Skip to main content
. 2024 Apr 15;10:20552076241234746. doi: 10.1177/20552076241234746

Table 2.

Predictive performance comparison of the four machine learning models in the test cohort.

Parameters XGBa RFb LRc MLPd
Sensitivity 0.89 0.5 0.72 0.67
specificity 0.92 1 0.96 0.95
Positive predictive value (%) 66.43 100 76.20 70.44
Negative predictive value (%) 97.92 91.93 95.07 94.18
Accuracy 0.92 0.92 0.92 0.91
Precision 0.67 1 0.76 0.71
F1 score 0.76 0.67 0.74 0.68
AUC 0.96 0.96 0.95 0.96
Average precision 0.84 0.85 0.77 0.85
a

XGB: XGBoost.

b

RF: Random forest.

c

LR: Logistic regression.

d

MLP: Multilayer perceptron.