarker category.
Supplementary Fig. S19. QQ plots for the whole genome-wide as-
sociation tests of the traits on the urinalysis category.
Supplementary Fig. S20. QQ plots for the whole genome-wide as-
sociation tests of the traits on the vision category.
Supplementary Table S1. Sample count in Korea4K.
Supplementary Table S2. Variant count in Korea4K before sample
and variant filtering.

Supplementary Table S3. Variant count based on variant cate-
gories and reported to dbSNP.

Supplementary Table S4. Allele frequency information of popu-
lations for 62 Korean-specific missense variants.

Supplementary Table S5. Prediction of changes in protein ther-
modynamic stability according to missense variant.
Supplementary Table S6. List of the GWAS variants that have as-
sociation significance P < 5E-8.

Supplementary Table S7. Genetic heritability measurement.
Supplementary Table S8. Genetic correlation measurement.
Supplementary Table S9. Phenotypic correlation estimation.
Supplementary Table S10. Pleiotropic variants.

Supplementary Table S11. Mendelian randomization results.
Supplementary Table S12. Statistics of clinical information.
Supplementary Table S13. Twenty-six traits with clinical calcula-
tions applied.

Supplementary Table S14. Statistical power measurement of 90
WGWAS tests.

1KGP: 1000 Genomes Project; 3D: 3-dimensional; AF: allele fre-
quency; BMI: body mass index; CA19-9: carbohydrate antigen 19-
9: CI: confidence interval; CODA: Clinical & Omics Data Archive;
CRP: C-reactive protein; DNV: double nucleotide variant; EBI: Eu-
ropean Bioinformatics Institute; eGFR: estimated glomerular fil-
tration rate; FDR: false discovery rate; GC: genetic correlation;
GCTA: genome-wide complex trait analysis; HDL: high-density
lipoprotein; IBD: Identical by Descent; KGP: Korean Genome
Project; LD: linkage disequilibrium; LDSC: linkage disequilibrium
score regression; LPL: low-density lipoprotein; MR: Mendelian ran-
domization; MT: mutant type; NGS: next-generation sequenc-
ing; PC: phenotypic correlation; PCA: principal component anal-
ysis; PheWAS: phenome-wide association study; QQ: quantile-
quantile; SNP: single-nucleotide polymorphism; SNV: single nu-
cleotide variant; SSV: suggestively associated variant; TNV: triple
nucleotide variant; U_WBC: urine white blood cell; VEP: Variant
Effect Predictor; VSI: Variant-Sharing Index; WGS: whole genome
sequencing; WGWAS: whole genome-wide association study;
WHtR: waist-to-height ratio; WT: wild type; WWtR: waist/weight
ratio.
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