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Introduction
Pancreatic cancer (PC), ranking seventh as the leading 
cause of cancer-related deaths worldwide in 2018 [1], 
poses challenges owing to late diagnosis and poor out-
comes resulting from the absence of early symptoms. 
This nature of PC underscores the need for therapeu-
tic strategies as well as cancer prevention, which has 
attracted significant social attention, particularly given 
the lack of reliable screening tests for asymptomatic indi-
viduals during the early stages. Therefore, characterizing 
early stage PC to elucidate the mechanisms by which 
high-risk factor exposure transduces presymptomatic tis-
sue into cancerous tissues is crucial.
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Abstract
Objective  Pancreatic cancer (PC) originates and progresses with genetic mutations in various oncogenes and 
suppressor genes, notably KRAS, CDKN2A, TP53, and SMAD4, prevalent across diverse PC cells. In addition to genetic 
mutations/deletions, persistent exposure to high-risk factors, including obesity, induces whole-genome scale 
epigenetic alterations contributing to malignancy. However, the impact of obesity on DNA methylation in the 
presymptomatic stage, particularly in genes prone to PC mutation, remains uncharacterized.

Results  We analyzed the methylation levels of 197 loci in six genes (KRAS, CDKN2A, TP53, SMAD4, GNAS and RNF43) 
using Illumina Mouse Methylation BeadChip array (280 K) data from pancreatic exocrine cells obtained from high-
fat-diet (HFD) induced obese mice. Results revealed no significant differences in methylation levels in loci between 
HFD- and normal-fat-diet (NFD)-fed mice, except for RNF43, a negative regulator of Wnt signaling, which showed 
hypermethylation in three loci. These findings indicate that, in mouse pancreatic exocrine cells, high-fat dietary 
obesity induced aberrant DNA methylation in RNF43 but not in other frequently mutated PC-related genes.
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Recognized risk factors for PC include obesity, chronic 
pancreatitis, diabetes, aging, male sex, and smoking [2, 
3]. A possible contributor to the transition from pres-
ymptomatic pancreatic tissue to cancerous tissue is epi-
genetic modification: reversible but heritable changes 
in gene expression without amino acid mutation and 
known to undergo modification through lifestyle- and 
environmental-factors. DNA methylation, a well-known 
epigenetic event, regulates gene expression (i.e., level of 
normal protein) and microRNA stability, influencing var-
ious biological processes, including development, genetic 
imprinting, immune response, and aging.

PC involves genetic alterations that frequently occur 
in genes, namely KRAS [4],CDKN2A [5], TP53 [6–8] and 
SMAD4/DPC4 [9], causing aberrant effector signaling by 
the expression of constitutively activated or inactivated 
mutants. Genetic alterations also induce epigenetic alter-
ations, linking abnormal expression levels of wild-type 
proteins to carcinogenesis [10, 11].

Approximately 95% of PCs originate from pancreatic 
exocrine cells (acinar and ductal cells) with the remain-
ing arising from pancreatic endocrine cells (Langerhans α 
and β cells) [12, 13]. PC progression involves transforma-
tion to invasive lesions from non-invasive lesions, which 
are histologically well-defined within the pancreatic ducts 
[14, 15], encompassing microscopic pancreatic intraepi-
thelial neoplasias (PanINs) [16, 17] and macroscopic 
intraductal papillary mucinous neoplasms (IPMNs) [18, 
19]. Low-grade PanIN, the most common microscopic 
pancreatic lesion, exhibits KRAS mutations in approxi-
mately 90% of cases [20]. As lesions progress in grades, 
additional mutations in genes, including CDKN2A, 
TP53 and SMAD4 emerge [21]. IPMNs are macroscopic 
lesions, with a 25% risk of developing into invasive PCs 
and often harbor mutations in genes, including RNF43 
and GNAS [21]. PanINs and IPMNs exhibit an increas-
ing prevalence of epigenetic alterations with lesion grade 
progressions [22–24].

In our recent study, we performed an epigenome-wide 
analysis of isolated pancreatic exocrine cells obtained 
from high fat-diet (HFD)-induced obesity (DIO) mice. 
Obesity induces whole-genome scale abnormalities in 
DNA methylation in the presymptomatic stage, with 
enrichment in cellular processes, such as DNA repair, 
transcription regulation, and cell proliferation [25]. 
Comparing differentially methylated regions (DMRs) 
with those in stage IB PC, we identified three potential 
pathway candidates for PC development. However, the 
specific impact of obesity on the methylation levels of 
individual PC-driver genes, including KRAS, CDKN2A, 
TP53 and SMAD4, in DIO mice remains unknown. 
Therefore, we aimed to investigate alterations in meth-
ylation levels across all CpG islands within these genes in 
DIO mice.

Results
Methylation in KRAS promoter region in mice com-
prised six loci: CpG#1-#6 (Fig.  1, Supplementary Table 
1). Variability in methylation levels was significant across 
these loci, with high methylation levels in CpG#1, CpG#2 
and CpG#6 (i.e., β-values > 0.5), and low levels in CpG#3, 
CpG#4 and CpG#5 (i.e., β-values < 0.5). HFD-induced 
obesity did not significantly influence methylation levels 
at any of these loci (Fig. 1). Methylation in the CDKN2A 
promoter region in mice comprised 13 loci: CpG#1-#13 
(Fig.  1). Methylation levels in CpG#8 and CpG#9 were 
high, whereas those in the rest were low. HFD-induced 
obesity had no significant impact on methylation levels 
across these loci (Fig.  1). Methylation in the TP53 pro-
moter region comprised 14 loci: CpG#1-#14 (Fig.  1). 
CpGs in the 5’-region (CpG#1-#7) were almost com-
pletely unmethylated, whereas those in the 3’-region 
(CpG#10-#14) were hypermethylated. CpG#8 and #9, 
located in the middle of these two regions, were moder-
ately methylated. Similar to KRAS and CDKN2A, HFD-
induced obesity did not influence methylation levels 
in these 14 CpGs (Fig.  1). SMAD4, comprising 14 loci 
(CpG#1-#14), exhibited a pattern different from that of 
TP53, with hypermethylation in the 5’-region and hypo-
methylation in the 3’-region (Fig. 1). Overall, methylation 
levels in these 14 CpGs were not influenced by high-fat 
dietary obesity (Fig. 1). Overall, none of the methylation 
loci in the promoters of these four genes were influenced 
by HFD-induced obesity. To determine whether the 
methylation status of these genes underwent alterations 
in early stage human PC, we compared β-values from 
publicly available database for all methylation loci (26, 5, 
10 and 14 loci for KRAS, CDKN2A, TP53 and SMAD4, 
respectively) between early-stage PC and normal con-
ditions. Results indicated no significant differences 
between normal and early-stage PC in these loci (Fig. 1).

We analyzed the methylation levels at all loci in mouse 
RNF43 (26 loci) and GNAS (125 loci)(Fig.  2A, Supple-
mentary Tables 2, 3). Notably, HFD-induced obesity 
induced significant hypermethylation in three loci (#13, 
#15 and #25) (HFD vs. normal-fat diet [NFD] mice: 
0.5 and 0.4, p = 0.03; 0.65 and 0.60, p = 0.04; 0.5 and 0.4, 
p = 0.02 for #13, #15, and #25 loci, respectively, n = 7 for 
HFD, n = 5 for NFD, two-sided Student’s t-test) (Fig. 2B). 
However, no significant differences were observed 
between HFD- and NFD-fed mice at other loci (Fig. 2 and 
Supplementary Fig.  2A). Further analysis of RNF43 and 
GNAS methylation status in both normal human pan-
creas and early-stage PC from publicly available database 
revealed no significant differences (data not shown).
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Discussions
In DIO mice, abnormal methylation was observed 
in three loci in mouse RNF43 of pancreatic exocrine 
cells, contrasting with unaltered CpG islands in KRAS, 
CDKN2A, TP53, SMAD4 and GNAS. Obesity alone was 
unlikely to induce aberrant methylation in these genes; 

therefore, the prominent contribution of these genes in 
PC arose from genetic alterations: mutations/deletions.

Despite reports of decreased CDKN2A levels owing to 
the hypermethylation of its promoter in approximately 
15% of PC cases [23], our results revealed no influence 
of HFD on CDKN2A methylation. Obesity may not have 

Fig. 1  DNA methylation in key pancreatic cancer driver genes. (Left) Analyzed CpG sites in KRAS, CDKN2A, TP53 and SMAD4. Untranscribed regions (pale 
gray bars), exons (boxes), introns (dark gray bars) and CpGs (numbers, vertical black bars) are indicated. Arrows indicate transcriptional orientation. (Right) 
Averaged β-values of CpGs. Methylation levels of all CpGs in KRAS, CDKN2A, TP53 and SMAD4 were compared between high-fat diet (HFD)- (n = 7) and 
normal-fat diet (NFD)-mice (n = 5), with no significant changes in averaged β-values.
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induced CDKN2A hypermethylation at the presymptom-
atic stage but induced aberrant methylation in later PC 
development.

We identified significant HFD-induced hypermeth-
ylation at three loci (#13, #15 and #25) in RNF43 owing 
to HFD-induced obesity (Fig.  2). RNF43 plays a crucial 
role in the Wnt signaling pathway by ubiquitinating its 
cognate receptor (Frizzeled, FZD), inducing endocytosis 
and degradation of FZD, and subsequent loss of the Wnt 
signal (Fig.  2C). Simultaneously, the canonical Wnt/β-
catenin pathway regulates RNF expression; this forms a 
negative feedback loop within the Wnt signaling pathway, 

with the loss of RNF expression causing abnormal aug-
mentation of Wnt signaling (Fig.  2) [26]. The Wnt sig-
naling pathway exhibits frequent, widespread alterations 
in cancer biology [27, 28]. Multiple Wnt-responsive ele-
ments (WREs) in mouse RNF43 were located in introns 
#2 and #3 (Fig. 2A). Three methylation loci (#13, #15 and 
#25) were also located in introns #2 and #3, adjacent to 
WREs (Fig. 2A), potentially linking these loci with Wnt-
mediated RNF43 gene regulation. Previous investiga-
tions have linked reduced RNF43 expression in tumors 
with increased cell proliferation and invasiveness, and 
poor survival [26]. Notably, human RNF43 also contained 

Fig. 2  HFD-induced hypermethylation in three CpG sites of RNF43 that negatively regulate Wnt signaling. (A) Gene map of RNF43 and Wnt recognition 
elements (WREs). WRE1 (red triangles) and WRE2 (black triangles) are indicated. Other symbols mirror those in Fig. 1. (B) Averaged β-values of three CpGs 
in RNF43 in HFD-and NFD-mouse pancreatic cells. Methylation levels in three CpGs (#13, #15 and #25) increased in HFD-fed mice (n = 7), compared with 
those in NFD-fed mice (n = 5) (*,P < 0.05; two-sided Student’s t-test). (C) Schematic representation of the signal transduction pathway activated by obesity 
in mouse pancreas. Wnt proteins bind to its cognate receptor, Frizzeled (FZD), and translocate β-catenin/TCF complex into nuclei, leading to target gene 
expression through binding to its translational element (WRE). RNF43 ubiquitinates FZD and induces endocytosis, downregulating the Wnt signaling.
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WREs in intron #2, mirroring findings in the mouse 
genome.

We examined the methylation status of six genes in 
pancreatic exocrine cells of DIO mice, assuming their sig-
nificant roles in PC development. Notably, the methyla-
tion levels of KRAS, CDKN2A, TP53, SMAD4 and GNAS 
remained unaffected by HFD-induced obesity, suggesting 
that the epigenetic effects of obesity may not converge 
onto identical genes undergoing mutations/deletions 
during PC development. In a previous study, we identi-
fied over 300 DMRs in DIO mice, proposing three path-
ways for PC development: (i) cell hypertrophy (involving 
PLC, PKC, SMAD2/3 and TRKA); (ii) metabolic control 
(involving CREB and AMPK); and (iii) potassium regu-
lation (involving K+-channel). The epigenetic effects of 
obesity on PC may preferentially involve genes in these 
pathways rather than those well-known for mutations/
deletions. These findings provide key molecular insights 
into PC pathogenesis and potential biomarkers develop-
ment through obesity-induced epigenetics.

Limitations
The current study has several limitations. Notably, meta-
bolic differences between mouse and human pancreatic 
tissues could lead to variations in obesity-induced epi-
genetic effects. Furthermore, there is a need to increase 
the sample size to strengthen our findings. The expres-
sion level of RNF43 in obese mice was not evaluated, 
indicating a gap that necessitates future research to 
explore the correlation between DNA methylation lev-
els at three loci, RNF43 expression levels, and subse-
quent abnormal augmentation of Wnt signaling. Besides 
DNA methylation, epigenetic modifications involve his-
tone modifications (e.g., acetylation and deacetylation 
of histones) and chromatin accessibility [29, 30]. These 
modifications result from three biochemical reactions, 
including writers (adding chemical groups to DNA or 
histones), erasers (removing epigenetic modifications), 
and readers (recognizing specific epigenetic marks). 
Investigating how obesity-induced epigenetic changes 
may influence histone modifications and chromatin 
accessibility, and the mechanisms of these epigenetic 
modifications through biochemical reactions, remains an 
area for future exploration.

Materials and methods
Mice and diets
To minimize confounding risk factors associated with 
human PC, particularly sex, we exclusively examined 
female C57BL/6J mice (Charles River Japan, Tokyo). 
Mice were housed separately and given ad libitum access 
to HFD or NFD from 5 to 60 weeks of age (tissue collec-
tion). The HFD group (n = 7) received feed containing fat 
equivalent to 60% of the total calories (D12492, Research 

Diets Inc., New Brunswick, NJ). The NFD group (n = 5) 
received feed containing fat equivalent to 10% of the total 
calories (D12450J Research Diets Inc).

Mouse pancreatic exocrine cells cultures
All procedures for the experiments using mice were 
approved by the Animal Committee of Saitama Medi-
cal University (protocol:2499). All methods were per-
formed following experimental procedures mirroring 
those described in our previous study [25]. Briefly, mice 
were euthanized at approximately 60-week old with CO2 
gas, and pancreatic tissues were excised. The tissues were 
minced, digested, and triturated in Hanks’ balanced salt 
solution (HBSS) containing 5% fetal bovine serum (FBS), 
0.25  mg/ml trypsin inhibitor and 25 ng/ml epidermal 
growth factor (EGF) (Corning Life Sciences, Tewksbury, 
MA). Isolated pancreatic cells were passed through the 
mesh, rinsed with the medium, and plated.

DNA methylation analysis
Methylation analyses followed the protocols outlined 
in our previous study (Araki 2023). Briefly, cultured 
pancreatic exocrine cells were recovered at ∼ 4 days in 
vitro and genomic DNA was prepared; genomic DNA 
(∼ 1  µg) was bisulfite-treated using a DNA methyla-
tion kit (Takara Bio). We analyzed methylation using an 
Infinium Mouse Methylation BeadChip array, validated 
to contain 280,754 CpG sites. Statistical analyses were 
conducted using Python (v3.6) and GenomeStudio 
Methylation Module (v1.8) available in GenomeStudio 
(v2011.1), with individual probes filtered based on mean 
q < 0.05 (FDR = 0.1, Abs(delta) > 0.2 [i.e., > 20% change in 
β-value]). CpG site gene information for mouse KRAS, 
CDKN2A, TP53 and SMAD4 is shown in Supplementary 
Tables 1 and Fig. 2. Human PC stage IB methylation data 
(n = 3) were extracted from the National Cancer Institute 
portal (GDC portal, https://portal.gdc.cancer.gov/). Stage 
IB represents PC with tumor sizes ranging between 2- 
and 4-cm (https://www.cancer.gov/). The database lacks 
data on earlier PC stages, rendering Stage IB the earli-
est available. Probe information and the signal data were 
converted and imported into GenomeStudio.
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