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Stress preconditioning occurs when transient, sublethal stress events impact an organism's ability to counter future stresses. Although 
preconditioning effects are often noted in the literature, very little is known about the underlying mechanisms. To model precondition
ing, we exposed a panel of genetically diverse Drosophila melanogaster to a sublethal heat shock and measured how well the flies sur
vived subsequent exposure to endoplasmic reticulum (ER) stress. The impact of preconditioning varied with genetic background, 
ranging from dying half as fast to 4 and a half times faster with preconditioning compared to no preconditioning. Subsequent association 
and transcriptional analyses revealed that histone methylation, and transcriptional regulation are both candidate preconditioning modi
fier pathways. Strikingly, almost all subunits (7/8) in the Set1/COMPASS complex were identified as candidate modifiers of precondition
ing. Functional analysis of Set1 knockdown flies demonstrated that loss of Set1 led to the transcriptional dysregulation of canonical ER 
stress genes during preconditioning. Based on these analyses, we propose a preconditioning model in which Set1 helps to establish an 
interim transcriptional “memory” of previous stress events, resulting in a preconditioned response to subsequent stress.
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Introduction
Organisms routinely face many stressors, including changes 
in temperature, viral infection, exposure to environmental 
toxins, hypoxia, and ischemia (Hoffmann and Hercus 2000). 
Understanding how an individual can respond to numerous in
sults over a lifetime is an ongoing challenge. In laboratory envir
onments, naïve cells and organisms are commonly used to 
dissect the mechanisms underlying stress response pathways. 
However, this does not reflect the complex history of stresses 
that would naturally occur.

Efficient stress responses are vital for producing and maintain
ing a healthy proteome (Chaudhuri and Paul 2006; Rendleman 
et al. 2018). Therefore, cells have many canonical stress response 
pathways that combat cellular stresses. The endoplasmic reticu
lum (ER) is responsible for folding approximately 30% of all poly
peptides, which is an error-prone process disrupted by many 
stressors (Guerriero and Brodsky 2012; Hetz 2012). The ER stress 
pathway is one of the most thoroughly characterized canonical 
stress response pathways. Three ER membrane sensors, IRE1, 
ATF6, and PERK, detect misfolded proteins and respond by initiat
ing the unfolded protein response (UPR). The UPR includes a ro
bust transcriptional cascade that upregulates genes whose 
protein products refold or degrade misfolded proteins (Hetz 
2012). If the cell cannot achieve ER homeostasis, then apoptosis 
occurs. An effective ER stress response is critical for healthy 
development and aging. Improper proteostasis and a decline in 
the ER stress response contribute to many diseases, such as 
Alzheimer's disease, Parkinson's disease, Type 2 diabetes, and 
more (Chaudhuri and Paul 2006; Back and Kaufman 2012; Brown 

and Naidoo 2012; Cnop et al. 2012; Labbadia and Morimoto 
2015). An essential step in understanding how the ER stress re
sponse impacts disease is understanding how the stress response 
varies with genetic background and previous stress.

Natural genetic variation is a powerful tool for investigating ca
nonical stress response pathways. Incorporating genetic variation 
into ER stress has revealed new genes and pathways involved in 
the ER stress response (Russell and Chow 2022; Chow et al. 2013, 
2015, 2016; Palu and Chow 2018; Palu et al. 2019). Much of what 
we understand about the ER stress response comes from studies 
that examine this response in isolation, using a single genetic 
background. In reality, ER stress occurs in a complex milieu of pre
vious stresses that likely impact how the cell responds, and this 
likely varies with genetic background.

Preconditioning is a long-observed example of an organism's 
ability to adapt to numerous assaults, whereby transient expos
ure to stress affects the organism's ability to respond to subse
quent stresses (Hayashi et al. 2003; Hung et al. 2003; Fouillet et al. 
2012; Kennedy et al. 2014). There are many documented cases of 
preconditioning modifying the outcome of canonical stress path
ways. For example, renal epithelial cells preconditioned with vari
ous pharmaceutical inducers of ER stress are resistant to 
subsequent peroxide-induced cell death (Hung et al. 2003). 
Exposing Caenorhabditis elegans to mitochondrial stress during lar
val development increases their ability to respond to and recover 
from heat stress as adults (Labbadia et al. 2017). In a mouse model 
of Parkinson's disease, preconditioning mice with ER stress 
through tunicamycin injections is neuroprotective from subse
quent 6-OHDA injections (Fouillet et al. 2012). While most of these 
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are examples of positive effects, preconditioning can also have 
negative effects. For example, in cultured mammalian neurons, 
proteasomal inhibition can negatively impact stress granule for
mation and further responses to other stresses (Shelkovnikova 
et al. 2017). Extrinsic factors such as age and diet can also result 
a negative preconditioning effect (Pomatto and Davies 2017; 
Holcombe and Weavers 2022). Although this long-observed phe
nomenon has been documented, the molecular mechanisms are 
unknown, and stress response pathways continue to be studied 
in isolation.

We used natural genetic variation to understand the impact of 
stress preconditioning on the ER stress response. Here, we report 
the results of a stress preconditioning screen performed using a 
genetically diverse panel of Drosophila melanogaster. The screen re
vealed that preconditioning outcomes are strongly dependent on 
genetic background. We identified candidate modifier genes from 
association analyses of the preconditioning screen and identified 
differentially expressed genes between strains with opposing pre
conditioning outcomes using transcriptional analyses. Together, 
these analyses revealed that immunity, transcriptional regula
tion, and histone methylation might play a role in the underlying 
mechanisms of preconditioning. Strikingly, we identified nearly 
all the components of the Set1/COMPASS complex as candidate 
modifiers. We investigated the impact of the loss of Set1, a con
served histone H3 lysine 4 (H3K4) methyltransferase in the Set1/ 
COMPASS complex, on preconditioning. We found that Set1
knockdown modifies preconditioning outcomes and leads to the 
transcriptional dysregulation of a subset of genes during precon
ditioning. We posit that after initial stress, Set1 plays a critical role 
in creating a transient transcriptional “memory” of the event, re
sulting in a preconditioned response to subsequent stress.

Materials and methods
Drosophila lines and maintenance
Flies were maintained at 25°C on a standard diet based on the 
Bloomington Stock Center standard medium with malt and with
out soy flour. Flies were on a 12-h light/dark cycle. For the stress 
preconditioning screen, DGRP strains were obtained from the 
Bloomington Drosophila Stock Center. For the Set1 functional 
work, a Tubulin-GAL4 driver (Bloomington Drosophila Stock 
Center: 5138), Attp40 (36304), and Set1 RNAi (40931) were used.

Stress preconditioning assay
One hundred and seventy-seven strains from the DGRP were used 
for the stress preconditioning screen. For each strain, 200 males 
were collected and placed in 10 vials of 20 males each. Each 
male was between 2–8 days old and had recovered a minimum 
of 2 days since their last exposure to CO2 when they were exposed 
to stress. Males were chosen to avoid interaction between stress 
responses and adult survival of mated vs unmated females. For 
preconditioning, 5 vials of 20 flies (100 flies total) were heat 
shocked by placing them into empty vials and submerging in a 
35 ± 1°C water bath for 30 min. All heat shocks were performed 
in the morning, between 9 AM and 12 PM. All flies were placed 
back on standard media and allowed to recover at 25°C for 4 h. TM 
food consisted of 8 µM TM (Sigma-Aldrich CAS Number: 11089– 
65-9) dissolved in DMSO (Millipore Sigma CAS Number: 67-68-5), 
1.3% agarose (BioRad #1620102), and 1% sucrose (Millipore Sigma 
CAS Number: 57-50-1) in DI water (similar to previous studies; 
Chow et al. 2013). After recovery, all flies were transferred into vials 
containing 5 ml of tunicamycin (TM) food to induce ER stress. TM in
hibits N-linked glycosylation, leading to ER stress, and is commonly 

utilized in ER stress studies (Heifetz et al. 1979; Oslowski and Urano 
2011; Chow et al. 2013; Ryoo 2015; Dong et al. 2018). Flies were mon
itored every 2 h during the light cycle (8 AM–8 PM MST) and the num
ber of dead flies were recorded. The control, no preconditioning flies, 
were treated in the same manner, but were not exposed to heat 
shock.

The Set1 KD stress preconditioning assay used the same proto
col. The only adjustment is that flies were monitored every 2 h be
tween 8 AM–12 AM MST (additional 4 h during the dark cycle) once 
death was observed. Each replicate is made up of 100 Set1 KD and 
100 control flies that were collected, subjected to the stress pre
conditioning screen, and monitored for survival at the same time.

Hazard ratios
Survival analysis was performed using the Survival package in R 
(R version 4.2.0; survival package version 3.3-1; running under 
Windows 10 ×64) and detailed code is located at https://github. 
com/kgowings/ER_stress_preconditioning/blob/main/R_plots% 
26stats/HR_and_BarPlot.R. The coxph test was performed to cal
culate the Cox proportional hazards ratio (HR) for each strain. 
The HR compares the death rate of the preconditioning group to 
the death rate of the control group within each strain. The HR 
takes into account all 100 flies exposed to heat stress and then 
ER stress and all 100 control flies exposed to only ER stress.

Genome-wide association study
Genome-wide association (GWA) was performed as previously de
scribed (Chow et al. 2016). DGRP genotype files were downloaded 
from the website: http://dgrp2.gnets.ncsu.edu/data.html. The 
HR calculated from the preconditioning screen for 177 DGRP lines 
was regressed on each SNP. GEMMA (v. 0.94) (Zhou and Stephens 
2012) was used to estimate a centered genetic relatedness matrix 
and perform association tests using the following linear mixed 
model:

y = α + xβ + u + ϵ

u ∼ MVNn(0, λτ−1K)

ϵ ∼ MVNn(0, τ−1In), 

where y is the n-vector of the HR for the n lines, α is the intercept, x is 
the n-vector of marker genotypes, β is the effect size of the marker. u 
is an n × n matrix of random effects with a multivariate normal dis
tribution (MVNn) that depends on λ, the ratio between the 2 variance 
components, τ−1, the variance of residuals errors, and where the co
variance matrix is informed by K, the calculated n × n marker-based 
relatedness matrix. K accounts for all pairwise nonrandom sharing 
of genetic material among lines. ɛ, is an n-vector of residual errors, 
with a multivariate normal distribution that depends on τ−1 and In, 
the identity matrix. Full GWA output located at https://figshare. 
com/articles/dataset/StressPreconditioningDGRP_GWAoutput_txt/ 
22266238. When evaluating candidate polymorphisms, we used the 
significance output “P_score.” Variants were filtered for MAF (≥0.05) 
and nonbiallelic sites were removed.

SNPs were assigned to genes within ±1 kb using the variant anno
tation file based on FB5.57 (dgrp.fb557.annot.txt) from the DGRP 
website, http://dgrp2.gnets.ncsu.edu/data.html. If multiple genes 
are within ±1 kb from a given SNP, the SNP was assigned to a single 
gene by prioritizing the variant type as follows: exon > UTR > intron  
> upstream or downstream. Human orthologues for each fly gene 
were chosen based on the greatest DIOPT score (Hu et al. 2011), 
with a minimum DIOPT score of 5. All of the GWAS code used to per
form this analysis and prepare the output for GSEA is detailed at 

2 | K. G. Owings and C. Y. Chow

https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://github.com/kgowings/ER_stress_preconditioning/blob/main/R_plots%26stats/HR_and_BarPlot.R
https://github.com/kgowings/ER_stress_preconditioning/blob/main/R_plots%26stats/HR_and_BarPlot.R
https://github.com/kgowings/ER_stress_preconditioning/blob/main/R_plots%26stats/HR_and_BarPlot.R
http://dgrp2.gnets.ncsu.edu/data.html
https://figshare.com/articles/dataset/StressPreconditioningDGRP_GWAoutput_txt/22266238
https://figshare.com/articles/dataset/StressPreconditioningDGRP_GWAoutput_txt/22266238
https://figshare.com/articles/dataset/StressPreconditioningDGRP_GWAoutput_txt/22266238
http://dgrp2.gnets.ncsu.edu/data.html


https://github.com/kgowings/ER_stress_preconditioning/tree/main/ 
GWA%26GSEA and GEMMA documentation can be found at https:// 
github.com/genetics-statistics/GEMMA.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) analysis was performed as 
previously described (Subramanian et al. 2005; Palu et al. 2019; 
Talsness et al. 2020). All polymorphisms from the stress precondi
tioning GWA (Supplementary File 1) were assigned to a gene as de
scribed in the above section. Genes were organized into a rank-list 
based on their enrichment for polymorphisms, and genes were as
signed to GO categories. GSEA determines whether the top of the 
newly generated rank-list is enriched in genes belonging to any GO 
categories or if the genes in the category are randomly distributed 
throughout the list. Calculation of enrichment score was per
formed as described by Subramanian et al. (2005) (for code see 
Figshare: https://doi.org/10.25387/g3.9808379). Only GO categor
ies with a corrected P-value ≤ 0.05, number of genes ≥ 5, and an 
enrichment score ≥ 0.50 were considered.

RNAseq
mRNA sequencing was performed on total RNA from whole male 
2-day old flies (10 flies per group sample). DGRP lines RAL69, 
RAL93, RAL359, RAL387, and RAL409 made up the beneficial group 
and RAL195, RAL304, RAL335, RAL737, and RAL819 made up the 
detrimental group. Flies were given 48 h to recover from their 
last CO2 exposure. The no treatment flies were frozen down at 
the same time as the heat shock samples. The heat shock samples 
from each line were heat shocked for 30 min at 35 ± 1°C and then 
frozen down immediately postheat shock.

mRNA sequencing was performed on 20 samples (10 geno
types × 2 treatments × 1 replicate). RNA was extracted using a 
Direct-zol RNA Miniprep (Zymo Research R2061) using TRIzol 
Reagent (ThermoFisher Cat # 15596026) and including the 
DNAse step. Samples were prepared and sequenced by the 
Huntsman Cancer Institute High-Throughput Genomics Core. 
The 20 samples were sequenced on the NovaSeq 50 × 50 bp 
Sequencing, for a total of approximately 25 million paired reads 
per sample. Fastq files were trimmed using seqtk v1.2 software 
(for FastQ and processed files see GEO repository: GSE226958). 
RNAseq reads were aligned to the D. melanogaster reference gen
ome (assembly BDGP6.28, Ensembl release 102) using Bowtie2 
v2.2.9 software (Langmead and Salzberg 2012), and alignment files 
were sorted and converted using Samtools v1.12 (Li et al. 2009).

Read counts were normalized using the default normalization 
method in DESeq2 (Love et al. 2014) package in R. Principle compo
nents analysis (PCA) was performed to identify outliers 
(Supplementary Fig. 3). RAL409 was identified as an outlier and 
was removed for further analyses. Outliers were detected by calcu
lating the PC1, PC2, and distance from the center for each sample. 
Then we calculated the mean +2 times the standard deviation for 
each and set them as the threshold for outliers. Any samples 
that exceded any of the 3 thresholds was counted as an outlier 
and removed for further analysis. The remaining samples were re
analyzed using Deseq2 v1.28.1. Differentially expressed genes in 
the beneficial group (compared to detrimental group) were identi
fied before treatment and immediately postheat shock. Remaining 
samples were renormalized and assessed using linear models with 
the DESeq2 package. Genes were considered significantly differen
tially expressed if the adjusted P-value ≤ 0.10. We chose this less 
stringent P-value threshold due to the noise introduced by using 
5 different DGRP strains as biological replicates. In this preliminary 
characterization of our preconditioning model, we wanted readers 

to see a broader report of the RNAseq results that are not too re
stricted by P-value cutoffs since all P-values are displayed. All of 
our RNAseq code is available at https://github.com/kgowings/ER_ 
stress_preconditioning/tree/main/RNAseq_DESeq.

RT-qPCR
Each sample contained 12 adult male flies that were 4–7 days old 
and had been off CO2 for 3 days when exposed to stress. Thirty 
samples were collected (5 timepoints × 2 genotypes × 3 replicates), 
and RNA was extracted using a Direct-zol RNA Miniprep (Zymo 
Research R2061) using TRIzol Reagent (ThermoFisher Cat 
# 15596026) and including the DNAse step. RNA was converted to 
cDNA using a ProtoScript® II First Strand cDNA Synthesis Kit 
(NEB Cat # E6560L). RT-qPCR was performed using a QuantStudio 
3 96-well 0.2 ml block instrument and PowerUp SYBR Green 
Master Mix (ThermoFisher Cat # A25741). We used primers from 
the FlyPrimerBank (Hu et al. 2013) located at http://www.flyrnai. 
org/flyprimerbank: Set1 (PP4079), Hsp70 (PD40143), Hsp26
(PD70434), Hsp83 (PD70430), GstD2 (PP14716), Ugt37A3 (PP30182), 
Sil1 (PP30411), and RpL19 (PP10148).

Since these were previously established primers, primer effi
ciency was not calculated using standard curves. Results were 
analyzed using the Delta-Delta Ct method. Gene expression was 
normalized to the expression of a housekeeping gene, RpL19. 
Then, the normalized gene expression at each timepoint was nor
malized to the “No Treatment” timepoint.

Results
Genetic background modifies preconditioning 
outcomes
We subjected 177 strains of the Drosophila Genetic Reference Panel 
(DGRP) to a stress preconditioning screen to assess the impact of 
genetic variation on how preconditioning affects the ER stress re
sponse. The DGRP, a collection of fully sequenced, inbred 
Drosophila strains derived from a natural population, is a powerful 
tool for uncovering novel effects of genotypic background on bio
logical processes (Mackay et al. 2012). For our preconditioning 
screen, we exposed males of each DGRP strain to heat stress pre
conditioning (or no preconditioning control), allowed them to re
cover for 4 h, placed them on food containing tunicamycin (TM) 
to induce ER stress, and monitored survival (Fig. 1a).

A number of unique stress combinations have been used to 
model preconditioning, including multiple exposures to a single 
stress (Hercus et al. 2003; Ding et al. 2012) or the application of 2 dif
ferent stresses (Hayashi et al. 2003; Hung et al. 2003; Kennedy et al. 
2014; D’Urso et al. 2016; Labbadia et al. 2017). We chose to use 2 
mostly independent stressors that required unique stress re
sponse genes, rather than repeating a single stress twice (Chow 
et al. 2015; Humburg et al. 2016). This reduces the likelihood that 
the effect of preconditioning is only due to proteins or transcripts 
generated during the initial stress and are still present during the 
secondary stress. Sublethal heat stress was chosen as the precon
ditioning stress because it is applied to flies uniformly, causes a ro
bust response, has been extensively characterized, and begins 
within minutes of heat application (Ashburner and Bonner 1979; 
Humburg et al. 2016; Mahat et al. 2016). TM induces ER stress by in
hibiting N-linked glycosylation and is commonly utilized in ER 
stress studies (Heifetz et al. 1979; Oslowski and Urano 2011; 
Chow et al. 2013; Ryoo 2015; Dong et al. 2018). TM-induced ER stress 
ultimately leads to the death of all flies (Chow et al. 2013). 
Therefore, the phenotypic outcome measured in this screen was 
the survival time under TM-induced ER stress.
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We compared survival curves of preconditioned and control flies 
from each DGRP strain to determine how preconditioning affects 
each strain's response to ER stress. Survival was analyzed with 
the Cox proportional hazards model to generate a hazard ratio for 
each strain that compares the death rate on ER stress with and with
out heat stress preconditioning (Abd Elhafeez et al. 2021) 
(Supplementary File 1). A hazard ratio value of 1 indicates no signifi
cant change due to preconditioning, <1 indicates slower death in 
the preconditioned group compared to control (beneficial), and >1 
indicates faster death in the preconditioned group (detrimental).

The stress preconditioning screen revealed that the effect of 
preconditioning on the response to ER stress is dependent on gen
etic background (Fig. 1b). The impact of preconditioning on ER 
stress-induced death rates ranges from dying half as fast (hazard 
ratio = 0.47, P = 2.36 × 10−7) to 4.5 times faster (hazard ratio = 4.45, 
P < 2.0 × 10−16) compared to no preconditioning. Since this experi
ment examines preconditioning in a single generation of the 
DGRP, we are unable to comment on the heritability of precondi
tioning effects. To address this limitation, future studies would 
have to include parent–offspring comparisons of stress precondi
tioning effects to definitively address the heritability of this trait. 
There is no correlation in the DGRP between responses to precon
ditioning and previously reported ER stress responses (r = −0.16; 
P = 0.13) (Chow et al. 2013), heat tolerance (r = −0.047; P = 0.67) 
(Lecheta et al. 2020), or longevity (r = 0.036; P = 0.65) (Huang et al. 
2020), indicating that these individual factors do not drive precon
ditioning outcomes (Supplementary Fig. 2). Therefore, the vari
ability in preconditioning outcomes directly results from unique, 
underlying genetic variation in the DGRP and is not simply the 
sum of the effects of variation on stress tolerance in general and 
overall longevity.

GWA analysis identifies candidate modifier genes 
of preconditioning
We performed a GWA analysis using the hazard ratios generated 
for each DGRP strain to identify candidate modifier genes under
lying the variable preconditioning outcomes. We applied a linear 
mixed model to query 1,885,860 polymorphisms (MAF ≥ 0.05) to 
identify variants that are significantly associated with outcomes 

from our preconditioning screen (results located at: https:// 
figshare.com/articles/dataset/StressPreconditioningDGRP_GWA 
output_txt/22266238). The quantile–quantile (qq) plot demon
strated an appropriate fit to the linear mixed model, but with 
less enrichment than we expected (Supplementary Fig. 1).

Evaluating the role of any specific SNP is difficult due to limita
tions imposed by multiple testing. Therefore, in this study, we put 
little emphasis on individual polymorphisms. Instead, we priori
tized identifying potential modifier genes, which has been a very 
successful approach in previous DGRP screens (Chow et al. 2013, 
2016; Palu et al. 2019; Talsness et al. 2020). If a SNP fell within an 
annotated gene, we assigned it to that gene. If a SNP was in an in
tergenic region, we assigned it to the closest gene within 1 kb. We 
did not evaluate SNPs that were more than 1 kb from the closest 
gene, so our analysis excludes variants that lie outside this range 
and may have transregulatory effects.

With a standard P-value cutoff of P ≤ 1 × 10−5 used in most 
DGRP studies (Chow et al. 2013, 2016; Palu et al. 2019; Talsness 
et al. 2020), the GWA identified only 6 polymorphisms associated 
with stress preconditioning outcomes. Of the 6 polymorphisms, 
5 were in a known gene: 1 in a 3′ UTR, 3 in introns, and 1 synonym
ous variant in a protein-coding exon. These variants are the top 5 
variants displayed in Table 1. Of these 5 Drosophila genes, 2 have 
known human orthologs, Pdp1 (human ortholog: HLF) and 
CG44837 (DPEP3). Pdp1 (HLF) is particularly interesting because it 
is the top candidate modifier with a human orthologue. Pdp1
(HLF) is a widely expressed transcription factor critical for proper 
development and circadian rhythm (Lin et al. 1997; Reddy et al. 
2000).

Due to the lack of significant variants that were identified with 
a standard P-value threshold of P ≤ 1 × 10−5, we also examined var
iants that fell within a more liberal threshold of P ≤ 1 × 10−4. 
Lowering the threshold does increase the false discovery rate 
(FDR) from 0.001 to 0.01%, but we still expect the variants in this 
less stringent pool to be enriched for true positives. With an arbi
trary P-value cutoff of P ≤ 1 × 10−4, the GWA analysis identified 110 
polymorphisms associated with stress preconditioning. Of these 
110 polymorphisms, 81 fell within 1 kb of a known gene 
(Supplementary Table 1). These 81 variants included 7 

Fig. 1. Genetic background alters the effect of preconditioning on ER stress survival times. a) Experimental design of the stress preconditioning screen 
performed on 177 lines of the Drosophila Genetics Reference Panel (DGRP). b) Results of stress preconditioning screen. Each bar represents a different 
DGRP strain. Cox proportional hazard ratio: [rate of death on ER stress with preconditioning]/[rate of death on ER stress without preconditioning]. A 
hazard ratio < 1 indicates preconditioning had a beneficial effect on ER stress survival, a hazard ratio = 1 indicates no effect, and a hazard ratio > 1 
indicates a detrimental effect. The horizontal line marks this transition point at hazard ratio = 1.
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downstream and 4 upstream of a gene, 3 in a 3′ UTR, 1 in a 5′ UTR, 
56 in an intron, and 9 in protein-coding exons. Of the 9 in protein- 
coding exons, 1 is a nonsynonymous variant (CG15784), and 8 are 
synonymous. These 81 polymorphisms are associated with 40 un
ique Drosophila genes (Table 1). Of these 40 genes, 22 have a human 
orthologue with a DIOPT score of at least 5 (Hu et al. 2011). The 40 
genes do not include any canonical ER stress or heat shock re
sponse genes, reinforcing the observation that differences in re
sponse to these individual stresses do not drive the variation in 
preconditioning. Gene ontology (GO) analysis did not identify 
any significant enrichment.

With our less stringent P-value cutoff, a subset of candidate 
modifiers identified in our GWA analysis indicated the potential 
involvement of chromatin organization and transcriptional regu
lation in preconditioning mechanisms. The GWA analysis identi
fied Tpl94D (no human ortholog), an HMG-box domain protein 
with known roles in chromatin reorganization, indicating a poten
tial role of chromatin organization in preconditioning outcomes 
(Gärtner et al. 2015). A second general transcription factor was 
also identified, TfIIA-L (GTF2A1). TfIIA-L (GTF2A1) is a member of 
the preinitiation complex required for RNA polymerase II initi
ation (Wang et al. 2020). The precise mechanism of how Pdp1

(HLF) and TfIIA-L (GTF2A1) impact preconditioning is unclear, 
but their known roles suggest the possible importance of tran
scriptional regulation in preconditioning.

GSEA uncovers the importance of histone 
methylation in preconditioning
Thus far, our investigation has only examined the candidate 
modifiers harboring individual polymorphisms that exceed a stat
istical threshold. Although this is a valuable method for identify
ing SNP-ranked candidate genes, it neglects most of the 
association data generated by our GWA analysis and relies on 
the discovery of highly significant individual SNPs. Using this 
method, very few candidate modifier genes were identified that 
were associated with the standard P-value cutoff of P ≤ 1 × 10−5. 
In order to obtain more biological insight from the full GWA out
put, we utilized GSEA to explore the entire association dataset 
(published on figshare).

Every polymorphism in the GWA dataset is assigned to a gene 
by the same method described above for GWA. GSEA then calcu
lates a gene-based P-value enrichment score that determines the 
significance of all variants assigned to the gene (Subramanian 
et al. 2005; Palu et al. 2019; Talsness et al. 2020; Palu et al. 2022). 
The genes are then reranked by this new gene-based P-value. 
Each GO term is composed of a previously defined set of genes. 
Given this set of genes, GSEA asked if the genes in a given GO 
term are randomly distributed throughout the ranked list or 
found primarily at the top. GO terms with genes enriched at the 
top of the list are identified as enriched GO terms by GSEA.

There were 11 enriched ontology terms uncovered by GSEA 
(Fig. 2a; Supplementary Table 2) (P ≤ 0.05, enrichment score ≥  
0.50, number of genes contributing to ontology ≥ 5). Three gene 
ontology terms pointed to histone methylation as a key process 
regulating preconditioning (Fig. 2a, indicated terms highlighted). 
Each of the 3 histone methylation ontology terms contribute un
ique genes (Fig. 2b).

The most highly enriched ontological term is “histone-lysine 
N-methyltransferase activity” (GO:0018024). Of particular inter
est, the genes contributing to this enrichment include all the 
known Drosophila H3K36 methyltransferases, NSD (NSD1-3), ash1
(ASH1L), and Set2 (SETD2) (Wagner and Carpenter 2012; Bicocca 
et al. 2018; Huang and Zhu 2018) (Fig. 2b). These enzymes play 
roles in various processes, including transcription initiation and 
repression. Set2 (SETD2) associates with RNA polymerase II and 
plays a role in transcription elongation (Kizer et al. 2005).

Another enriched ontological term from our GSEA is “Set1C/ 
COMPASS complex” (GO:0048188). Strikingly, the genes contribut
ing to the enrichment of this category include all subunits of the 
Drosophila Set1 complex, except Set1 itself (Mohan et al. 2011) 
(Fig. 2b and c). Identifying nearly every subunit of the Set1 com
plex demonstrates that genetic variation in each component con
tributes to the observed variation in preconditioning outcomes, 
illustrating the importance of the Set1 complex in precondition
ing. Set1 (SETD1A/B) is responsible for the majority of histone 
H3K4 trimethylation in Drosophila (Ardehali et al. 2011; 
Shilatifard 2012). H3K4me3 marks histones proximal to the pro
moters of actively transcribed genes and promotes efficient tran
scription initiation through interaction with RNA polymerase II 
(Ardehali et al. 2011; Shilatifard 2012).

The final enriched ontological term associated with methyla
tion is “histone H3-K4 methylation” (GO:0051568). This ontological 
term includes many genes associated with Set1 (SETD1A/B) 
(Fig. 2b). Additionally, this ontology group includes trx (KMT2A/B), 
another enzyme associated with H3K4 histone methylation in 

Table 1. Candidate modifier genes identified from GWA.

Rank order Gene FBgn Human ortholog P-value

1 CG32204 FBgn0052204 — 1.40E−06
2 Pdp1 FBgn0016694 HLF 4.97E−06
3 TwdlJ FBgn0039440 — 5.13E−06
4 CG44837 FBgn0266100 DPEP3 6.80E−06
5 CG6024 FBgn0036202 — 7.69E−06
6 cep290 FBgn0035168 CEP290 1.27E−05
7 CR45184 FBgn0266694 — 1.53E−05
8 LpR2 FBgn0051092 VLDLR 1.57E−05
9 Ckn FBgn0033987 — 1.73E−05
10 Sf3b3 FBgn0035162 SF3B3 2.67E−05
11 Hdc FBgn0010113 HECA 2.83E−05
12 PGAP1 FBgn0029789 PGAP1 2.91E−05
13 Nmo FBgn0011817 NLK 3.42E−05
14 Tpl94D FBgn0051281 — 4.36E−05
15 Wnt10 FBgn0031903 WNT10B 4.56E−05
16 Ser7 FBgn0019929 — 4.64E−05
17 CG17197 FBgn0039367 ZDHHC24 4.70E−05
18 Fry FBgn0016081 FRYL 5.21E−05
19 CR44971 FBgn0266306 — 5.30E−05
20 CG17097 FBgn0265264 LIPA/F/K/M/N 5.37E−05
21 CG11880 FBgn0039637 SLC44A2/4 5.45E−05
22 CG34375 FBgn0085404 — 5.89E−05
23 Side FBgn0016061 — 6.03E−05
24 TyrR FBgn0038542 — 6.15E−05
25 CG12206 FBgn0029662 GRXCR1 6.20E−05
26 Hs6st FBgn0038755 HS6ST1 6.24E−05
27 Frac FBgn0035798 — 6.92E−05
28 Fra FBgn0011592 NEO1 7.35E−05
29 TfIIA-L FBgn0011289 GTF2A1 7.56E−05
30 AdSL FBgn0038467 ADSL 7.56E−05
31 CG15784 FBgn0029766 — 7.89E−05
32 CG7781 FBgn0032021 — 7.90E−05
33 CG15544 FBgn0039804 — 8.17E−05
34 Sfl FBgn0020251 NDST2 8.20E−05
35 CG34354 FBgn0085383 TIA1/L1 8.80E−05
36 CG16812 FBgn0032488 C19orf47 9.02E−05
37 Px FBgn0003175 — 9.19E−05
38 Pino FBgn0016926 — 9.29E−05
39 Drat FBgn0033188 — 9.39E−05
40 robo2 FBgn0002543 ROBO1/3 9.66E−05

Modifiers are ranked based on the most significant SNP associated with each 
gene. Human orthologs include the ortholog with the greatest DIOPT score (≥5). 
Candidate modifiers above the double line reached a P-value threshold of P ≤  
1 × 10−5.
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Drosophila (Ardehali et al. 2011; Mohan et al. 2011; Shilatifard 2012). 
This category also includes Utx (KDM6A), an H3K27me3 demethylase 
linked to transcriptional regulation that colocalizes with RNA poly
merase II (Smith et al. 2008; Van Der Meulen et al. 2014).

RNAseq reveals potential gene expression 
predictors of preconditioning outcomes
Although GWA and GSEA uncovered a range of pathways that po
tentially underlie preconditioning mechanisms, the survival stat
istic is a culmination of many different processes. Expression 
differences in the basal state (no treatment), heat shock response, 
recovery postheat shock, and ER stress response might contribute 
to the ultimate survival outcome measured by the precondition
ing screen. Thus, we sought to identify factors at early time points 
that might predict the outcome of preconditioning.

To identify genes with expression patterns predictive of pre
conditioning outcomes, we focused on the DGRP strains at the ex
treme ends of the distribution (Fig. 1b). These strains included 5 of 
the most beneficial preconditioning outcomes (RAL69, RAL93, 
RAL359, RAL387, RAL409) and 5 of the most detrimental precondi
tioning outcomes (RAL195, RAL304, RAL335, RAL737, RAL819). We 
refer to these groups as the beneficial and detrimental groups, re
spectively. To identify a standard mechanism for detrimental or 
beneficial preconditioning outcomes, we treated the 5 strains in 
each group as technical replicates in the RNAseq analysis instead 
of investigating each strain individually. Combining 5 genetically 
unique strains into a single group will wash out unique expression 
changes that each extreme strain carries. Only genes with sub
stantial, similar effects across all 5 strains, will be detected as 
differentially expressed between the beneficial and detrimental 
groups.

RAL409 did not cluster with the other beneficial strains, as il
lustrated in PCA plots (Supplementary Fig. 3a–c). Therefore, we 
removed RAL409 as an outlier for the following analyses. The 
PCA plots also reveal more variability in the detrimental group 
than in the beneficial group (Supplementary Fig. 3c and d). This 
clustering pattern suggests that there is likely a common mech
anism underlying a beneficial preconditioning outcome and that 

there may be more strain-specific mechanisms for a detrimental 
effect.

Under basal conditions, we found 19 genes upregulated and 14 
genes downregulated in the beneficial group compared to the det
rimental group (Fig. 3a, Table 2) (Padj ≤ 0.10). The 2 most highly up
regulated genes in the beneficial group are CG15263 (no human 
ortholog) and CG6788 (FIBCD1) (Log2(fold change) = 8.27 and 4.04, 
respectively) (Hu et al. 2011). While the function of CG6788 is un
known, loss of function mutations in FIBCD1 is associated with 
neurodevelopmental disorders in humans (Fell et al. 2022). 
CG6788 may also play a role in neurodevelopment in Drosophila. 
Two of downregulated genes in the beneficial group, Tep1
(CD109) and IM4 (no human ortholog) (Log2(fold change) = −1.86 
and −1.09, respectively), participate in the Drosophila immune re
sponse by activating Toll (Dostálová et al. 2017; Cohen et al. 2020). 
These results suggest that basal immune status may affect 
whether preconditioning is beneficial or detrimental.

Postheat shock, 10 genes are upregulated, and 17 genes are 
downregulated in the beneficial group compared to the detrimen
tal group (Fig. 3b, Table 3) (Padj ≤ 0.10). One of upregulated genes, 
LysS (LYZ) (Log2(fold change) = 2.61), and 1 downregulated gene, 
IM4 (Log2(fold change) = −1.37), are implicated in immunity 
(Cohen et al. 2020; Marra et al. 2021; Qian et al. 2021). Of note, com
paring between the 2 RNAseq analyses (no treatment and post
heat shock), we found 7 differentially expressed genes that 
overlapped: CG15263, CG6788 (FIBCD1), LysS (LYZ), and Poc1
(POC1A) remain upregulated genes in the beneficial group, and 
CR44204, CG10962 (DHRS11), and IM4 remain downregulated, re
gardless of treatment (no stress or postheat stress). CG15263 has 
no established function or human ortholog.

Another downregulated gene postheat shock was CG10962
(DHRS11) (Log2(fold change) = −1.82), which may play a role in 
the ER stress response. A previous DGRP GWA study found that 
a SNP in CG10962 (DHRS11) is significantly associated with 
changes in survival time in an environment of constant ER stress 
(Chow et al. 2013). CG10962 (DHRS11) is the only potential predict
or of preconditioning outcomes associated with ER stress. We did 
not identify any significant ER stress or heat shock genes in this 

Fig. 2. Gene set enrichment analysis (GSEA) reveals a role of histone methylation in preconditioning. a) Top GSEA results. Ontology terms are listed by 
descending enrichment score. P-values are illustrated by the red to blue color gradient. The number of genes contributing to each category is indicated by 
the size of the circle. Ontology terms related to histone methylation are shown in red and indicated by a red arrow. Cutoffs include P-value ≤ 0.05, number 
of genes ≥ 5, and enrichment score ≥ 0.50. b) Histone methylation ontology terms indicated in red are expanded to show the genes contributing to each 
ontology. FBgn and human ortholog (DIOPT score ≥ 5) are listed for each gene. c) The entire Set1/COMPASS complex is illustrated with all known subunits. 
All subunits with polymorphisms contributing to the ontology terms related to histone methylation are shown in purple.
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analysis, which reinforced the hypothesis that the individual 
stresses of preconditioning do not play a role in preconditioning 
mechanisms.

Loss of Set1 leads to increased variance  
in preconditioning outcomes
Our preconditioning screen and GWA analysis uncovered histone 
methylation and transcriptional regulation as candidate path
ways for modifying responses to preconditioning (Table 1; 
Fig. 2). We focused our initial functional investigation on Set1
(SETD1A/B) because all subunits bound to Set1 contain genetic 
variants contributing to preconditioning outcomes (Fig. 2c). Set1
is highly conserved from yeast to humans, is responsible for the 
majority of H3K4 trimethylation in Drosophila, and is critical for 
the optimal transcription of active genes (Ardehali et al. 2011; 
Brown David et al. 2017). Loss of Set1 or its subunits leads to wide
spread impacts on gene expression (Brown David et al. 2017). We 
decided to focus on Set1 because it is the central component of 
this complex and because ubiquitous RNAi knockdown of SET1 
complex subunits resulted in lethality. We used ubiquitous ex
pression of Set1 RNAi to knockdown Set1 (tubulin-GAL4 driver, 
“Set1 KD”). This reduced Set1 expression by approximately 55% 
(Fig. 4a, Supplementary Table 3) and resulted in no lethality. 
The DGRP is a collection of inbred lines derived from a natural 
population. Therefore, any polymorphisms found using the 
DGRP must be tolerated, nonlethal, and not eliminated during 
the inbreeding process (Mackay et al. 2012). This milder reduction 
in Set1, but not complete loss, better models the small effect sizes 
of natural variants identified in the preconditioning screen.

To investigate the impact of Set1 KD on preconditioning, we uti
lized the same experimental design as the stress preconditioning 
screen (Fig. 1a). In place of DGRP strains, we performed the assay 
using Set1 KD and a genetically matched control. We utilized the 
Cox proportional hazards model to generate a hazard ratio that 
compares Set1 KD to the control with and without preconditioning 
(Fig. 4b, Supplementary File 2). We first tested whether Set1 KD af
fects survival under ER stress without preconditioning. A hazard 
ratio of 1 indicates no significant change in ER stress survival with
out preconditioning between Set1 KD and the control. Of 7 repli
cates, only 1 replicate showed an effect (hazard ratio = 0.57, 
P-value ≤ 0.05) (Fig. 4b). Therefore, Set1 KD generally (6/7 replicates) 
does not impact ER stress survival times without preconditioning.

Next, we tested whether Set1 KD affects survival under ER 
stress with preconditioning. More replicates show a significant ef
fect due to the loss of Set1 with preconditioning than without pre
conditioning. Four replicates result in a significant detrimental 
effect (hazard ratios = 2.14, 1.84, 1.76, 1.10, P-value ≤ 0.05), 1 re
sults in no significant effect, and 2 replicates result in a significant 
beneficial effect (hazard ratios = 0.57, 0.57, P-value ≤ 0.05) of Set1
KD on preconditioning outcomes. There was more variance in 
the impacts of Set1 KD with preconditioning than without precon
ditioning (F test P-value = 0.037). These results indicate that Set1
KD has a variable effect on preconditioning. However, it is possible 
that the phenotype we examined was not sufficiently precise to 
uncover the mechanism underlying this effect. Survival on TM 
is a cumulative measure that can be impacted by any step in 
the preconditioning assay. Therefore, if Set1 KD has a subtle effect 
on any individual step of the preconditioning assay or opposing ef
fects during different steps it may not translate to a measurable, 
consistent impact on the cumulative phenotype. We decided to 
investigate the impact of Set1 KD at each individual step of the 
preconditioning assay in an effort to elucidate Set1's role in 
preconditioning.

Loss of Set1 leads to dysregulation of critical stress 
response genes during preconditioned ER stress
ER stress and heat stress require robust transcriptional responses 
to refold misfolded proteins and return to homeostasis (Guertin 
et al. 2010; Chow et al. 2013). Set1 plays an active role in the efficient 
upregulation of stress response genes (Ardehali et al. 2011; Brown 
David et al. 2017). The dysregulation of these transcriptional re
sponses could lead to adverse effects on preconditioning. 
Therefore, we hypothesized that Set1 KD alters the transcription 
levels of critical stress response genes, leading to abnormal 
mRNA levels at 1 or more steps of the preconditioning assay.

The stress preconditioning assay utilizes survival as a pheno
typic readout. This provides insight into the cumulative effect of 
Set1 KD on preconditioned ER stress but does not reveal the indi
vidual contributions of each step of the preconditioning process 
(Fig. 1a). Thus, we investigated the role of Set1 in preconditioning 
at each step of the stress preconditioning assay, including without 
stress (no treatment), immediately following a 30-min heat shock 
treatment (heat shock), immediately following a 4-h recovery 
from heat shock (postrecovery), and immediately following a 
16-h TM treatment without and with preconditioning (ER stress 
and preconditioned ER stress, respectively).

We evaluated the role of Set1 in upregulating canonical stress 
response genes at each stage of our preconditioning assay. We ex
amined 3 established heat shock genes (Hsp70, Hsp26, Hsp83) 
(Guertin et al. 2010; Ardehali et al. 2011) and 3 established ER stress 
genes (Sil1, Ugt37A3, GstD2) (Chow et al. 2013). In our investigation 
of Set1's role in preconditioning mechanisms, we focused on 

Fig. 3. Differentially expressed genes in the beneficial group compared to 
the detrimental group. Volcano plots illustrating RNAseq results 
comparing beneficial/detrimental groups (a) with no stress or (b) 
immediately postheat shock. Each point represents a different gene. Red 
points are significantly differentially expressed using significance cutoffs 
of Padj ≤ 0.10. Points to the right are upregulated in the beneficial group, 
and points to the left are downregulated. Labeled genes are discussed in 
the Results.

DGRP screen of ER stress preconditioning | 7

https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad265#supplementary-data
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad265#supplementary-data
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0040022?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0001225?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0001233?doi=10.1093/g3journal/jkad265
https://identifiers.org/bioentitylink/FB:FBgn0010038?doi=10.1093/g3journal/jkad265


Table 2. Differentially expressed genes in the beneficial group with no treatment.

Gene FBgn Human ortholog Log2(fold change) P-value Padj

Upregulated in beneficial group CG15263 FBgn0028853 — 8.27 7.91E−10 5.68E−06
CG6788 FBgn0030880 FIBCD1 4.04 2.66E−05 2.55E−02
CR45860 FBgn0267520 — 2.91 6.01E−05 4.11E−02
LysS FBgn0004430 LYZ 2.07 2.15E−04 9.94E−02
CG43829 FBgn0261504 — 2.01 9.49E−05 5.93E−02
CR32864 FBgn0000003 — 1.97 1.52E−04 8.38E−02
CR44066 FBgn0264875 — 1.94 5.72E−06 1.17E−02
CG43829 FBgn0264377 — 1.72 2.34E−05 2.55E−02
CG11912 FBgn0031248 — 1.53 5.12E−09 2.45E−05
Jon99Fii FBgn0039777 — 1.34 2.00E−04 9.56E−02
CG3348 FBgn0040609 — 1.06 2.88E−07 1.03E−03
CG16762 FBgn0035343 — 1.02 3.64E−05 3.07E−02
CG18132 FBgn0031345 — 0.69 6.69E−06 1.20E−02
Poc1 FBgn0036354 POC1A 0.66 1.88E−05 2.25E−02
CG31343 FBgn0051343 TRHDE 0.59 5.86E−05 4.11E−02
CG8560 FBgn0035781 CPA6 0.51 4.27E−05 3.41E−02
CG17560 FBgn0038450 FAR2 0.48 1.21E−04 7.23E−02
NAAT1 FBgn0029762 SLC6A5 0.32 2.26E−04 9.98E−02
CG31523 FBgn0051523 ELOVL7 0.21 1.63E−04 8.66E−02

Downregulated in beneficial group Or22a FBgn0026398 — −2.54 2.29E−04 9.98E−02
CR44204 FBgn0265099 — −2.31 1.99E−04 9.56E−02
CR45959 FBgn0267621 — −1.98 1.82E−04 9.35E−02
Tep1 FBgn0041183 CD109 −1.86 1.00E−05 1.44E−02
CR43304 FBgn0262996 — −1.73 1.33E−04 7.63E−02
CG10962 FBgn0030073 DHRS11 −1.27 5.18E−05 3.91E−02
IM4 FBgn0040653 — −1.09 1.82E−05 2.25E−02
CG33282 FBgn0053282 SLC2A6 −1.06 3.59E−06 8.59E−03
CG12917 FBgn0033490 EXOG −0.96 7.23E−10 5.68E−06
CR46007 FBgn0267671 — −0.90 3.25E−05 2.92E−02
CG14125 FBgn0036232 — −0.72 7.78E−06 1.24E−02
Nvy FBgn0005636 CBFA2T3 −0.69 2.54E−05 2.55E−02
CG15083 FBgn0034399 — −0.51 7.17E−05 4.68E−02
Px FBgn0003175 — −0.32 1.28E−06 3.69E−03

Upregulated or downregulated genes in the beneficial group compared to the detrimental group. Genes are ranked by Log2(fold change). Genes with Padj ≤ 0.10 are 
reported. Human orthologs have a minimum DIOPT score of 5.

Table 3. Differentially expressed genes in beneficial group postheat shock.

Gene FBgn Human ortholog Log2(fold change) P-value Padj

Upregulated in beneficial group CG15263 FBgn0028853 — 7.28 4.73E−05 5.66E−02
CR43488 FBgn0263499 5.07 4.76E−05 5.66E−02
TwdlD FBgn0039444 — 4.72 9.43E−05 7.37E−02
CG6788 FBgn0030880 FIBCD1 3.53 6.04E−05 6.17E−02
CR45994 FBgn0267656 3.25 3.06E−05 4.24E−02
LysS FBgn0004430 LYZ 2.61 8.41E−06 2.00E−02
CG4815 FBgn0039568 — 1.63 6.66E−06 1.84E−02
CG11131 FBgn0037204 — 1.36 1.51E−04 9.31E−02
Poc1 FBgn0036354 POC1A 0.70 8.14E−05 6.99E−02
CG12674 FBgn0031388 — 0.48 8.41E−05 6.99E−02
CR44204 FBgn0265099 — −2.77 6.55E−06 1.84E−02

Downregulated in beneficial group Obp99b FBgn0039685 — −2.21 4.52E−08 2.50E−04
CG10962 FBgn0030073 DHRS11 −1.82 2.15E−10 3.58E−06
BomBc3 FBgn0040582 — −1.68 1.18E−05 2.28E−02
DptB FBgn0034407 — −1.60 5.60E−05 6.17E−02
CR44552 FBgn0265745 — −1.44 7.49E−05 6.92E−02
Gnmt FBgn0038074 GNMT −−1.38 1.09E−04 7.54E−02
IM4 FBgn0040653 — −1.37 2.82E−07 1.17E−03
Srg1 FBgn0039239 — −1.23 1.23E−05 2.28E−02
CG33509 FBgn0053509 — −1.17 1.87E−05 2.83E−02
Dso2 FBgn0067905 — −1.15 9.75E−05 7.37E−02
Fon FBgn0032773 — −0.78 1.66E−05 2.75E−02
CR44754 FBgn0265967 — −0.78 2.93E−08 2.43E−04
CG7381 FBgn0038098 — −−0.78 1.29E−04 8.30E−02
Mes2 FBgn0037207 — −0.57 6.31E−05 6.17E−02
Uif FBgn0031879 — −0.55 1.03E−04 7.44E−02
Elal FBgn0013949 — −0.54 1.30E−04 8.30E−02

Upregulated or downregulated genes in the beneficial group compared to the detrimental group. Genes are ranked by Log2(fold change) within their group. Genes 
with Padj ≤ 0.10 are reported. Human orthologs have a minimum DIOPT score of 5.
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selecting heat shock and ER stress genes that were likely to inter
act with Set1. Our choice of Hsp70, Hsp26, and Hsp83 was based on 
previous studies that demonstrated connections between Set1 
and the transcription of these 3 heat shock genes (Guertin et al. 
2010; Ardehali et al. 2011). Considering that H3-K4 histone methy
lation is found near the promoters of actively transcribed genes, 
our goal was to assess genes with high expression levels during 
ER stress (Ardehali et al. 2011; Chow et al. 2013). Given Set1's im
pact on actively transcribed genes (Ardehali et al. 2011), we specif
ically selected Sil1, Ugt37A3, and GstD2. These choices were 
informed by their status as the 3 most highly expressed genes fol
lowing Chow et al. (2003)'s 8-h feeding of TM, a method similar to 
ours, based on the average expression calculated across all 20 
DGRP strains. We hypothesized that loss of Set1 would lead to 
disrupted transcript levels of these critical stress response genes 

after 1 or more steps of the preconditioning assay, ultimately 
disrupting preconditioning outcomes. We first examined the 
heat shock and ER stress genes’ transcriptional responses to stress 
in control flies (Supplementary Fig. 4). Next, we examined the 
transcriptional response of the same 6 genes in Set1 KD flies ex
posed to the same preconditioning stress paradigm 
(Supplementary Fig. 4). After examining how stress impacts these 
genes within each genotype, we analyzed the effect of genotype on 
transcriptional responses at each time point (control vs Set1 KD) 
(Fig. 5). This allowed us to measure how Set1 KD altered gene ex
pression throughout the preconditioning assay compared to the 
control.

None of the heat shock genes examined (Hsp70, Hsp26, Hsp83) 
were significantly impacted by Set1 KD compared to the control 
at any point of the preconditioning assay (Fig. 5a–c). They all 

Fig. 4. Impact of Set1 KD on stress preconditioning. a) Set1 RNAi results in ∼55% reduction in Set1 expression. b) Plot of the hazard ratios comparing Set1 KD 
to its genetically matched control without and with preconditioning. Each point represents the hazard ratio from a different replicate of 100 Set1 KD and 
control flies. A hazard ratio < 1 indicates Set1 KD had a beneficial effect compared to the control, a hazard ratio = 1 indicates no effect, and a hazard ratio  
> 1 indicates a detrimental effect. The dashed line indicates no effect (hazard ratio = 1) of Set1 KD. The red line indicates the mean, and the cross bars 
indicate ±1 standard deviation. Red points indicate a statistically significant hazard ratio.

Fig. 5. Set1 is necessary to regulate transcript levels of a subset of genes post-stress. Transcript expression change between controls (blue) and Set1 KD 
(red). Paired t-test between control and Set1 KD at each time point, significant differences are noted. a–c) Heat stress genes. d–f) ER stress genes.
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showed a robust response to heat shock. This suggests that Set1 is 
not necessary for normal heat shock gene expression during pre
conditioning. Similar to the heat shock genes, the ER stress gene 
Ugt37A3 showed no significant impact of Set1 knockdown across 
the 5 time points examined (Fig. 5e).

In contrast, during preconditioned ER stress, Set1 KD resulted in 
the misregulation of the ER stress genes GstD2 and Sil1. GstD2
and Sil1 expression were not significantly altered by loss of Set1
at any earlier timepoints. Following preconditioned ER stress, 
GstD2 was upregulated in Set1 KD flies more than in controls 
(Fig. 5d; Set1 KD: 20.42 ± 3.33; control: 7.17 ± 3.01-fold; P ≤ 0.01). 
Sil1 displayed significantly lower expression in Set1 KD flies com
pared to controls after ER stress without preconditioning (Fig. 5f; 
Set1 KD: 2.45 ± 0.43; control: 7.34 ± 1.19; P ≤ 0.05) and with precon
ditioning (Fig. 5f; Set1 KD: 2.73 ± 0.43; control: 7.18 ± 0.85; P ≤ 0.01). 
Taken together, our results suggest that Set1 is necessary to regu
late normal expression of a subset of critical ER stress response 
genes during preconditioning. To further investigate and validate 
this result, future studies would benefit from more extensive as
says that evaluate Set1 knockdown's impact across the entire 
transcriptome or chromatin landscape during preconditioning.

Discussion
Organisms require an effective ER stress response for healthy de
velopment and aging. Disruption of the ER stress response under
lies many human diseases—from diabetes to neurodegeneration 
(Chaudhuri and Paul 2006; Back and Kaufman 2012; Brown and 
Naidoo 2012; Cnop et al. 2012; Labbadia and Morimoto 2015). 
Therefore, a comprehensive understanding of the ER stress re
sponse's fundamental biology is critical for informing future 
therapeutic development. The ER stress response naturally occurs 
within a complex history of other stresses that impact the re
sponse. Preconditioning is the phenomenon of transient exposure 
to stresses affecting responses to subsequent stresses. Research 
investigating the ER stress response has primarily focused on iso
lated stress events. To investigate how preconditioning impacts 
the canonical ER stress response, we utilized natural genetic vari
ation in Drosophila to perform an unbiased screen.

We found that preconditioning outcomes vary greatly, depend
ing on genetic background. Preconditioning outcomes in the lit
erature primarily report a beneficial impact of preconditioning, 
but we found that this outcome is genotype-specific. Although 
several DGRP strains displayed a beneficial preconditioning out
come, many show neutral or detrimental effects. The spectrum 
of unique preconditioning outcomes in our screen made it pos
sible to identify several candidate pathways that drive variation 
in outcomes. We hypothesize that previous studies reported 
mainly a beneficial effect because of the use of a single laboratory 
strain and the positive report bias in scientific literature. In many 
cases, these strains are lab adapted for hundreds of generations 
and that may affect the preconditioning response. Discovering 
unexpected biological connections is a significant advantage of 
performing an unbiased genetic screen. First, our association ana
lysis generated 40 candidate modifier genes of preconditioning. 
The list of candidate modifiers included 2 general transcriptional 
factors, Pdp1 (HLF) and TfIIA-L (GTF2A1), and 1 gene involved in 
chromatin organization, Tpl94D (no human ortholog). Second, 
our GSEA identified multiple pathways that harbor genetic var
iants that impact preconditioning outcomes. The GSEA results in
cluded several ontologies involved in histone methylation. These 
results suggest a connection between transcriptional regulation, 
histone methylation, and preconditioning. Third, our RNAseq 

experiment uncovered 53 genes whose gene expression patterns 
may predict preconditioning outcomes.

These 3 different approaches did not identify any canonical ER 
stress or heat shock genes, which illustrates that the pathways 
underlying preconditioning are separate from the canonical path
ways of the individual stressors. We chose to use 2 unique stres
sors in our preconditioning model in an effort to prioritize 
studying the effect of preconditioning over the effects of any sin
gle stressor. The use of 2 stressors is a commonly used approach 
to study preconditioning (Hayashi et al. 2003; Hung et al. 2003; 
Kennedy et al. 2014; D’Urso et al. 2016; Labbadia et al. 2017). If 
our results included several canonical ER stress or heat shock 
genes than further experimentation would be required to tease 
apart whether the gene was impacting preconditioning as a whole 
or the organism's ability to respond to 1 of the individual stressors. 
Since we did not identify these genes through our preconditioning 
model and DGRP screen results did not correlate with experi
ments studying either singular stress (Supplementary Fig. 2), we 
believe our preconditioning model is specifically examining pre
conditioning effects.

Our GWAS, GSEA, and RNAseq results had less overlap than we 
anticipated. We had hypothesized that a subset of the genes and 
pathways identified in our GWAS and GSEA would also be de
tected as differential expressed genes in the early stages of the 
preconditioning model. Our results did not point towards a single 
strong candidate gene identified in all 3 analyses. This may be be
cause whatever differentiates the DGRP strains with beneficial vs 
detrimental preconditioning outcomes is not reflected at the tran
script level. It may be that the genes and pathways involved in the 
overall preconditioning effects detected by our screen are distinct 
from genes involved in the earlier timepoints isolated for RNAseq. 
This lack of overlap may not be entirely surprising, as expression 
changes can be quite downstream from a variant identified by 
GWAS. For example, in previous studies of ER stress, we found lit
tle overlap between RNAseq results and GWAS hits (Chow et al. 
2013 (PNAS)). It is also possible that we would better detect a rela
tionship between expression and genetic variants if we incorpo
rated an eQTL analyses in the future. Although there was less 
overlap than we predicted between experiments, each method 
provided unique insights into the underlying mechanism of 
preconditioning.

Our unbiased approach revealed many intriguing new avenues 
for exploration. The association analyses identified 2 heparan sul
fate sulfotransferases, Hs6st (HS6ST1) and sfl (NDST2). Heparan 
sulfate genes play a role in the cellular response to misfolded pro
teins (He et al. 2014). Candidate modifier genes also included 2 
genes involved in lipid homeostasis, LpR2 (VLDLR) and CG17097
(LIPA/F/K/M/N). LpR2 (VLDLR) is involved in neutral lipid uptake 
into cells, and CG17097 (LIPA/F/K/M/N) is a triacylglycerol lipase 
involved in lipid metabolism and uptake (Cermelli et al. 2006; 
Parra-Peralbo and Culi 2011). We previously demonstrated that 
disrupting cellular fatty acid composition through the disruption 
of Baldspot/ELOVL6 impacts the ER stress response in Drosophila 
(Palu and Chow 2018). The differentially expressed genes between 
beneficial and detrimental preconditioning groups included a pre
viously unknown connection between preconditioning and im
mune pathways. Interactions between immune and stress 
responses have been previously observed (Davies et al. 2012). For 
example, immune peptides have been reported to block apoptosis 
signals triggered by stress response pathways (Krautz et al. 2020).

Preconditioning has an established role in providing robust 
neuronal protection from subsequent brain injuries after initial 
stress (Hayashi et al. 2003; Stetler et al. 2014). In one instance, a 
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paradigm of heat stress protected rat brains from neuronal death 
by localized ischemia (Xu et al. 2002). Although many cases of pre
conditioning lead to neuroprotection, a genetic link between 
neurological function and preconditioning is unknown. Our asso
ciation analysis identified several candidate modifier genes of 
preconditioning that encode proteins with known roles in axon 
guidance and neural development, including loaf (no human 
ortholog) (Douthit et al. 2021), ckn (no human ortholog) (Weng 
et al. 2011), sidestep (no human ortholog) (Siebert et al. 2009), frac 
(no human ortholog) (Miller et al. 2011), fra (NEO1) (Akin and 
Zipursky 2016), and robo2 (ROBO1/3) (Simpson et al. 2000). Future 
studies are required to elucidate the underlying mechanisms of 
preconditioning in the brain.

We prioritized Set1 (SETD1A/B) for our initial functional valid
ation because the association analysis and GSEA both indicated 
a potential role of chromatin organization and transcriptional 
regulation in preconditioning. Although the analyses identified 
several histone methylation genes, the Set1/COMPASS complex 
was the only candidate with genetic variants in all its subunits, ex
cept Set1 itself. The Set1/COMPASS complex marks promoter- 
proximal histones at actively transcribed genes. Set1 is a histone 
H3 lysine 4 (H3K4) methylase highly conserved from yeast to hu
mans (Ardehali et al. 2011; Shilatifard 2012). Yeast, Drosophila, 
and humans have 1, 3, and 6 Set1/COMPASS family members, re
spectively (Ardehali et al. 2011; Shilatifard 2012). In Drosophila, Set1
is responsible for the bulk of H3K4 di- and trimethylation but the 
other 2 Set1/COMPASS family members, Trr and Trx, contribute to 
di- and tri-methylation to a lesser extent (Ardehali et al. 2011).

The “stress memory” model of preconditioning proposes that 
cells acquire and retain epigenetic marks during initial stress, al
lowing them to “remember” the stress and respond more efficient
ly to subsequent stress (D’Urso et al. 2016; Lämke and Bäurle 2017; 
Fabrizio et al. 2019). This model provides a potential explanation of 
how Set1 is involved in preconditioning. In plants exposed to 
sequential droughts, transcript levels of a subset of stress- 
responsive genes are elevated more quickly during secondary 
dehydration, compared naive dehydration (Ding et al. 2012). 
After the drought state was resolved, these plants retained high 
levels of H3K4 trimethylation at the “primed” stress-responsive 
genes, and RNA polymerase II also stalled at these genes (Ding 
et al. 2012). Yeast previously exposed to salt stress has 77 genes 
that activate more rapidly when exposed to subsequent oxidative 
stress (D’Urso et al. 2016). During stress in yeast, actively tran
scribed genes acquire H3K4 di- and trimethylation marks, and 
genes that acquire a “memory” for stress retain H3K4 dimethyla
tion after stress is resolved. Once again, these marks are asso
ciated with RNA polymerase II binding and retention at 
promoters. In vertebrates, the loss of Set1/COMPASS complex 
members leads to global misregulation of gene expression 
(Brown David et al. 2017). In human HeLa cells, hundreds of genes 
show a more rapid transcriptional upregulation in response to 
IFN-γ after previous exposure to IFN-γ, and this “memory” is asso
ciated with H3K4 dimethylation and poised RNA polymerase II at 
the promoters of these genes (Light et al. 2013). Set1 is required for 
transcriptional memory in yeast and human cells.

In Drosophila, Set1 is actively recruited to stress response genes 
following stress application (Ardehali et al. 2011). Loss of Set1 leads 
to less efficient upregulation of Hsp70 and hsp83. Our study did not 
recapitulate these results, most likely due to differences in our ex
perimental design. Kusch et al. utilized Drosophila S2 cell lines and 
larval salivary glands instead of whole adult flies and assayed 
more time points postheat stress. Kusch et al. reported H3K4 tri
methylation marks promoter-proximal to Hsp70 and hsp83 were 

significantly reduced in Set1 KD cells following heat shock, and 
RNA polymerase II displayed increased stalling at these promo
tors. Disruption of RNA polymerase II kinetics, such as in 
promoter-proximal pausing, is known to lead to transcriptional 
dysregulation (Jonkers et al. 2014). The role of H3K4 dimethylation 
post-stress was not investigated in this study.

We established that disruption of Set1 leads to dysregulation of 
a subset of stress response genes, particularly the ER stress genes. 
We propose that Set1 plays a role in preconditioning by establish
ing transcriptional “memory” of stress events. We hypothesize 
that in Drosophila, Set1 adds H3K4 methylation marks (di- and 
tri-) promoter-proximal to stress-responsive genes during stress, 
and a subset of these marks are retained and influence how 
RNA polymerase II interacts with these genes to alter future tran
scriptional responses. To validate this model, further investiga
tions into the global transcriptional and epigenetic impacts of 
Set1 KD during preconditioning will need to be explored.

Data availability
Additional data files were uploaded to figshare and gene expression 
omnibus (GEO). The full stress preconditioning GWA results are lo
cated on figshare at: https://figshare.com/articles/dataset/ 
StressPreconditioningDGRP_GWAoutput_txt/22266238. Fatsq files 
supporting the RNAseq experiments can be found at: https:// 
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE226958. GSEA 
code can be found on figshare at: https://doi.org/10.25387/g3. 
9808379. Additional code and protocols detailing how the code 
was used can be found at: https://github.com/kgowings/ER_ 
stress_preconditioning/tree/main.

Supplemental material available at G3 online.
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