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Abstract 

Bac kgr ound: Phenome-wide association studies (PheWASs) have been conducted on Asian populations, including Koreans, but many 
were based on chip or exome genotyping data. Such studies have limitations regarding whole genome–wide association analysis, mak- 
ing it crucial to have genome-to-phenome association information with the largest possible whole genome and matched phenome 
data to conduct further population-genome studies and develop health care services based on population genomics. 

Results: Here , w e present 4,157 whole genome sequences (Korea4K) coupled with 107 health c hec k-up par ameters as the largest 
genomic resource of the Korean Genome Project. It encompasses most of the variants with allele frequency > 0.001 in Koreans, indi- 
cating that it sufficiently covered most of the common and rare genetic variants with commonly measured phenotypes for Koreans. 
Kor ea4K pr ovides 45,537,252 v ariants, and half of them wer e not pr esent in Kor ea1K (1,094 samples). We also identified 1,356 new 

genotype–phenotype associations that were not found by the Korea1K dataset. Phenomics analyses further revealed 24 significant 
genetic correlations, 14 pleiotropic associations, and 127 causal relationships based on Mendelian randomization among 37 traits. 
In addition, the Korea4K imputation reference panel, the largest Korean variants reference to date , show ed a superior imputation 

performance to Korea1K across all allele frequency categories. 

Conclusions: Collecti v el y, Kor ea4K pr ovides not onl y the largest Kor ean genome data but also corr esponding health c hec k-up par am- 
eters and novel genome–phenome associations. The large-scale pathological whole genome–wide omics data will become a powerful 
set for genome–phenome level association studies to discover causal markers for the prediction and diagnosis of health conditions 
in future studies. 

Ke yw ords: Korean Genome Project, genome, phenome, population genomics, variome 
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Bac kgr ound 

South Korea has perhaps one of the most extensive and conve- 
nient annual health c hec k-up services. Ev ery year, almost all Ko- 
r eans a ged ov er 40 years r eceiv e a standardized health c hec k- 
up, yielding a wealth of individual clinical data [ 1 ]. In 2020, we 
published 1,094 whole genomes with clinical information (Ko- 
r ea1K) by pr oviding all the participants with a fr ee standard health 
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 hec k-up showing the value of whole genome data accompanied
y clinical information mapping the genome diversity with prac- 
ical applications [ 2 ]. Here, we present the second phase of the
or ean Genome Pr oject (KGP) with 4,157 sets of whole genome
ata, Korea4K. It is accompanied by 107 types of clinical traits that
ave been donated by 2,685 healthy participants who acquired the
ealth c hec k-up r eports fr om the hospitals of their c hoice in the
e. This is an Open Access article distributed under the terms of the Cr eati v e 
h permits unrestricted reuse, distribution, and reproduction in any 
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ast years. We manually annotated thousands of donated health
 eports that ar e matc hed with the whole genome information.
her efor e, a part fr om the incr eased number of samples, the main
ifference between K orea1K and K orea4K is that K orea4K’s clini-
al information is from very heterogeneous but fairly standard Ko-
 ean health c hec k-up centers , while K or ea1K was fr om one v ery
ell-contr olled univ ersity hospital health c hec k-up center. This
as also a testbed to assess how difficult it would be to merge
ata from the heterogeneous health check-up record system in a
ation for a large-scale genome to phenome association analysis.

Pr e viousl y, ther e wer e a few phenome-wide association studies
PheWASs) on Asian populations, but they were limited to chip-
r exome-based genotyping data. A Japanese PheWAS identified
he genetic links among clinical traits, complex diseases, and cell
ype–specific patterns [ 3 ]. Another PheWAS using 10,000 Korean
ohorts’ health c hec k-up data fr om m ultiple lab sour ces sho w ed
etwork relationships between genes and phenotypes [ 4 ]. How-
 v er, none of these studies cov er ed the entirety of genomic vari-
tion, and they have limitations on genome-wide data analyses
 5 , 6 ]. 

A scientific contribution of this version of KGP is that we pro-
ide extensive genome-to-phenome association information with
he largest genomic and clinical data fr om Kor ea to date to es-
imate how many samples and clinical parameters cover the
hole genomic and common phenotypic diversity of K oreans . K o-
 ea4K contains 4,157 Kor ean genomes fr om East Asian ances-
ry, and 2,685 of them are accompanied by 107 types of clinical
nformation such as height, waist circumference, weight, albu-

in/globulin ratio, basophil, direct bilirubin, low-density lipopro-
ein, high-density lipoprotein, mean corpuscular volume, and
otal c holester ol. The r est does not contain suc h kind of data be-
ause the biobank does not have phenotype information, or we
ere not able to collect it from the participants . K orea4K extends

he efforts to completely map the totality of Korean genomic di-
 ersity, whic h can be a useful scope r efer ence for disease risk pre-
iction, dia gnosis, and tr eatments in the future for personalized
edicine. 
As the second phase of the KGP, Kor ea4K not onl y extends

he pr e viousl y r eported Kor ea1K [ 2 ] but also includes ne w m ul-
iphenotypic association analyses, that is, analyses on markers
hat are associated with multiple phenotypes (pleiotropy), the ge-
etic correlation between traits, and estimated causality relation-
hip among tr aits thr ough Mendelian randomization (MR) and 3-
imensional (3D) structure models for Korean-specific missense
ariants. Combining these 2 omics data, we provide the commu-
ity with the most extensive genotype–phenotype association of
ealthy Korean participants. We have also applied the genomic
ariation data to the genotype imputation of lo w-frequenc y vari-
nts in the Korean population. 

ata Description 

he goal of our project was to create a genome dataset for Ko-
 ea4K, whic h included ne wl y sequenced genomic data from 2,848
articipants as well as 1,309 whole genome sequencing (WGS)
atasets fr om Kor ea1K and public data arc hiv es. Additionall y, we
stablished a phenome dataset for Korea4K by gathering or com-
uting 107 clinical parameters and genome data from 2,685 sam-
les. We collected a total of 3,383 clinical datasets, including mul-
iple time points per sample, fr om r egular health c hec k-ups con-
ucted by various hospitals and clinics across Korea between 2016
nd 2019. The genome and phenome datasets were produced and
urated by the protocol in Materials and Methods. 
nalyses 

he largest Korean whole genome variants data: 
orea4K variome 

 total of 64,301,272 single nucleotide variants (SNVs) and
,776,608 indels were called against the human genome refer-
nce (hg38) from the 4,157 Korean whole genomes, including 3,071
ealthy controls ( Supplementary Tables S1 and S2 ). It contains
,063 ne wl y added whole genomes sequenced by Illumina next-
eneration sequencing (NGS) platforms (HiSeq X10 and Novaseq
000), in addition to the pr e vious Kor ea1K dataset, whic h was
ostl y gener ated by Illumina HiSeq X10. Using the v ariant data,
e selected 3,617 samples with no kinship after initial sample
ltering (see Materials and Methods). To exclude erroneous vari-
nts from sequencing batch effects from the heterogeneous Illu-
ina NGS platforms and library preparation, we applied an allele

alance bias measurement and finally acquired 12,713,580 erro-
eousl y called v ariant candidates ( Supplementary Fig. S1 ). After
dditional variant filtering (see Materials and Methods), we iden-
ified 45,537,252 variants, including 42,124,137 SNVs, 36,029 dou-
le nucleotide variants (DNVs), 26,135 triple nucleotide variants

TNVs), 3,261,682 indels, and 89,269 other types of small variants
rom the 3,617 unrelated samples. We named this filtered Korean
ataset the Kor ea4K v ariome (Fig. 1 ). A total of 23,689,147 vari-
nts were not present in the previous K orea1K variome . T his un-
xpectedl y lar ge differ ence is likel y deriv ed fr om differ ent batc h
ffect filtering and variant calling and filtering pr ocedur es, as
ell as ne w v ariants fr om the lar ger sample size. Consistent with

he Korea1K study [ 2 ], most variants were located in intronic or
nter genic r egions and r ar el y in splicing sites or coding regions
 Supplementary Fig. S2 ), which is a sign of negative selection
r essur e in the population. Half of the total variants (21,941,879;
8.2%) were singleton or doubleton in the 3,617 unrelated sam-
les, indicating that the Korean population’s genetic diversity is
ery low as the population diversity could be covered by fewer
han 4,000 unrelated samples (Fig. 1 A, Supplementary Table S3 ).
lmost all the common (allele frequency of > 0.01 and allele fre-
uency of ≤0.05) and very common (allele frequency of > 0.05)
 ariants wer e found to be already reported in the database of
ingle nucleotide pol ymor phisms (dbSNP) (99.70% and 99.97%, re-
pectiv el y), while mor e than half of the singleton and doubleton
 ariants wer e ne wl y discov er ed in this study (59.9% and 44.57%,
 espectiv el y), indicating the ne w v ariant pool is well exhausted in
he Korean population by the 3,617 samples, resulting in a large
ortion of individual specific novel variants in the Korean variome

Fig. 1 A, Supplementary Table S3 ). Only 3,092 and 3,569 unrelated
ndividuals were needed to discover all the rare (allele frequency
f > 0.001 and allele frequency of ≤0.01) and very rare (allele count
f > 2 and allele frequency of ≤0.001) variants in the Korea4K var-
ome, r espectiv el y (Fig. 1 B), indicating that the Kor ea4K v ariome
ncludes almost all the r ar e and very rare variants of Korean peo-
le of East Asian ancestry. It is notable that in our pr e vious Ko-
 ea1K data, the accum ulated v ariant number curv es did not r eac h
 plateau [ 2 ]. Regarding common v ariants, onl y 481 and 161 unr e-
ated individuals were necessary for common and very common
 ariants, r espectiv el y, to cov er the diversity that is close to the Ko-
ea1K statistics (440 and 132 samples). Essentially, the Korea4K
ariome statistics indicate the saturation of population diversity
etection among K oreans . Ho w ever, as expected, in the case of
ingleton and doubleton variants, the Kor ea4K v ariant discov ery
urve did not reach a plateau. This is due to each individual’s novel
 andom v ariants, and we will ne v er r eac h a point of no nov el v ari-
nt discovery even with increased sample numbers. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
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A B C

Figur e 1: K or ean v ariome pr ofile and imputation e v aluation using Kor ea4K. (A) The number of v ariants in the Kor ea4K v ariome is categorized by AFs 
among unrelated Korea4K genomes. “dbSNP” indicates the variants were reported in dbSNP database . “No vel” indicates the variants were not reported 
in dbSNP. Singleton, allele count = 1; doubleton, allele count = 2; v ery r ar e, allele count of > 2 and allele fr equency of ≤0.001; r ar e, allele fr equency of 
> 0.001 and allele frequency of ≤0.01; common, allele frequency of > 0.01 and allele frequency of ≤0.05; very common, allele frequency of > 0.05. (B) 
The number of discov er ed v ariants as a function of unr elated genomes. (C) Imputation performance e v aluation using the Kor ea4K and Kor ea1K 

panels . T he x-axis indicates alternative (Alt) allele frequency in the Korea4K variome . T he y-axis represents the aggregated R 2 values of variants. We 
used variants that were overlapped by imputed results across 2 panels. 
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As a pr actical a pplication, we constructed a Korea4K imputa- 
tion r efer ence panel fr om the 3,614 unr elated whole genomes that 
sho w ed a consistently better imputation performance than the 
K orea1K. T he K orea4K panel was able to impute 198,805 more 
genotypes than the Korea1K panel (7,551,095 loci compared to 
7,352,290) with the same dataset. Mor eov er, as expected, the Ko- 
rea4K panel had better accuracy across all allele frequency cate- 
gories than the Korea1K panel (Fig. 1 C). The difference in a ggr e- 
gated R 

2 became larger for variants with allele frequency (AF) in 

Korea4K < 0.05 than for those in Korea1K, indicating higher accu- 
racy in rare variants (Fig. 1 C). In particular, the Korea4K imputa- 
tion panel impr ov ed the imputation accur ac y b y 6% for the r ar e 
v ariants gr oup compar ed to Kor ea1K on av er a ge. 

As in Korea1K, the Korean population is genetically distinct 
from the Chinese and Japanese populations, confirmed by princi- 
pal component analysis (PCA) with few outliers (Fig. 2 A). We also 
found 62 missense variants out of 282,607 in Korea4K that had AFs 
significantl y differ ent fr om 10 populations in the 1000 Genomes 
Pr oject (1KGP) fr om the Eur opean Bioinformatics Institute (EBI) 
( χ2 test P < 5 × 10 −5 against each of the 10 populations; see Ma- 
terials and Methods; Supplementary Table S4 ). The genes con- 
taining such Korean-specific missense variants included LILRB3 , 
HLA-DRB5 , IGLV5-48 , and IGHV4-4 , whic h ar e known to be asso- 
ciated with ada ptiv e imm unity, and OR9G1 and OR8U1 for olfac- 
tory rece ptors. Ad ditionally, we found that 12 Korean-specific mis- 
sense variants were in protein functional domains (Fig. 2 B). Four 
of them were predicted to facilitate increased structural stability 
calculated in the protein 3D models built by AlphaFlod2 [ 7 ], while 
the other 8 variants were predicted to cause decreased stability 
( Supplementary Table S5 ). 

W hole genome–wide associa tion study (WGWAS) 
Whole genome–wide association studies (WGWASs) r e v ealed that 
2,324 variants from 157 unique loci had significant associations 
with 34 clinical tr aits fr om 37 WGWAS target traits ( P < 5 × 10 −8 ; 
Fig. 3 A–F, Supplementary Table S6 ). Among the significantly asso- 
ciated v ariants, 2,314 v ariants fr om 30 clinical tr aits still sho w ed 

significance after false discovery rate (FDR) correction using the 
Benjamini–Hoc hber g a ppr oac h (FDR < 0.05). We used 90 clini- 
cal traits from the 107 phenotypes after filtering 27 traits with a 
high missing rate and biased distribution for WGWASs (see Ma- 
terials and Methods). Of the 90 tr aits, 54 wer e not confident in 
uantile–quantile (QQ) plots and were excluded from further MR 

nd pleiotropy analyses (see Materials and Methods). Among the 
,324 WGWAS significant v ariants, onl y 85 v ariants (31 loci) wer e
eported in the genome-wide association studies (GWAS) catalog 
atabase [ 8 ]. The trait with the largest number of significantly as-
ociated loci was carbohydrate antigen 19-9 (CA19-9), a cancer 
ntigen, with 16 loci. Uric acid had the second highest number
f significant loci with 14 loci. 

Korea4K sho w ed much stronger statistical po w er than the pre-
ious Korea1K study, identifying 1,356 new WGWAS variants (107 
oci) from 28 common traits between Korea4K and Korea1K. Also,
or ea4K had m uc h lo w er (i.e., mor e significant) P v alues than Ko-
ea1K for all the commonly found association variants between 

he 2 datasets ( Supplementary Fig. S3 ). Among the 107 loci con-
aining the 1,356 new WGWAS variants , 798 K orea4K significant

GWAS v ariants fr om 73 loci had not been significant in Ko-
 ea1K ( Supplementary Table S6 ). Furthermor e, 12 tr aits (albu-
in/globulin ratio, basophil, C-reactive protein, direct bilirubin,

eight, low-density lipoprotein, mean corpuscular volume, right 
earing at 2000 Hz, thyroid stimulating hormone, total choles- 
erol, waist, weight) had 425 WGWAS variants that were signifi-
ant uniquely in Korea4K, meaning no significant WGWAS vari- 
nts from the 12 traits in Korea1K ( Supplementary Table S6 ). For
xample, a missense variant, rs6431625 ( P = 1.41 × 10 −23 , FDR
 5.23 × 10 −18 ), in UGT1A3 was found to be associated with di-

ect bilirubin in Korea4K. It was previously reported to be associ-
ted with circulating bilirubin le v els [ 9 ]. Another Korea4K-specific
issense variant is rs7412 ( P = 2.86 × 10 −14 , FDR = 1.11 × 10 −7 )

n APOE , which is associated with low-density lipoprotein (LDL)
e v els. Its association with c holester ol le v els has been pr e viousl y
ell established [ 10 ]. Finding nov el WGWAS v ariants in Kor ea4K
as due to the increased sample size and subsequently increased
ariant number compared to Korea1K. 

enetic correlation and phenotypic correlation 

e found 27 traits with significant heritability among 89 quan-
itativ e tr aits (Fig. 4A; the lo w er boundary of genetic heritability
 0 with 95% confidence interval [CI]; Supplementary Table S7 ).
 total of 24 pairs of traits sho w ed a significant genetic correla-

ion (GC) (FDR GC < 0.05), measured as rG value, among 351 trait
airs between the 27 traits that sho w ed significant heritability

Fig. 4 , Supplementary Table S8 ). We found consistent results of

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
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Figure 2: Comparison of Korea4K and 1KGP. (A) The results from PCA of Korea4K and the 1KGP set of East Asian samples. (B) Allele frequency 
information of Korea4K and the populations in the 1KGP for the 12 Korean-specific missense variants located in protein functional domains. AFR: 
African; AMR: American; CDX: Dai Chinese; CHB: Han Chinese; CHS: Southern Han Chinese; EAS: East Asians; EUR: European; JPT: Japanese; KHV: Kinh 
Vietnamese; KOR: Korea4K; SAS: South Asians. 
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 eight–w aist and body mass index (BMI)–waist pairs, showing a
ignificant genetic correlation in the UK Biobank data with the
ame trend as our result (rG = 0.9, P = 10 −308 in UK Biobank; rG =
.9, P = 10 −308 in UK Biobank, r espectiv el y) [ 11 ]. We identified 2,274
r ait–tr ait r elationships that had a significant phenotypic corr ela-
ion (PC) (FDR PC < 0.05, its 95% CI does not include 0) fr om tr ait–
rait associations between 3,916 pairs of 89 quantitative traits
Fig. 4 B, Supplementary Table S9 ). Most genetic and phenotypic
orrelations sho w ed the same dir ection of corr elation. The onl y
 exceptions were waist/weight ratio (WWtR)–urine white blood
ell (U_WBC) and waist–cr eatinine, whic h sho w ed opposite direc-
ions . T his trend of waist–creatinine has also been reported in a
orrelation database using UK Biobank data [ 12 ]. Such discrepan-
ies between the correlation estimates are possibly derived from
he shared environmental factors between a pair of traits, such
s dietary habits, that overwhelm the genotypic effects [ 13 , 14 ].
 his pro ves that the phenotypic correlation is not a mere proxy

or the genetic correlation, and consideration of the environmen-
al effect is indispensable for the accurate interpretation of hu-

an phenomics [ 15 ]. 

leiotropy and MR 

f the 37 WGWAS target traits, we detected 1,131 variants from
1 traits having suggestive associations ( P GWAS < 10 −5 ) with at
east 2 traits, indicating pleiotropic variants (Fig. 5 , red edges;
upplementary Table S10 ). We devised the Variant-Sharing In-
ex (VSI) to measure the degree of intersection between 2 phe-
otypes (Table 1; see Materials and Methods). A VSI of zero signi-
es that 2 traits share no suggestively associated variants (SSVs),
hile 100 indicates they share all of them. The trait pairs with
SVs and the corresponding VSIs are listed in Table 1 . Notably, we
ad only 1 variant, rs77913154, that was shared among 3 traits:
lobulin, A G_Ratio , and ESR ( Supplementary Table S10 ). Interest-

ngly, we found 15 variants residing on the SOD2P1–AC095032.2–
C095032.1 locus-forming pleiotropy between the serum amylase

e v el and the le v el of CA125, a known ovarian cancer marker (Ta-
le 1 , VSI = 2.3). Fourteen of the 15 variants conform to the al-
eration of AMY2B expression level, as per cis-expression quanti-
ativ e tr ait loci (cis-eQTL) r esults fr om the GTEx Portal (v er. 8), 4
f which were associated with expression in the pancreatic tissue
see Materials and Methods). There have already been reports of
yperamylasemia in patients with ovarian cancer [ 16–18 ]. In addi-
ion to the investigation on the general pleiotropic relationship, we
mplo y ed MR to detect v ertical pleiotr opy that can assert the di-
ection of the phenotypic relationships [ 19 ]. T his pro vides indirect
 vidence impl ying causality between the traits to discern spurious
henotypic associations, such as confounding and collider bias
 20 , 21 ]. We found that a total of 127 trait pairs among 1,332 pairs
f the 37 WGWAS traits were estimated to have significant causal
elationships (FDR < 0.05, Fig. 5 , Supplementary Table S11 ). These
ndings were supported by at least 2 of 3 differ ent MR anal ysis
ethods (IVW: 166 pairs; MRPRESSO: 139; MR-Egger: 23). Among

hese, 59 trait pairs sho w ed unidirectional relationships while 68
xhibited bidirectional causal relationships ( Supplementary Table
11 ). 

ummary results of the 4 phenomics analyses 

e summarized the results of 4 phenomics analyses (GC , PC ,
R, and pleiotropy) through visualizing them in network plots

Fig. 5 ). In general, the identified trait–trait pairs of GC, MR, and
leiotr opy anal yses did not often ov erla p. Genetic corr elation and
leiotrop y w ere found to be exclusive of each other, even though
oth measures shared genetic components of 2 different traits. GC
as primarily observed among body measures such as waist cir-

umference, weight, height, and left naked eyesight. On the other
and, pleiotrop y w as mor e pr e v alent in the r elationship between
etabolites in blood such as LDL, bilirubin, or car cinoembry onic

ntigen (CEA). The only ov erla p between these two was waist-to-
eight ratio (WHtR)–w aist (cir cumference), where one w as derived

rom the other. 
MR suggests a causal relationship between phenotypic corre-

ations through mediation effect by a genotype. In our casual di-
 gr am (Fig. 5 , blue arrows), alkaline phosphatase (ALP) and CEA
ho w ed potential causality, along with the shared genetic vari-
nts between them (pleiotropy near ABO gene). Numerous pre-
ious studies have consistently reported these markers together
or diagnosing cancer and monitoring metastasis [ 22–24 ]. Simi-
arly, CA125 and amylase also displayed causality via shared ge-
etic v ariants (pleiotr opy near AMY2B gene). We pr opose that
A125 and amylase might serve as complementary biomark-
rs for ovarian cancer, much like ALP and CEA. The biologi-
al relationships between these clinical blood measures remain
nclear. 

Our phenomics results also depicted distinguishable patterns
f association between secondary body measur es, suc h as WHtR,
WtR, and BMI, with other phenotypes. WHtR exhibited a causal

elationship with C-reactive protein (CRP), body fat percentage,
nd high-density lipoprotein (HDL). The result is concordant with

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
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Figure 3: Whole genome–wide association studies in Korea4K. (A–F) Whole genome–wide association studies from 34 traits. Loci are presented only 
when index variants of the loci had a significant P value ( P < 5 × 10 −8 ) from the WGWAS. The dashed line indicates the suggestive threshold ( P < 10 −5 ). 
The dotted line indicates the significant threshold ( P < 5 × 10 −8 ). 
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pr e vious r e ports that bod y fat percenta ge and CRP ar e corr elated 

[ 25 , 26 ]. Conv ersel y, WWtR had casual associations with measures 
of lung capacity (forced expiratory volume in the first second 

(FEV 1 ) and forced vital capacity (FVC)), liver function (aspartate 
aminotr ansfer ase (AST)), and inflammation (U_WBC). Ho w e v er,
WWtR has yet to pr ov e its utility in clinical studies. BMI serves 
as an intermediate phenotype, sharing most of its associations 
with WHtR and, to a lesser extent, with WWtR via left naked eye- 
sight. These findings suggest that the measur ements r eflect dis- 
tinct biological mec hanisms, warr anting further studies. For in- 
stance, WHtR is a w ell-kno wn indicator of centr al adiposity, whic h 

provides a better estimate of obesity and related morbidities than 

BMI [ 27 ]. 

w  
iscussion 

atch effect exacerbated by sequencing platform and library 
r epar ation bias is a critical problem in v ery lar ge population
enome association studies, especially with clinical data from 

eter ogeneous health c hec k-up centers. In the futur e, mor e and
or e div erse whole genome data with extensiv e clinical data will

e publicly a vailable , and it is inevitable that they will be merged
or mor e pr ecise whole genome-to-phenome association r esearc h.
orea4K is not an exception in that regard, and in one homoge-
eous population WGWAS, it was necessary to consider and factor

n a great deal of sequencing and clinical data batch effects and er-
ors. We attempted to minimize the errors by using allele balance
ith optimal filtering criteria and time-consuming manual c hec ks
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A B

Figure 4: Genetic correlation and phenotypic correlation in Korea4K. (A) Genetic heritability of 27 traits that sho w ed at least a marginal significance. 
(B) Genetic correlation and phenotypic correlation between the 27 traits . T he upper triangle indicates phenotypic correlation coefficient (Pearson’s) 
and lo w er triangle indicates genetic correlation coefficient (rG). 

Figure 5: Gr a ph visualization of genetic corr elation, phenotypic corr elation, pleiotr opy, and Mendelian r andomization. Gr een line indicates significant 
GC, and the edge thickness indicates the absolute value of the correlation coefficient. Red line indicates trait pairs that have pleiotropic variants. 
Dotted orange lines indicate PC, and the edge thickness indicates the absolute value of Pearson’s correlation coefficient. Blue arrow line indicates a 
causal relationship from MR. MR and PC were visualized only when at least 1 of the GC or pleiotropy relationships was observed between the traits. 
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n health reports that were donated by the participants (see Ma-
erials and Methods). The lar gest c hallenge of the Kor ea4K pr oject
as cleaning up heterogeneous clinical data fr om differ ent health
 hec k-up centers. Another major issue was that the health c hec k-
p data heterogeneity caused reduced numbers of participants’
ommon traits with which to compare. Some of the health data
er e fr om past years’ health c hec k-ups fr om heter ogeneous hos-
itals throughout South K orea. T his heterogeneity in location and
ime was not an intentional experimental design but was in or-
er to reduce the cost of performing expensive 1-center health
 hec k-ups for the K orea4K participants . T herefore , WGWAS along
ith standardized and unified national and public health c hec k-
p data will gr eatl y benefit futur e whole genome–wide association
tudies. 

Although 4,157 seems like a large number, we found the sample
ize in this study was still not large enough to detect weak associa-
ion signals . T he K or ea4K v ariome with matc hed phenotype infor-

ation has allo w ed us to estimate genomic correlation across var-
ous phenotypes using GREML [ 28 ]. GREML has been reported to
ave higher accuracy compared to methods, such as linkage dis-
quilibrium score regression (LDSC), using only summary statis-
ics from GWAS [ 29 ]. For example, the minimum heritability score
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Table 1: Pleiotropic associations and VSI 

Trait 1 Trait 2 
Suggesti v e 

v ariants in tr ait 1 
Suggesti v e 

v ariants in tr ait 2 Shared variants Total variants VSI 

D_bilirubin T_bilirubin 638 632 569 701 81 .2 
Globulin AG_Ratio 294 230 147 377 39 
HDL Neutral_fat 348 398 191 555 34 .4 
CEA CA19_9 221 264 74 411 18 
T_c holester ol LDL 74 238 38 274 13 .9 
WHtR Waist 177 100 31 246 12 .6 
ALP CEA 153 221 35 339 10 .3 
T3 GGT 542 125 23 644 3 .6 
CA125 Amylase 202 466 15 653 2 .3 
Weight Waist 123 100 5 218 2 .3 
Height Weight 173 123 2 294 0 .7 
ESR AG_Ratio 163 230 1 392 0 .3 
Globulin ESR 294 163 1 456 0 .2 
U_RBC Globulin 627 294 1 920 0 .1 
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was 0.34 (degree of obesity) among the traits detected as statisti- 
cally significant. The statistical po w er of our maximum 2,685 sub- 
jects and FDR < 0.05 is estimated to be 0.72 for detecting traits 
with heritability of 0.3 or higher (calculated from GCTA-GREML 
Po w er Calculator) [ 30 ]. This will increase to 0.97 with 4,000 sub- 
jects. In other w or ds, phenomics analyses were limited and not 
po w erful enough to confidently discover novel phenotypic associ- 
ations with the current dataset. 

Ne v ertheless, our findings bear important practical implica- 
tions. We described the utility of secondary body measures,
such as WHtR and WWtR, compared to BMI. We also elabo- 
rated on the diagnostic and prognostic value of other serum pro- 
teins, namely ALP and amylase, in conjunction with the exist- 
ing cancer biomarkers. Ho w e v er, we plan to collect more sam- 
ples for sequencing and health record data with a wider variety of 
health-related categories to conduct a more po w erful study in the 
future . T his will allow us to not only validate our findings but 
also find correlations of medical importance that were missed 

in the present study. While chip-based GWAS is a common ap- 
pr oac h, our study highlights the unique adv anta ge of WGWAS 
in genotype–phenotype association studies. An illustr ativ e ad- 
v anta ge of WGWAS is its whole genome–wide, unbiased cover- 
age of genetic variants, which allo w ed us to assign specific vari- 
ants accounting for pleiotrop y. This w as not achievable with con- 
ventional methods. For example, we could identify the variants 
in the w ell-kno wn pleiotr opic r elationships suc h as ALP-CEA by 
the ABO locus (35 v ariants), Neutr al_Fat-HDL by the LPL locus (181 
variants), and total cholesterol–LDL by the TOMM40 and APOE 
loci (4 and 2 v ariants, r espectiv el y) ( Supplementary Table S7 ).
These loci and their corr esponding tr ait pairs were previously re- 
ported fr om c hip-based GWAS summary r esults [ 31 , 32 ]. Simi- 
larly, we anticipate the fine-mapping analyses will also benefit 
from WGWAS, pinpointing novel genetic variants of phenotypic 
importance, as demonstrated in our prior work [ 33 ]. Taken to- 
gether, whole genome sequencing with its genomic completeness 
should be a well-consider ed c hoice for future genomic association 

studies. 
One of the main objectives of the Kor ea4K pr oject was to 

build a genomic and phenomic r efer ence dataset to discover 
unknown whole genome-to-phenome associations that can be de- 
tected from samples of healthy people . T his , ho w e v er, is contr a- 
dictory and it limited us in discovering clear pathogenic associa- 
tions because most of the participants examined in WGWAS were 
ealthy without any severe aberrant phenotypes or diseases that 
ould bring us clues for interesting omics anal yses. Mor eov er, uti-
izing r ecentl y intr oduced human genome r efer ences like the T2T
 efer ence [ 34 ] and Human Pangenome reference [ 35 ], which offer
r oader genomic cov er a ge or hav e population-specific sequences
ompared to the existing GRCh38 r efer ence, could help identify
dditional associations that might be ov erlooked. Ne v ertheless,
hese new references lack functional annotations and need to be
onnected to pr e vious databases suc h as dbSNP and the GWAS
atalog. 

As for the future directions, several k e y limitations have not
een met in our current study. The first is we failed to acquire long
NA sequencing reads from the healthy participants for building 
 structur al v ariation r efer ence set for the Kor ean population. The
econd is the lack of epigenomic data from the 4,157 samples . T his
as mostly due to high costs for generation and computing long-

ead based assemblies and sequencing methylated DNA sites . T he
hird one, which is perhaps the most relevant for the purpose of
erforming association studies for health care, is that we failed
o acquir e mor e r ar e and se v er e disease data fr om patients, ac-
ompanied by precise clinical and m ultiomics data. We hav e ex-
luded a small number of r ar e disease cases, as those r equir ed
 large amount of sequencing data fr om genome, tr anscriptome,
nd methylome to perform precise functional anal yses. Lar ge- 
cale pathological whole genome–wide omics data will become 
 po w erful set for genome–phenome le v el association studies to
etect causal markers for the prediction and diagnosis of health
onditions in future studies. 

otential Implications 

 he K or ea4K dataset can be a v aluable v ariome r efer ence, as
t contains matched phenome data for personalized medicine,
arge-scale population genome studies, and the understanding of 
nthropologic history in K orea. T his large-scale Korean genome–
henome dataset can help identify the genetic basis for diseases
nd phenotypes, enabling personalized treatment plans for indi- 
iduals. Analyzing the genome–phenome association dataset can 

lso be used to de v elop ne w drugs that tar get specific genetic v ari-
tions in the Korean population. The Korea4K dataset can also
e valuable for other populations, particularly East Asians, as it
an be used to identify population-specific genome–phenome pat- 
erns by comparing the population’s genome–phenome data to 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
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he Kor ea4K dataset. Furthermor e, the Kor ea4K r efer ence panel
an be utilized for genotype imputation of DNA chip genotyping
ata for the Korean population and other East Asians. 

aterials and Methods 

ample collection and whole genome sequencing
e collected 2,848 blood samples or already processed DNA sam-

les fr om Kor ean individuals. A total of 1,094 WGS datasets orig-
nating from our previous study (Korea1K) and 215 WGS data
r om publicl y av ailable Clinical & Omics Data Arc hiv e (CODA)
ere added to the aforementioned dataset [ 2 ]. The genomic DNA
as extracted using the DNeasy Blood & Tissue kit (Qiagen) from
hole blood samples. We constructed the whole genome sequenc-

ng library from the DN A b y using the TruSeq Nano DNA Sample
rep kit (Illumina) kit. Whole genome sequences of the 2,848 sam-
les were generated by the Illumina Nova-seq 6000 platform. All
he sequencing data that we used in this study had 151 bp as a
 ead length. Av er a ge sequencing amount per sample was 27.75 ×
 Supplementary Fig. S4 ). 

oint genotype calling 

dapter contamination was trimmed using Cutadapt
 RRID:SCR _ 011841 , ver. 1.9.1) [ 36 ] with a forw ar d adapter
 

′ GATCGGAA GA GCA CA CGTCTGAA CTCCA GTCA C 

′ ) and re-
 erse ada pter ( ′ GATCGGAA GA GCGTCGTGTA GGGAAA GA GTGT 

′ )
nd with a minimum read length of 50 bp after trimming
 Supplementary Fig. S4 ). The quality of trimmed reads was
creened by the FASTQC program ( RRID:SCR _ 014583 , ver. 0.11.5)
e mapped the whole genome sequencing reads from 4,157

amples to the human r efer ence genome (hg38) using BWA-mem
 RRID:SCR _ 010910 , ver. 0.7.17) with the “-M” option and alt-aware

ode [ 37 ]. The mapped reads were sorted by genomic coordina-
ion using Picard ( RRID:SCR _ 006525 , ver. 2.20.3). We marked the
CR duplicates and r ecalibr ated the base quality of the mapped
eads using the MarkDuplicates and BaseRecalibrator module in
icard ( RRID:SCR _ 006525 , ver. 2.20.3), respectively. A total of 3,156
amples had a mapping depth of ≥20 × ( Supplementary Fig. S4 ).
ndividual genotypes were called in GVCF format by Haplotype-
aller in GA TK ( RRID:SCR _ 001876 , ver . 4.1.3) with “–genotyping-
ode DISCOVERY -stand-call-conf 30 -ERC GVCF” options [ 38 ].
e merged the individual genotypes to a single GVCF for each

 hr omosome using CombineGVCFs in GATK ( RRID:SCR _ 001876 ,
er. 4.1.3) [ 38 ]. We jointly genotyped the merged GVCF with the
enotypeGVCF module in GA TK ( RRID:SCR _ 001876 , ver . 4.1.3) [ 38 ].
ariant quality of the joint genotypes was r ecalibr ated using the
QSR module in GATK ( RRID:SCR _ 001876 , ver. 4.1.3) [ 38 ]. 

ample and variant filtering 

fter joint genotyping, we filtered out a total of 540 participants
ith the criteria listed below using SelectVariants in GATK ( RRID:
CR _ 001876 , ver. 4.1.3) with the “–remove-unused-alternates” op-
ion to r emov e unused v ariants [ 38 ]. To explor e kinship r elations
mong the samples, we assessed Identical by Descent (IBD) using
he Plink pr ogr am ( RRID:SCR _ 001757 , v er. 1.90b3n) [ 39 ]. Samples
ith a PI_HAT value exceeding 0.05 wer e consider ed to be in a
inship relation. 

1. Showing high missing genotype rate ( > 10%): 9 samples 
2. Having a too high or low heterozygous variants ratio com-

pared to homozygous variants per sample (3 SD): 4 samples
3. Having relatedness to other samples: 428 samples 
4. Ha ving non-K or ean genetic bac kgr ound fr om PCA anal ysis
with the 1KGP set: 7 samples 

5. Reported to have a rare disease: 40 samples 
6. 52 samples that became not applicable for this study 

Finall y, the Kor ea4K v ariome data included 3,617 participants’
enomes. To detect variants that were probably called because of
 sequencing batch effect, we measured average allele balance of
he genotyped alleles (the read count of the allele divided by the
otal read count on a locus). Then, we excluded 12,713,580 vari-
nts that had av er a ge allele balance of the loci out of the range
f ± 1 × SD from a genome-wide average of allele balance to re-
ove the sequencing batch effect ( Supplementary Fig. S1 ). We

lso excluded the variants that had a genotyping rate of < 0.9 for
ownstr eam v ariant anal ysis . T he v ariants in the final v ariome set
ere annotated using Variant Effect Predictor (VEP) with Ensem-
le database ( RRID:SCR _ 007931 , ver. 101) [ 40 ]. 

CA with the EBI’s 1KGP genome data 

he interpopulation genomic structure was evaluated by project-
ng the first 2 principal components determined via PCA of SNVs
r om both Kor ea4K and East Asian populations fr om 1KGP. We

er ged v ariants fr om the Kor ea4K and 1KGP sets and then filter ed
ut variants with the following criteria: (i) biallelic SNVs with a mi-
or allele frequency (MAF) < 1%, (ii) biallelic SNVs with a Hardy-
einberg equilibrium (HWE) P < 10 −6 , and (iii) biallelic SNVs with
 missing genotype rate of > 0.01. Extracted variants were linkage
isequilibrium (LD) pruned using the “–indep 200 4 0.1” option in
LINK ( RRID:SCR _ 001757 , ver. 1.90b3n) [ 39 ], yielding 330,350 sites.
CA was carried out using PLINK ( RRID:SCR _ 001757 , ver. 1.90b3n)
 39 ]. 

orean-specific missense variants 

e collected allele frequency data from 10 populations (African
AFR], American [AMR], European [EUR], South Asian [SAS], East
sian [EAS], Japanese in Tokyo [JPT], Kinh Vietnamese [KHV], Han
hinese in Beijing [CHB], Han Chinese Southern [CHS], and Chi-
ese Dai in Xishuangbanna [CDX]) from the EBI’s 1KGP database
 41 ]. For eac h Kor ea4K v ariant, we compar ed its allele fr equency
o the allele frequency of all 10 populations using the χ2 test. We
elected variants that were specific to the Korean one when the P
alue of the χ2 test to the 10 populations was less than 5 × 10 −5 . 

rotein structure modeling and thermodynamic 

tability measurement 
e constructed the mutant-type (MT) protein sequences of the

or ean-specific missense v ariants by substituting the r efer ence
rotein sequences found in the Ensembl database ( RRID:SCR _
02344 , ver. 101) [ 42 ]. We modeled the structures of the wild-
ype (WT) and mutant-type protein models using AlphaFold2
ver. 2.0) with the “–max_template_data 2022-05-09 –db_preset
educed_dbs” option with default databases do wnloaded b y Al-
haFold2 [ 7 ]. We used the InterPro ( RRID:SCR _ 006695 ) database
 43 ] to determine whether a missense variant was located in the
omain region within the protein sequence. We extracted the do-
ain region from the WT and MT protein 3D models and ex-

luded domains that had fewer than 50 amino acids. Afterw ar d,
e calculated �G WT and �G MT using the “Stability” command of

oldX ( RRID:SCR _ 008522 ) [ 44 ] to measure the protein thermody-
amic stability . Finally , we measured the change in protein ther-
odynamic stability between the 2 models by calculating the

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://scicrunch.org/resolver/RRID:SCR_011841
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://scicrunch.org/resolver/RRID:SCR_014583
https://scicrunch.org/resolver/RRID:SCR_010910
https://scicrunch.org/resolver/RRID:SCR_006525
https://scicrunch.org/resolver/RRID:SCR_006525
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difference between the WT and MT domain models ( ��G = 

�G MT − �G WT ). 

Imputation 

We constructed an imputation r efer ence panel of Korea4K and 

K orea1K sets , which includes 3,614 and 873 Korean individuals,
r espectiv el y. A total of 26,210,741 and 15,649,303 autosomal bial- 
lelic variants with a missing genotype call rate of < 0.1 and mi- 
nor allele count > 1 (not a singleton) were extracted for the Ko- 
r ea4K and Kor ea1K panels, r espectiv el y. The extr acted v ariomes 
were phased into haplotype using SHAPEIT2 (ver. v2.r904) [ 45 ]. We 
used the same test dataset as in the pr e vious study [ 2 ]. The phased 

test data were imputed using the imputation r efer ence panel by 
Minimac3 ( RRID:SCR _ 009292 , ver. 2.0.1) [ 46 ]. We estimated impu- 
tation accuracies using squared Pearson’s correlation coefficients 
( R 

2 ) between the true genotypes and imputed genotype dosages. 

Clinical information 

We collected or calculated 107 clinical parameters (93 quantita- 
tive and 14 qualitative traits; Supplementary Table S12 ) along with 

genome data from 2,685 samples among the K orea4K samples . A 

total of 3,383 clinical datasets (including multiple time points per 
sample) fr om r egular health c hec k-ups carried out by various hos- 
pitals and clinics throughout Korea were collected from 2,685 par- 
ticipants between 2016 and 2019. When a single participant had 

multiple clinical datasets, the most recent one was chosen for the 
following analysis. Out of the final unrelated 3,617 samples, 2,374 
samples had clinical data available and were included in the phe- 
nomics analyses. 

In the context of collecting data from over 200 diverse health 

care institutions, standardizing clinical information on 107 traits 
became imper ativ e. We r esolv ed discr epancies in unit measur e- 
ments, such as micrograms and nanograms, for specific traits. Fur- 
thermore , certain clinical metrics , such as the estimated glomeru- 
lar filtr ation r ate (eGFR), wer e found to exhibit variability contin- 
gent upon variables such as ethnicity, sex, and age. To maintain 

consistency and ensure methodological uniformity, we enforced 

the adoption of a singular clinical formula for the computation 

of eGFR across all data samples. Such calculations were applied 

to 26 tr aits, whic h ar e shown in Supplementary Table S13 . Clini- 
cal traits that exhibited values characterized by inequalities likely 
due to the limit of detection (e.g., < 5.0 and > 99) were omitted from 

the anal ytical pr ocedur es, as suc h v alues hav e the potential to in- 
troduce disturbances to subsequent data analyses . Likewise , val- 
ues that exhibited div er gent formatting conv entions acr oss dis- 
tinct health care institutions (e.g., 20 and a few or 999 and many) 
were harmonized to conform with prevailing standard criteria ob- 
served in most samples under investigation. Also, 4 quantitative 
clinical traits and 12 qualitative traits were excluded from the fur- 
ther analysis, since the traits were missing from more than 90% of 
participants due to health c hec k-up r eport heter ogeneity, or the 
traits that were qualitative and biased to 1 category (more than 

1:4). Standar d w eight w as also r emov ed fr om the anal ysis, because 
the trait was not an inher entl y corr ect r epr esentation of the sam- 
ple’s clinical data but rather a recommended value . T hree traits 
(hepatitis B virus antibody, antigen, and hepatitis C antibody) con- 
tained both quantitative and qualitative values . T herefore , both 

of the values were utilized for analysis (i.e., Hbs_Ab_Quan and 

Hbs_Ab_Binary). Phenotypic corr elations wer e calculated b y P ear- 
son’s method. Benjamini–Hoc hber g method was used to adjust for 
multiple comparisons when documenting confident phenotypic 
correlations with FDR. 
GWAS 

NVs and indels with a MAF < 1%, HWE P < 10 −6 , and a miss-
ng genotype rate of > 0.01 were excluded from the analysis using
LINK (ver. 1.90b3n) [ 39 ]. A total of 90 WGWASs (88 quantitative
nd 2 qualitative traits) were performed with a total of 3,617 indi-
iduals and 7,782,381 v ariants. Eac h WGWAS had a differ ent num-
er of individuals that included those who had the target clinical
raits . T he WGWAS was performed using linear and logistic re-
ression under an ad diti ve genetic model with PLINK (ver. 2.00 al-
ha) [ 47 ] for quantitative and qualitative traits, respectively. Sex,
 ge, a ge 2 (a ge squar ed), BMI, and the top 10 principal components
f SNV genotypes were included in the model as co variates . Age
nd BMI wer e c hosen especiall y due to their known shared associ-
tions with multiple traits as previously documented by Shungin 

nd collea gues [ 48 ], whic h could lead to confounding biases in the
ownstr eam inter pr etation of phenotypic r elationships. BMI was
xcluded fr om cov ariates in the WGWAS for BMI itself and de-
ree of obesity. Calculating the genomic inflation factor ( λMedian ),
e found that all of the traits in the test reside below 1.1, in-
icating there are minimal false positives caused by gross pop-
lation structure or systematic biases ( Supplementary Figs. S4 –
19 ) [ 49 ]. We rejected 53 traits from further analysis based on
Q-plot analysis ( Supplementary Figs. S5 –S20 ). We used 5 × 10 −8 

or a whole genome–wide significance threshold. The 7,782,381 
 ariants wer e clumped into 466,938 loci based on LD information
sing PLINK (ver. 1.90b3n) with “–clump-p1 1, –clump-p2 1, –
lump-r2 0.1, –clump-kb 250, and –clump-index-first” options [ 39 ].
tatistical po w ers of the 90 WGWASs w ere calculated b y the R
ac ka ge “genpwr” under the assumption of an effect size of 0.5
nd a minor allele frequency of 0.01 ( Supplementary Table S14 ). 

easuring heritability and genetic correlation 

e calculated genetic relatedness among individuals from single- 
ucleotide pol ymor phisms (SNPs) by a genetic r elationship matrix

n genome-wide complex trait analysis (GCT A) (ver . 1.93.2) with
–autosome –maf 0.01 –make-grm” options [ 28 ]. We estimated 

he genetic heritability of 87 quantitative traits using GCT A (ver .
.93.2) with “–reml –grm” options [ 28 ]. We estimated the GCs using
he bivariate genome-based restricted maximum likelihood algo- 
ithm [ 50 ] in the GCT A (ver . 1.93.2) with “–r eml-biv ar –grm –r eml-
iv ar-lrt-r g” options [ 28 ]. Two of the 253 trait pairs were excluded
ince the log-likelihood did not conv er ge. The corr ection for m ul-
iple tests was done by a Benjamini–Hoc hber g a ppr oac h when re-
orting confident GCs that suffice the threshold of an FDR below
.05. 

alculation of VSI 
he VSI is a J accar d score to measure how many pleiotropic com-
onents exist out of all significant v ariants fr om i th and j th traits,
hich is defined as 

VSI ( I , j ) = 

∣
∣S i ∩ S j 

∣
∣ / 

∣
∣S i ∪ S j 

∣
∣

here S i and S j denote sets of significant variants for the i th and
 th tr aits, r espectiv el y. The VSI incr eases as 2 tr aits hav e mor e
leiotr opic v ariants among their significant v ariants. 

leiotropic variants with tissue-specific 

xpression regulatory function 

e annotated the gene symbol of the pleiotropic variant by us-
ng the Ensemble database (ver. 101) [ 42 ]. In case of intergenic
ariants, we annotated the genes that were located the nearest

https://scicrunch.org/resolver/RRID:SCR_009292
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae014#supplementary-data
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n both directions of the variant. The single tissue eQTL data
 RRID:SCR _ 013042 , v er. 8) fr om the GTEx portal were used to in-
estigate the eQTL of pleiotropic variants in Korea4K. 

n vestiga tion of potential causal relationships 

etw een tr aits based on MR 

e used the MR method to investigate potential causal relation-
hips among 1,332 combinations of an exposure trait and an out-
ome trait among 37 clinical traits. MR is computed from the lin-
ar r egr ession anal ysis between the effects of SNPs on an expo-
ur e tr ait and their effects on an outcome trait. We chose the
NPs with suggestive WGWAS results ( P < 10 −5 ) with exposure
raits as the instrument variables. In case multiple SNPs existed
n the LD block, the one with the smallest P value was chosen.

e rejected 40 SNPs, which were detected as outliers of linear
 egr ession fr om MR-PRESSO softwar e ( RRID:SCR _ 023697 , v er. 1.0)
 51 ] with “NbDistribution = 10000 and SignifThreshold = 0.05” op-
ions, from further analysis. MR coefficients were computed us-
ng the chosen SNPs by 3 different methods: the inverse-variance
eighted (IVW) and MR-Egger method of the TwoSampleMR pack-
ge ( RRID:SCR _ 019010 , v.0.5.6) [ 52 ] and MR-PRESSO software (ver.
.0) [ 51 ]. Finally, we selected 36 significant causal relationships
hat ov erla pped at least 2 of 3 methods (IVW, MR-Egger, and MR-
RESSO). All analyses were performed with default options. 

dditional Files 

upplementary Fig. S1. Variant batch effect of DNA sequences. 
upplementary Fig. S2. Variant distribution based on variant lo-
ation and allele frequency category in Korea4K. 
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ea4K genomes. 
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KGP: 1000 Genomes Project; 3D: 3-dimensional; AF: allele fre-
uency; BMI: body mass index; CA19-9: carbohydrate antigen 19-
; CI: confidence interval; CODA: Clinical & Omics Data Arc hiv e;
RP: C-r eactiv e pr otein; DNV: double nucleotide v ariant; EBI: Eu-
opean Bioinformatics Institute; eGFR: estimated glomerular fil-
r ation r ate; FDR: false discov ery r ate; GC: genetic corr elation;
CTA: genome-wide complex trait analysis; HDL: high-density

ipoprotein; IBD: Identical by Descent; KGP: Korean Genome
r oject; LD: linka ge disequilibrium; LDSC: linka ge disequilibrium
cor e r egr ession; LPL: low-density lipopr otein; MR: Mendelian r an-
omization; MT: mutant type; NGS: next-generation sequenc-

ng; PC: phenotypic correlation; PCA: principal component anal-
sis; PheWAS: phenome-wide association study; QQ: quantile–
uantile; SNP: single-nucleotide pol ymor phism; SNV: single nu-
leotide variant; SSV: suggestively associated variant; TNV: triple
ucleotide variant; U_WBC: urine white blood cell; VEP: Variant
ffect Predictor; VSI: Variant-Sharing Index; WGS: whole genome
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