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Copper is one of a handful of biologically necessary heavy metals that is also a common environmental pollutant. Under normal condi-
tions, copper ions are required for many key physiological processes. However, in excess, copper results in cell and tissue damage ran-
ging in severity from temporary injury to permanent neurological damage. Because of its biological relevance, and because many 
conserved copper-responsive genes respond to nonessential heavy metal pollutants, copper resistance in Drosophila melanogaster 
is a useful model system with which to investigate the genetic control of the heavy metal stress response. Because heavy metal toxicity 
has the potential to differently impact specific tissues, we genetically characterized the control of the gene expression response to cop-
per stress in a tissue-specific manner in this study. We assessed the copper stress response in head and gut tissue of 96 inbred strains 
from the Drosophila Synthetic Population Resource using a combination of differential expression analysis and expression quantitative 
trait locus mapping. Differential expression analysis revealed clear patterns of tissue-specific expression. Tissue and treatment specific 
responses to copper stress were also detected using expression quantitative trait locus mapping. Expression quantitative trait locus as-
sociated with MtnA, Mdr49, Mdr50, and Sod3 exhibited both genotype-by-tissue and genotype-by-treatment effects on gene expres-
sion under copper stress, illuminating tissue- and treatment-specific patterns of gene expression control. Together, our data build a 
nuanced description of the roles and interactions between allelic and expression variation in copper-responsive genes, provide valuable 
insight into the genomic architecture of susceptibility to metal toxicity, and highlight candidate genes for future functional 
characterization.
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Introduction
Many forms of stress resistance contribute to the overall health of 
the individual, both through immediate consequences brought on 
by direct exposure to the stressor, and indirectly by increasing the 
risk of experiencing deleterious consequences in the future. 
Heavy metals are one such type of stressor. Broadly, exposure to 
heavy metals results in oxidative stress due to the reactive state 
of metal ions (Stohs and Bagchi 1995; Ercal et al. 2001; Jomova 
et al. 2010). Acute exposure can cause gastrointestinal distress 
and vomiting as well as damage to intestinal lining (Taylor et al. 
2020; Gerhardsson 2022). Chronic heavy metal exposure has 
been linked to neurodegenerative diseases in humans including 
Alzheimer’s and Parkinson’s Diseases in adults (Bonilla-Ramirez 
et al. 2011; Chen, Miah et al. 2016; Bagheri et al. 2018; Liddell and 
White 2018; Bisaglia and Bubacco 2020) and learning and behav-
ioral disorders in developing individuals (Jomova et al. 2010; 
Blaurock-Busch et al. 2011; Hsueh et al. 2017; Lee et al. 2018). 
Additionally, exposure can increase morbidity associated with 
health conditions including multiple sclerosis and osteoporosis 
(Åkesson et al. 2006) as well as anemia (Turgut et al. 2007). Heavy 
metal exposure risk is often related to occupation (Castilla and 
Nealler 1978; Neuberger et al. 1990; World Health Organization 
1996; Khan et al. 2008; Karnchanawong and Limpiteeprakan 

2009; He et al. 2015; Knoblauch et al. 2017), and like many diseases 
[e.g. type 2 diabetes, Crohn’s disease, heart disease, IBD (http:// 
www.genome.gov/gwasstudies) (Hindorff et al. 2009; Plomin et al. 
2009)], susceptibility to metal stress is a genetically complex trait 
(Zhou et al. 2016; Everman et al. 2021, 2023).

Quantitative trait locus (QTL) mapping has provided a powerful 
means of characterizing allelic variation that contributes to lead, 
cadmium, copper, and zinc resistance in several model systems 
including worms, flies, yeast, and plants (MacNair 1983; Jones 
et al. 2006; Bálint et al. 2007; Courbot et al. 2007; Ruden et al. 
2009; Ehrenreich et al. 2012; Evans et al. 2018; Everman et al. 
2021). The Drosophila melanogaster model system has been lever-
aged in several of these studies to examine the genetic architec-
ture of metal stress response. It is an excellent model because 
all of the major genes that are involved in metal detoxification 
play similar roles in humans, allowing for the insight gained 
from work in Drosophila to have broader applications for under-
standing the impact of heavy metals on human health 
(Balamurugan et al. 2004; Egli, Domènech et al. 2006; Egli, 
Yepsikoposyan et al. 2006; Turski and Thiele 2007; Burke et al. 
2008; Hatori and Lutsenko 2013; Calap-Quintana et al. 2017; 
Zhou et al. 2017). Genome-wide association mapping in flies re-
vealed multiple SNPs that are associated with resistance to lead 
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and cadmium toxicity (Zhou et al. 2016, 2017), and we previously 
demonstrated that resistance to copper toxicity is influenced by 
multiple QTL that included several conserved genes involved in 
copper metabolism and homeostasis (Everman et al. 2021). 
Collectively, these studies have provided valuable insight into 
naturally occurring genetic variants that contribute to variation 
in resistance to several common heavy metal pollutants. 
However, most studies that examine the genetic control of heavy 
metal resistance have focused either on the whole-animal re-
sponse or on single tissues. Furthermore, work over the last dec-
ade has clearly demonstrated that the majority of sites that 
influence trait variation are more likely to have impacts on gene 
regulation rather than to result in protein coding changes 
(Pickrell 2014; Zhang and Lupski 2015; reviewed in Boyle et al. 
2017; Alsheikh et al. 2022). Therefore, an important opportunity 
remains to characterize the genetic control of the gene expression 
response to heavy metal stress and to determine the degree to 
which this genetic control is tissue specific.

Transcriptomics studies have repeatedly demonstrated that 
exposure to heavy metal stressors increases expression of several 
gene families involved in metal detoxification, metabolism, and 
transport as well as oxidative stress response (González et al. 
2008; Catalán et al. 2016; Calap-Quintana et al. 2017; Qu et al. 
2018; Everman et al. 2021; Felmlee et al. 2022; Green et al. 2022). 
However, the gene expression response to metal stress is itself 
also subject to genetic variation in the regulation of the transcrip-
tional response, i.e. different genotypes can vary in their response 
to the same exposure (Findley et al. 2021). The loci that contribute 
to variation in the gene expression response can be identified 
using expression QTL (eQTL) mapping (e.g. Jansen 2001; De 
Koning and Haley 2005; Rockman and Kruglyak 2006; Gilad et al. 
2008). We combined RNA sequencing and eQTL mapping to 
examine the tissue-specific genetic control of the gene expression 
response to the common metal pollutant copper using the 
D. melanogaster model system.

Although a broad oxidative stress response is expected across 
tissues in response to metal stress, copper is one of several heavy 
metals that have the potential to elicit different gene expression 
responses in neurological and gut tissue. This expected tissue- 
specific difference is in part due to the spatial distribution of 
specialized copper accumulation cells found in the gut of most 
animals including flies and humans (Calap-Quintana et al. 2017; 
Miguel-Aliaga et al. 2018). Genes that are responsible for maintain-
ing normal homeostasis of the set of essential heavy metals (e.g. 
copper and zinc), and that play a role in the expulsion of toxic me-
tals such as cadmium and lead, are primarily expressed in these 
specialized cells where they play an important protective role 
against excess metal ions (Calap-Quintana et al. 2017). Due to 
the link between neurological disease and heavy metal exposure 
in humans (Chen, Miah et al. 2016), we assay both head and gut tis-
sue using copper as a model metal.

Our study leverages the Drosophila Synthetic Population 
Resource (DSPR, King, Macdonald et al. 2012), a panel of multipar-
ental, advanced intercross strains that has been used in many 
mapping studies to characterize the complex genetic architecture 
underlying quantitative traits (e.g. Kislukhin et al. 2013; Najarro 
et al. 2015; Highfill et al. 2017; Everman et al. 2019; Williams- 
Simon et al. 2019; Shahrestani et al. 2021). We recently demon-
strated that the DSPR strains exhibit dramatic variation in copper 
resistance, and we identified numerous QTL associated with cop-
per resistance (Everman et al. 2021). Here, we build on this study 
using 96 strains chosen based on their estimated copper resist-
ance. Half (48) of the strains are highly resistant, while the other 

half (48) of the strains are highly sensitive to copper. This design 
maximizes the phenotypic variation in copper resistance among 
strains, allowing us to explore the gene expression and regulation 
patterns in response to copper stress in phenotypically distinct 
strains. Since the DSPR is composed of genetically stable inbred 
strains, it is especially well suited to eQTL mapping studies that 
quantify expression across tissues and treatments.

Methods
Fly stocks
We used the DSPR, a large multiparental mapping panel with 
>1,500 recombinant inbred strains (see King, Macdonald et al. 
2012, King, Merkes et al. 2012 for additional details). In a previous 
study, we exposed 60 adult females from each of 1,556 strains (767 
and 789 strains from the A and B populations, respectively) to 
50 mM CuSO4, measuring resistance as the percentage of adults 
alive at 48 h (Supplementary Table 2 in Everman et al. 2021). For 
the present study, we selected 48 of the “resistant” strains from 
the B population that were in the top 25% of the distribution of 
adult copper resistance (75.11–100% survival) and 48 of the “sen-
sitive” B population strains from the bottom 25% of the distribu-
tion (0–25% survival; Supplementary Fig. 1).

Rearing and assay conditions
Flies were reared and assayed at 25 °C and 50% humidity with a 
12:12 h light:dark photoperiod. To maintain consistency with 
prior work, experimental females for the present study were ob-
tained from each of the 96 DSPR strains in the same manner 
used to measure adult copper resistance (Everman et al. 2021). 
Briefly, adults were placed on cornmeal–molasses–yeast media 
and were allowed to oviposit for 2 days before being discarded. 
Experimental females from the following generation were sorted 
over CO2 into groups of 20 and allowed to recover for 24 h on fresh 
cornmeal–molasses–yeast media. Following recovery, 3–5-days- 
old females were transferred to Instant Drosophila Media 
(Carolina Biological Supply Company 173200) hydrated with ei-
ther water (control) or 50 mM CuSO4 (Copper(II) sulfate, Sigma– 
Aldrich C1297) and exposed to treatment conditions for 8 h, after 
which tissues were harvested (see below). The 8-hour exposure 
period lasted from lights on (8 AM) to 4 h before lights off. No flies 
died during the 8-hour exposure period.

Strains were assayed in a series of small batches to accommo-
date the time required for tissue processing following the 
exposure period, with sensitive and resistant strains evenly dis-
tributed across each batch. Given the different processing techni-
ques for heads and gut, we obtained these tissues from different 
pools of individuals of the same strains in different batches. The 
average batch size for head collection was 25 DSPR strains and 
average batch size for gut dissection was 6 DSPR strains.

Tissue collection, RNA isolation, and sequencing 
library preparation
To obtain head tissue, we exposed 60 females per DSPR strain to 
control and copper conditions (three vials of 20 females per treat-
ment) as described above. At the end of the exposure period, flies 
from each treatment and strain were pooled in a labeled screw- 
top 50 mL tube (1 tube per strain and treatment), flash frozen in 
liquid nitrogen, immediately vortexed to separate heads from 
bodies, and then stored at −80 °C for up to 5 days. We used a series 
of 3-inch diameter stacking brass sieves—chilled on dry ice for at 
least 5 min to prevent tissue thawing—to isolate the heads from 
each sample (see Supplementary Methods (Ericsson 1999)). 
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Heads for each strain/treatment were dispensed into a screw-top 
microcentrifuge tube containing three to four glass beads and 
held on dry ice. Subsequently, we added 300 μL TRIzol Reagent 
(Invitrogen, 15596018) to each sample and stored samples at 
−80 °C until RNA extraction.

Guts, including the fore-, mid-, and hindgut, were dissected 
from 10 live individuals per strain/treatment combination in 1× 
PBS and placed in screw-top microcentrifuge tubes containing 
three to four glass beads and 300 μL TRIzol. Tissue from the 10 dis-
sected females was pooled into a single sample per strain and 
treatment. Samples were chilled on ice during dissection and 
stored at −80 °C until RNA extraction.

RNA was extracted from each of the 384 samples (96 strains × 2 
tissues × 2 treatments) in batches of 30 samples using the 
Direct-zol RNA Miniprep kit (Zymo Research, R2050). Batches con-
sisted of samples from the same tissue and were processed in the 
order individual samples were collected. RNA was eluted in 50 μL 
water, and concentrations were determined via a NanoDrop spec-
trophotometer and then standardized to 20 ng/μL in 96-well 
plates. Because head and gut tissues were not collected contem-
poraneously, two plates contained samples from heads and two 
contained samples from gut tissue. The order of the samples 
from each strain and treatment was largely consistent across 
the head and gut sets of plates; all plates included both copper 
and control samples for a given strain and held an even represen-
tation of sensitive and resistant strains (Supplementary Table 1).

Half-reaction, unique dual indexed TruSeq Stranded mRNA se-
quencing libraries (Illumina, 20020595) were generated and se-
quenced by the University of Kansas Genome Sequencing Core. 
Concentrations for every library were obtained using the Qubit 
dsDNA HS assay kit (ThermoFisher, Q32854), and successful li-
braries were pooled based on concentration within each of the 
four tissue-specific plates described above (Supplementary 
Table 1). This resulted in two pools of head libraries (one 94- 
and one 96-plex), and two pools of gut libraries (one 93- and one 
96-plex). Paired-end 37 bp reads were obtained by sequencing 
each pool separately on NextSeq550 High-Output flowcells. Raw 
read counts for the 96-plex Head, 94-plex Head, 93-plex Gut, 
and 96-plex Gut libraries were 3.8–5.6 million PE37 read pairs 
per sample (Supplementary Fig. 2). We note that to achieve suffi-
cient reads, the 96-plex Head library pool was sequenced over two 
flow cells, and the reads were combined for downstream analysis 
(Supplementary Figs. 2 and 3).

Sequencing data preprocessing
Read alignment and gene filtering
Quality assessment, adapter removal, and read trimming (retain-
ing reads with a minimum of 15 bp) were performed with fastp 
(v. 0.20.1) (Chen et al. 2018). Only paired reads were retained. 
Filtered read pairs were aligned in a variant-aware manner to 
the Drosophila reference genome (Release 6.33) using HISAT2 
(v. 2.1.0) (Kim et al. 2019). SNP variants identified in the DSPR foun-
ders (http://wfitch.bio.uci.edu/∼tdlong/SantaCruzTracks/DSPR_ 
R6/dm6/variation/DSPR.r6.SNPs.vcf.gz) were included in the 
HISAT2 genome index following instructions provided with the 
software. Aligned reads were sorted with SAMtools (v. 1.9) (Li 
et al. 2009) and quantified with featureCounts (v. 2.0.1) (Liao 
et al. 2014). Post-alignment and quantification analyses were all 
performed in R (v. 4.1.3) (R Core Team 2023). Average library size 
prior to additional filtering was 4.03 million reads. In R, genes 
with low expression were filtered out by first removing genes with 
zero counts across all samples and then by removing genes with 

fewer than 10 counts in 47 samples (the number of samples un-
ique to each of the three-way interaction categories, e.g. low cop-
per resistance head tissue samples exposed to copper stress; Chen, 
Lun et al. 2016). Following filtering, 9,842 genes were retained for 
downstream analyses. We note that normalized gene expression 
counts obtained via kallisto pseudoalignment (v. 0.46.2, Bray et al. 
2016) generated extremely similar results (see Supplementary 
Methods).

Effect of tissue, treatment, and resistance class 
on gene expression
Gene expression (read counts) were normalized using the 
weighted trimmed mean of M-values (mean of log expression ra-
tios; Robinson and Oshlack 2010), and DE analysis was performed 
with limma (Ritchie et al. 2015) by fitting the full-factorial gene- 
wise linear model (Normalized Read Counts ∼ Tissue * Treatment  
* Resistance class + Sample Pooling) (Quinn and Keough 2002; 
Smyth 2004; Ritchie et al. 2015). We employ a “Sample Pooling” 
term in the model to account for technical variation that is due 
to plate, library pool, and/or sequencing flowcell, technical factors 
that are not individually separable in our design. However, be-
cause the pairs of head and gut plates do not contain identical 
subsets of strains, some technical variation is not captured 
by the “Sample Pooling” term. Genes with expression variation 
significantly influenced by each term in the model (Treatment, Re-
sistance class, Tissue, Tissue by Treatment, Tissue by Resistance 
class, Treatment by Resistance class, and Tissue by Treatment by 
Resistance class) were identified by fitting contrasts to the full 
model in limma with the contrasts.fit function. This step was fol-
lowed by the eBayes function, which uses an empirical Bayes 
method (Efron and Morris 1973; Morris 1983) to calculate log 
fold change in normalized read counts and to determine signifi-
cance between each group identified by the contrast (contrast or-
der: expression in gut relative to head tissue, copper relative to 
control treated samples, sensitive relative to resistant strains). 
Significant DE was determined using adjusted P values to account 
for multiple comparisons (Benjamini-Hochberg multiple test cor-
rection, Benjamini and Hochberg 1995; FDR threshold = 5%) in 
limma.

Tissue- and treatment-specific eQTL analysis
We performed eQTL mapping separately for six datasets: Head- 
Control (9,783 genes), Head-Copper (9,842 genes), Head-Response 
(9,830 genes), Gut-Control (9,842 genes), Gut-Copper (9,842 genes), 
and Gut-Response (9,841 genes). The “Response” to copper treat-
ment was calculated as gene expression (modeled as gene counts) 
under copper conditions minus expression under control condi-
tions for all paired DSPR strain samples. Positive Response values 
indicate genes with higher expression under copper conditions 
(copper treatment-induced), while negative Response values indi-
cate genes that are repressed by copper treatment. To preserve 
the direction of gene expression change in both Response datasets 
during preparation for eQTL mapping, we performed log2 trans-
formation and quantile normalization on the absolute values of 
the copper-response read counts and reassigned the sign follow-
ing normalization. Each dataset was analyzed separately because 
R/qtl2 (implementation described below, Broman et al. 2019) does 
not allow all datasets to be included in the same model and be-
cause the number of expression traits varied slightly among 
datasets.

Preparation for eQTL analysis of each of the six datasets pro-
ceeded with the following steps: 1. Read counts were quantile 
normalized (Amaratunga and Cabrera 2001; Zhao et al. 2020) 
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following log2 transformation (Keene 1995), 2. Technical and en-
vironmental factors were accounted for using principal compo-
nents analysis (PCA, Pearson 1901; Hotelling 1933; Jolliffe 2002); 
prcomp function in R (R Core Team 2023)) by regressing out the ef-
fects of PCs that explained more than 2% of the variance in quan-
tile normalized gene expression or that were correlated with 
known technical factors (Supplementary Table 2) (Leek and 
Storey 2007; Pickrell et al. 2010; Gaffney et al. 2012; King et al. 
2014), and 3. Residuals were quantile normalized and used as in-
put data for eQTL analyses (referred to as residual counts below). 
See Supplementary Methods for additional details on preparation 
steps.

eQTL mapping (Rockman and Kruglyak 2006) was performed 
on quantile normalized residual gene expression for each of the 
six datasets using R/qtl2 (Broman et al. 2019). eQTL mapping treats 
each gene expression measure as a trait, and tests for associations 
between strain (genotype) and variation in gene expression at 
each genome marker (every 10 kb in the DSPR, King, Macdonald 
et al. 2012). For each gene, eQTL mapping regresses the residual 
counts on additive probabilities indicating the likelihood that a 
particular region of the genome is inherited from one of the 8 
DSPR founders in a series of scans (one scan per expression trait 
assessed). R/qtl2 uses Haley–Knott regression to perform each 
genome scan, fitting each model without a covariate (Haley and 
Knott 1992; Broman et al. 2019). Gene-specific genome wide 
eQTL significance thresholds were assigned by permuting residual 
count estimates among the DSPR strains 1,000 times (Churchill 
and Doerge 1994; Broman et al. 2019), and eQTL were defined as 
peaks surviving a 95% LOD threshold. Peaks were identified using 
the standard interval mapping approach implemented in the 
package DSPRqtl (Lander and Botstein 1989; Broman et al. 2019) 
as described in King, Merkes et al. (2012).

Given the modest sample size for each eQTL analysis (93–96 
DSPR strains), for above-threshold eQTL peaks (described above) 
we defined QTL confidence intervals using a 3-LOD drop, since a 
2-LOD drop can give overly narrow intervals when fewer strains 
are assayed (King, Macdonald et al. 2012). Cis-eQTL were defined 
as above-threshold peaks for which the upper or lower boundary 
of the 3-LOD drop was within 1.5 cm of the target gene, while 
peaks outside this interval were classified as distant or trans- 
eQTL. We note that broader peak intervals result in more peaks 
being designated as cis-eQTL and fewer peaks as trans-eQTL 
(King et al. 2014; King and Long 2017). Peaks were removed if 
they consisted of a single, above-threshold marker, or if the 
peak position was outside the lower and upper peak boundaries 
(such phenomena are more common in experiments with limited 
sample size and are often found near telomere and centromere re-
gions where the impact of low power is exacerbated). eQTL peaks, 
estimated founder effects, and percent variance were identified 
and calculated using custom code derived from the DSPRqtl 
(King, Merkes et al. 2012) and R/qtl2 mapping programs (see 
Supplementary data).

We examined the six datasets for evidence of eQTL that were 
shared among datasets. Comparisons were made between tissues 
within treatment (Head-Control vs Gut-Control, Head-Copper vs 
Gut-Copper, Head-Response vs Gut-Response) and within tissue 
between treatments (Heads-Control vs Heads-Copper and Gut- 
Control vs Gut-Copper). Our ability to identify shared eQTL across 
multiple datasets is influenced by power to detect eQTL and the 
effect size of the eQTL (McKenzie et al. 2014). There are many 
approaches and methods to determine whether eQTL overlap 
(e.g. Ding et al. 2010; McKenzie et al. 2014; Van Den Berg et al. 
2019). To account for increased uncertainty due to power and 

eQTL effect size, eQTL were considered shared if the peak posi-
tions were within 1.5 cm of each other and/or if the peak intervals 
overlapped. We also note that our results should be interpreted 
with care given the large number of tests completed for each tis-
sue and treatment combination and the likely inflation of false 
discovery rates (Colquhoun 2014).

Gene annotations and ontology analyses
We obtained annotation and ontology information for focal sets of 
genes highlighted by differential expression (DE) analysis and 
eQTL mapping using the D. melanogaster annotation tool available 
from biomaRt (v. 2.50.3, Durinck et al. 2005) via Ensembl (Martin 
et al. 2023) and the orb.DM.eg.db R package (v. 3.14.0, Carlson 
2019). Gene Ontology (GO) enrichment analyses (Ashburner et al. 
2000; Tomczak et al. 2018; Gene Ontology Consortium et al. 2023) 
were performed using the R package GOstats (v. 2.60.0, Falcon 
and Gentleman 2007), which uses hypergeometric tests for over-
representation of GO terms with a correction for multiple tests 
(Subramanian et al. 2005).

Results
RNA sequencing data was obtained for 96 DSPR strains that had 
been previously assayed for copper resistance, 48 of which 
showed considerable resistance to copper stress and 48 of which 
were highly susceptible. Following exposure of animals to copper 
and to a control treatment, we obtained RNA from head and gut 
tissue, ultimately generating 384 libraries (96 strains × 2 tissues ×  
2 treatments = 384 sequencing libraries). Using DE analysis we 
examined the regulatory effects of resistance class, tissue, and 
treatment, and we used eQTL mapping to characterize the genetic 
control of the gene expression response to copper.

Effect of tissue, treatment, and resistance class 
on gene expression
A principal goal of our study was to characterize the gut- and 
head-specific gene expression responses to copper exposure in 
genetically diverse copper-sensitive and copper-resistant DSPR 
strains. Our DE model tested the three-way interaction between 
tissue (gut, head), treatment (control, 8-hour exposure to 50 mM 
CuSO4), and DSPR strain resistance class (resistant, sensitive). 
The primary model parameters that influenced expression were 
tissue and treatment. Gene expression was strikingly distinct be-
tween gut and head samples resulting in DE of 91% of genes (5% 
FDR). Although we cannot rule out the potential influence of col-
lecting head and gut samples separately on the distinct effect of 
tissue we observed, it is unlikely that this is the primary factor re-
sulting in the vast differences in gene expression between tissue 
types because tissues were obtained from individuals of the 
same strain. In addition, it has been demonstrated that tissue 
type can be generally categorized and differentiated by gene ex-
pression profiles (Hsiao et al. 2001). Treatment alone influenced 
gene expression in 12% of genes, while resistance class alone 
influenced expression of three genes: asRNA:CR44107, CG18563
(involved in serine-type endopeptidase activity, Thurmond et al. 
2019), and CG6023.

For 70% of genes, expression was influenced by an interaction 
between tissue and treatment. The effect of resistance class var-
ied subtly between gut and head tissue, influencing 32% of genes, 
with the interaction driven by a slightly greater effect of resistance 
class in gut tissue vs head tissue. The treatment and resistance 
class interaction did not influence the expression of any gene 
tested, and the three-way interaction between tissue, treatment, 
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and resistance class influenced 0.13% of genes, of which eight had 
known or predicted functions. None of the genes influenced by the 
three-way interaction were known copper response genes or had 
clear connections to metal toxicity response using gene annota-
tion information provided by Ensembl (Martin et al. 2023) and 
FlyBase (Gramates et al. 2022). Gene annotation information on 
all DE genes is available in the Supplementary data.

Differential expression of copper-related genes
Using gene annotations provided by Ensembl (Martin et al. 2023) 
and FlyBase (Gramates et al. 2022), seven genes that have been 
previously linked to binding, metabolism, and detoxification of 
copper were among the DE genes influenced by treatment 
(Fig. 1a) and 28 genes in these categories were influenced by the 
tissue by treatment interaction (Fig. 1b) (Calap-Quintana et al. 
2017; Gramates et al. 2022; Martin et al. 2023). For several genes 
that have been previously investigated in the context of copper 
toxicity, the change in expression across treatments/tissues was 
in the expected direction. For instance, Syx5 is a critical copper 
homeostasis gene that is required for proper accumulation of cop-
per ions under normal (copper-scarce) conditions and is hypothe-
sized to aid in proper localization of copper import proteins 
(Norgate et al. 2010). Norgate et al. (2010) demonstrated reduced 
expression of Syx5 increased resistance to excess copper. 
Complementing this previous work, we found exposure to copper 
stress significantly reduced expression of Syx5 in both head and 
gut tissues (Fig. 1a), suggesting that downregulation of Syx5 may 
result from copper stress in multiple tissue types.

Expression of the metallothionein family genes in response to 
copper stress was also consistent with expectations. Copper ex-
posure was expected to increase expression of the metallothio-
nein genes, which are involved in the sequestration of excess 
copper ions as a first defense against copper toxicity (Egli, 
Yepsikoposyan et al. 2006; Calap-Quintana et al. 2017). Further, ex-
pression was expected to be higher in gut compared to head tissue 
because primary expression of metallothioneins has been shown 
to occur in specialized copper accumulating cells that line the 
midgut in flies (Calap-Quintana et al. 2017) As expected, we found 
that expression of four metallothioneins (MtnA, MtnB, MtnD, and 
MtnE) was significantly increased in response to copper exposure 
in both head and gut tissues but the increase in expression of 
MtnA and MtnB was more pronounced in gut tissue (Fig. 1b).

Three key copper transporters (Ctr1A, Ctr1B, and ATP7) were 
also among the genes influenced by an interaction between tissue 
and treatment that followed expected expression patterns based 
on previous reports. The ATP7 and Ctr1B copper transporters 
function primarily in specialized copper-accumulating cells that 
line the intestine in mammals and the midgut in flies (Zhou 
et al. 2003; Turski and Thiele 2007; Calap-Quintana et al. 2017), 
whereas the Ctr1A copper transporter is ubiquitously expressed 
in both mammals and flies (Turski and Thiele 2007; Calap- 
Quintana et al. 2017). Under control and copper conditions, we ob-
served higher expression of ATP7 and Ctr1B in gut tissue relative to 
head tissue and higher expression of Ctr1A in head tissue com-
pared to gut tissue (Fig. 1b). Our data are also consistent with pre-
vious reports that Ctr1A/B copper importers are downregulated in 
D. melanogaster in response to copper overexposure (Zhou et al. 
2003; Calap-Quintana et al. 2017) as we observed a decrease in ex-
pression of both Ctr1A and Ctr1B following copper exposure. The 
pattern of decreased expression in response to copper was con-
sistent across tissue but was more pronounced in head tissue 
(Ctr1A) or gut tissue (Ctr1B) depending on the gene. Although 
ATP7 expression under control conditions followed tissue-specific 

expectations, we observed that exposure to copper stress signifi-
cantly increased ATP7 expression, a pattern that was more pro-
nounced in gut tissue (Fig. 1b). ATP7 is a major copper exporter 
(Zhou et al. 2003), facilitating the transfer of copper from copper 
accumulating cells in the gut to other tissues. Increased copper 
export under stressful conditions may play an important role in 
the response to copper toxicity.

Expression of the copper chaperone Atox1 was also differential-
ly affected by treatment and tissue. As proteins, Atox1 transports 
copper to ATP7 (Calap-Quintana et al. 2017; Kamiya et al. 2018) and 
to the extracellular antioxidant enzyme SOD3 (Itoh et al. 2009; 
Kamiya et al. 2018). Both Atox1 and Sod3 were more highly 

Fig. 1. Treatment and the interaction between treatment and tissue 
influenced expression of several genes previously shown to be involved in 
detoxification, homeostasis, or binding of copper and other heavy metals. 
a) Heatmap of genes differentially expressed due to treatment that have 
been previously associated with copper ion response. b) Heatmap of genes 
differentially expressed due to the interaction between tissue and 
treatment. In both heatmaps, tissue and treatment groups are indicated 
at the top of the heatmaps, and gene expression is presented as average 
normalized expression for strains belonging to the two resistance classes. 
Asterisks beside gene names highlight genes discussed in text. Color bar 
scale indicates z-normalized gene expression.
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expressed in gut tissue than in head tissue (Fig. 1b), and exposure 
to copper stress led to a decrease in expression of both genes. 
Work presented by Itoh et al. (2009) suggests that this shift in ex-
pression may be mechanistically linked because Atox1 functions 
both to transfer copper to SOD3 and to regulate its expression as 
a copper-dependent transcription factor (Itoh et al. 2009). Under 
normal conditions, null mutations in Atox1 have been shown to 
lead to copper deficiency, and excess copper led to decreased 
Atox1 protein expression in wild-type flies (Hua et al. 2011).

Overall, we found pervasive differences in expression between 
tissues, with many genes—including candidate metal responsive 
genes—showing an expression change in response to copper 
treatment as well as variation in copper response among tissues. 
We previously reported a minor effect of DSPR strain-specific 
copper resistance on the gene expression response to copper 
(Everman et al. 2021). Classifying DSPR strains into copper resist-
ant and susceptible classes in the present study explained rela-
tively little of the expression variation, and resistance class 
influenced only a small number of genes, none of which are mem-
bers of known metal response pathways. This finding suggests 
that the expression data gathered for the 96 DSPR strains exam-
ined in the current study does not appear to be clearly associated 
with resistance measured in Everman et al. (2021). This may indi-
cate that the gene expression response may play a modest or even 
minimal role in copper resistance; however, it is also possible that 
gene expression patterns underlying differences in copper resist-
ance are detectable in a combination of tissues and/or timepoints 
that were not assessed in the current study. Equally, effects could 
be evident at genes with relatively low expression, and the modest 
read counts we obtained may have been insufficient to properly 
characterize the expression of these lowly expressed genes.

Expression QTL mapping
Properties of mapped eQTL
eQTL mapping was executed for six datasets: Head-Copper, 
Head-Control, Head-Response, Gut-Copper, Gut-Control, Gut- 
Response (see Methods for additional detail). In total over all data-
sets, 4,377 genes were associated with at least one eQTL and 98% 
of these 4,377 genes were differentially expressed due to one or 
more of the DE model terms and interactions (described above). 
For most genes (83–98%; Table 1), we detected one eQTL (either 
cis or trans) per gene per dataset (Supplementary Fig. 4). Genes 
with more than one eQTL per dataset included a multidrug resist-
ance gene Mdr65 and two cytochrome p450 genes Cyp6t3 and 
Cyp12d1-d, which have been linked to response to insecticides 
(Daborn et al. 2007; Esteves et al. 2021). Two genes linked to copper 

ion binding and homeostasis (Mco1 and CG6908, Lang et al. 2012; 
Thurmond et al. 2019) were also among the genes with multiple 
eQTL per dataset. However, no gene enrichment related to metal 
detoxification or response was evident in genes with more than 
one eQTL peak per dataset. Gene annotation and GO analysis for 
genes with multiple eQTL is available in the Supplementary data.

For each of the Control and Copper datasets, cis-eQTL outnum-
bered trans-eQTL (Table 1). In both Response datasets, we identi-
fied fewer eQTL overall but trans-eQTL were more common than 
cis-eQTL (Table 1). This pattern is anticipated because the 
Response datasets are based on the difference in gene expression 
read counts between control and copper treatments, which 
should eliminate genetic effects on expression that are consistent 
in both treatments. Since the bulk of treatment-specific eQTL are 
cis-eQTL, the Response data set is expected to have fewer eQTL 
with local effects.

Across all datasets, the percent variance in gene expression 
explained by individual eQTL ranged from 10.4% to 78.1% 
(Supplementary Fig. 5, Table 1). Consistent with previous work 
(Dixon et al. 2007; Emilsson et al. 2008; King et al. 2014; Albert 
et al. 2018; Keele et al. 2020), cis-eQTL tended to have higher per-
cent variance estimates compared to trans-eQTL in each of the 
six datasets (Supplementary Fig. 5, Table 1), suggesting that 
cis-eQTL tend to have a larger effect on transcriptional variation 
compared to trans-eQTL (reviewed in Gibson and Weir 2005; 
Pierce et al. 2014; Võsa et al. 2021). However, percent variance esti-
mates are likely overestimated due to Beavis effects so should be 
assessed with care (Beavis 1995; King and Long 2017).

Tissue specificity of mapped eQTL
Although most genes had only one eQTL per dataset (Table 1), 
53.7% of genes had one or more eQTL in at least two datasets. 
For instance, expression of the extracellular copper/zinc super-
oxide dismutase Sod3 was associated with a single eQTL per data-
set but a similarly located Sod3 cis-eQTL was detected in five of the 
six datasets (Fig. 2a and b). For other genes, eQTL in different da-
tasets were clearly distinct. For example, expression of the metal-
lothionein gene MtnA was associated with a trans-eQTL in the 
Head-Copper dataset and a cis-eQTL in the Gut-Copper dataset 
(Fig. 2c and d). This implies that tissue-specific variants influence 
MtnA expression under copper stress.

To determine whether a similarly localized eQTL was detected 
in multiple datasets, we examined eQTL overlap on a per gene 
basis between tissues within treatment (Head-Control vs Gut- 
Control, Head-Copper vs Gut-Copper, Head-Response vs Gut- 
Response) and within tissue between treatments (Heads-Control 

Table 1. Summary statistics for eQTL mapping analyses.

Analysis eQTL Type N eQTL Peaks N genes with eQTL Total N unique  
genes with eQTL

% Genes with  
1 eQTL peak

Mean percent variance (range)

Gut-Control cis 1,784 1,779 1,993 96% 43.1 (25.0–74.4)
Gut-Control trans 295 286 33.7 (10.4–63.0)
Gut-Copper cis 1,677 1,674 1,860 97% 42.4 (22.0–76.0)
Gut-Copper trans 248 237 33.4 (21.2–68.2)
Gut-Response cis 139 138 316 98% 40.0 (25.5–72.5)
Gut-Response trans 183 180 32.3 (16.6–41.9)
Head-Control cis 1,875 1869 2,125 96% 43.6 (22.8–76.8)
Head-Control trans 334 320 33.4 (18.3–66.4)
Head-Copper cis 1,879 1,870 2,152 97% 43.6 (23.9–78.1)
Head-Copper trans 351 343 34.2 (20.5–67.4)
Head-Response cis 34 34 197 83% 34.3 (21.3–64.3)
Head-Response trans 235 167 30.0 (18.8–37.5)
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vs Heads-Copper and Gut-Control vs Gut-Copper). eQTL were 
classified as overlapping if the peak positions were within 1.5cM 
or if the peak intervals overlapped (see Methods). Overall, 
cis-eQTL were more likely than trans-eQTL to be detected in mul-
tiple datasets regardless of which datasets were compared 
(Supplementary Fig. 6). The number of eQTL that were detected 
in more than one dataset was highest in within-tissue compari-
sons (Supplementary Fig. 6a and b), whereas more eQTL were dis-
tinct between tissues within treatment (Supplementary Fig. 6c 
and d). eQTL detected in the Response datasets were most distinct 
with only seven cis-eQTL and no trans-eQTL shared between Head- 
and Gut-Response datasets (Supplementary Fig. 6e). Together, 
these results are consistent with our DE analysis, which identified 
tissue as having the greatest impact on expression variation.

Within each tissue the majority of cis Response eQTL (64–85%) 
were also detected in the Control and Copper datasets while the 
majority of trans Response eQTL were unique to the Response da-
taset (Supplementary Fig. 6f–i). The overlapping cis Response 
eQTL were typically detected as cis-eQTL in both Control and 
Copper datasets, suggesting that these cis-eQTL are either asso-
ciated with different variants in the Control and Copper datasets 
or that the variant has different additive or magnitude effects 
on the expression of genes under Control and Copper conditions. 
Thorough tests of this hypothesis are beyond the scope of our 

data; however, correlations between Response and Control or 
Copper founder haplotype effects at each eQTL suggest both pat-
terns may contribute (Supplementary Fig. 7).

Overall, our eQTL mapping results suggest that regulatory vari-
ation influences gene expression in a tissue-specific manner for 
2,581 genes with distinct eQTL (detected in only one dataset) that 
were involved in a broad range of processes spanning response to 
stimulus to cellular metabolism (hypergeometric test for over-
representation of GO terms, adj P < 0.001; Supplementary Fig. 8). 
In contrast, regulatory variants influenced expression of 705 genes 
with shared eQTL that were detected in both head and gut tissues 
following copper exposure (Supplementary Fig. 8). These 705 genes 
were enriched for a smaller number of GO categories including me-
tal response, detoxification, oxidative stress response, and similar 
stress response pathways (adj P < 0.001; Supplementary Fig. 8). 
This observation suggests that the control of some major compo-
nents of metal stress response is potentially consistent across tis-
sues. However, our data provide some evidence that founder 
haplotype effects at shared eQTL are not always consistent, sug-
gesting that physically overlapping eQTL do not necessarily re-
present identical genetic effects. For example, founder haplotype 
effects at shared cis-eQTL in Head and Gut tissue associated 
with Mdr49, Mdr65, and Sid [involved in insecticide resistance 
(Denecke et al. 2017; Sun et al. 2017) and oxidative stress response 

Fig. 2. Many genes (53.7%) were associated with eQTL in multiple datasets, but these eQTL were often localized to distinct intervals. a, b) Expression of the 
gene Sod3 was associated with cis-eQTL in all datasets except Head-Response. c, d) The gene MtnA was associated with a trans-eQTL on chromosome arm 
2L in the Head-Copper dataset (c) and was associated with a cis-eQTL in the Gut-Control dataset (d). In all plots, the dashed horizontal line indicates the 
significance threshold based on permutation and the red triangle point indicates the position of the gene. LOD curves are colored based on treatment: 
gray = Control, blue = Copper, green = Response.
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(Seong et al. 2014)] were negatively correlated, implying the regula-
tory variant may have opposite effects on expression of these genes 
in head and gut tissue, or that the eQTL actually represent the ef-
fects of distinct variants (Supplementary Fig. 9).

Treatment specificity of eQTL
Treatment-dependent eQTL were identified using the Head- and 
Gut-Response datasets. Response eQTL reveal loci that impact 
the difference in gene expression between copper and control 
conditions in a genotype-specific manner and are thus inherent-
ly genotype by environment eQTL. Response eQTL detected in 
both Gut- and Head-Response datasets were associated with 
several potential candidate genes that may play a role in the 
response to copper toxicity. GO analysis of genes with Gut- 
Response eQTL highlighted categories related to detoxification 
pathways and response to toxins including glutathione s trans-
ferase family genes (glutathione metabolic process; hypergeo-
metric test for overrepresentation of GO terms, adj P < 0.001; 
Fig. 3) and cytochrome p450 genes (response to toxic substances 
and insecticides, adj P < 0.001; Fig. 3) (Kim and Yim 2013; Esteves 
et al. 2021). We also detected Response eQTL for two ABC trans-
porter multidrug resistance protein genes (Mdr49 and Mdr69) as 
well as two genes that are known to play a role in copper metab-
olism or binding (Sod3 and Tbh) (Itoh et al. 2009; The UniProt 
Consortium 2021).

Head-Response eQTL included fewer potential candidate 
genes. Top GO enrichment categories included proteolysis and 
metabolic process (adj P < 0.0001) followed by response to insecti-
cide (adj P < 0.001; Fig. 3). We detected Head-Response eQTL for 
ABC transporter gene Mdr50 as well as a different trans-eQTL asso-
ciated with Mco1 that was distinct from those identified by com-
paring the copper and control-specific head eQTL. Of the 197 
annotated Response eQTL genes, 26 play or are predicted to play 
a role in metal ion binding. There were 19 eQTL genes that were 
shared between the Head- and Gut-Response datasets, which in-
cluded several cytochrome p450 family genes. The shared set of 
Response eQTL were associated with expression of genes that con-
tribute to response to insecticide (adj P < 0.0001), response to toxic 
substance (adj P < 0.001) and response to DDT (dichlorodiphenyl-
trichoroethane) (adj P < 0.001) (Fig. 3).

Discussion
Copper exposure results in tissue- and 
treatment-specific expression
The genetic architectures of complex traits such as stress resist-
ance and disease are highly context-dependent and can vary 
across scales as broad as between species and populations 
(Whitehead and Crawford 2005; Breschi et al. 2016; Findley et al. 
2021) and as small as between individuals, regions of a particular 

Fig. 3. Enrichment of GO categories for Response eQTL genes by tissue (head tissue = 197 genes; gut tissue = 316) and for the set of eQTL genes that were 
shared between tissues (shared-response, 19 genes).
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tissue (Fournier and Schacherer 2017; Çelik and Akdaş 2019; 
Munro et al. 2022), or even within individuals across age or devel-
opment (Everman and Morgan 2018; Huang et al. 2020; Everman 
et al. 2021). Given anticipated tissue-specific gene expression pat-
terns resulting from the spatial distribution of specialized copper- 
accumulating cells (Calap-Quintana et al. 2017; Miguel-Aliaga et al. 
2018) and the potential for copper toxicity to result in acute dam-
age to digestive tissues as well as neurological tissues (e.g. 
Tchounwou et al. 2008; Jomova et al. 2010), one of our principal 
goals was to characterize the tissue-specific transcriptomic re-
sponse to copper toxicity. We demonstrate striking patterns of 
tissue- and treatment-specific genetic response to copper expos-
ure using a combination of DE analysis and eQTL mapping. 
More than 90% of all genes had tissue-specific patterns of expres-
sion, and a significant tissue by treatment interaction affected 
70% of the genome. Our eQTL mapping results provide similar in-
sight; the majority of eQTL were tissue-specific within treatment 
(Supplementary Fig. 6), suggesting that the genetic control of 
gene expression response to stress is highly context-dependent.

In general, overexposure to heavy metals results in the accu-
mulation of reactive oxygen species (ROS) and activation of oxida-
tive stress response pathways (e.g. Ercal et al. 2001; Gaetke 2003; 
Uriu-Adams and Keen 2005). Especially for heavy metals that 
are biologically necessary, there are also metal-specific metabol-
ism pathways that can contribute to the metal toxicity response 
(Calap-Quintana et al. 2017). In the case of copper, specialized cells 
that are involved in uptake, metabolism, and detoxification of 
copper ions from the diet line the middle midgut of the fly and 
the acidic region of the digestive system in vertebrates (Dubreuil 
2004; Calap-Quintana et al. 2017). Many of the genes that have 
been linked to copper response in previous studies were signifi-
cantly differentially expressed under copper conditions relative 
to control conditions in our study (Fig. 1), and our eQTL mapping 
results suggest that many of these copper-responsive genes 
are influenced by genetic variation in regulatory elements. 
Furthermore, we found that genes with functions related to metal 
response followed expected tissue-specific expression patterns 
(e.g. Mtn family genes; Ctr1A and Ctr1B; Atox1 and SOD3; ATP7; dis-
cussed above (Zhou et al. 2003; Turski and Thiele 2007; Itoh et al. 
2009; Calap-Quintana et al. 2017; Kamiya et al. 2018)) (Fig. 1). For in-
stance, and consistent with previous reports, we found that MtnA
expression was strongly induced by copper exposure (Fig. 1b); 
however, the level of induction was much more pronounced in 
gut tissue compared with head tissue, leading to a significant 
tissue by treatment interaction. We also found variation in the 
genetic control of MtnA expression under copper conditions that 
followed a tissue specific pattern. In gut tissue, MtnA expression 
in response to copper is influenced by a cis-eQTL (Fig. 2c), whereas 
in head tissue MtnA expression under copper conditions is influ-
enced by a trans-eQTL (Fig. 2d). Although the genetic variants 
that contribute to MtnA expression in either tissue are present 
in both tissues, each variant appears to only influence gene ex-
pression in a particular tissue.

While D. melanogaster is commonly used to characterize the 
genetic control of heavy metal response (e.g. Egli et al. 2003, Egli, 
Yepsikoposyan et al. 2006; Balamurugan et al. 2004; Norgate et al. 
2010; Hua et al. 2011), tissue-specific comparisons are not com-
mon (Fasae and Abolaji 2022). One of the few examples of tissue- 
specific response to heavy metal toxicity in D. melanogaster de-
monstrated that variation in CncC pathway activity (involved in 
autophagy regulation) across muscle and neurological tissue con-
tributed to the toxicity response to methylmercury (Gunderson 
et al. 2020). Our DE analysis provides novel insight and suggests 

that there are tissue-specific patterns in broad responses to stress 
through the differential activation of pathways. Although all the 
stress response categories represented by our subset of genes 
can be linked to heavy metal stress response (Kefaloyianni et al. 
2005; Darling and Cook 2014), our data suggest that oxidative 
stress response is the primary stress response mechanism to cop-
per exposure in neurological tissue (proxied with head tissue in 
our study) while the primary stress response mechanisms in gut 
tissue are more diverse. Because previous studies that offer in-
sight into tissue-specific gene expression response often focus 
on sets of tissues that infrequently overlap, it is challenging to de-
termine whether the patterns we observe in our study are unique 
or reflective of a general pattern. However, our data do strongly 
suggest that there is a tissue-specific response to copper toxicity 
over the 8-hour exposure period used in this study. Whether 
this difference is due to tissue-specific vulnerability, to mode of 
exposure, to temporal progression of copper ions throughout the 
organism, or a combination of these and other factors remains 
to be fully determined. Additional follow up with tissue-specific 
knockdown or ablation of key genes involved in oxidative stress 
and other stress response pathways would be needed to strength-
en these observations.

Transcriptomic response to copper stress is 
influenced by regulatory allelic variation
Allelic variation and its contribution to trait variation has been re-
peatedly dissected, characterized, and functionally tested in the 
context of complex traits ranging from those associated with hu-
man disease (e.g. Granhall et al. 2006; Hardy et al. 2018) to various 
stress responses including heavy metal resistance (e.g. Zhou et al. 
2017; Evans et al. 2018; Everman et al. 2019, 2021). In addition to the 
potential to influence the functional gene product, allelic vari-
ation can also influence the response to stress via effects on 
gene expression patterns. The majority of allelic variation is found 
in noncoding regions of the genome (Umans et al. 2021), leading to 
the expectation that these noncoding variants play a regulatory 
role. By treating expression of individual genes as traits measured 
in multiple treatments and tissues, we were able to gain insight 
into context-dependent genetic control of gene expression using 
eQTL mapping. Approximately half of the annotated Drosophila 
genome was associated with one or more eQTL in our study, pro-
viding ample evidence of genetic variation in the control of gene 
expression (Table 1). Nearly all (98%) of genes that were associated 
with at least one eQTL were also differentially expressed, suggest-
ing that the variants associated with these genes likely influence 
expression, although functional validation would be necessary 
to test this hypothesis. This observation is consistent with work 
by Boyle et al. (2017) demonstrating that SNPs which contribute 
to trait variation are enriched near genes that are actively tran-
scribed under disease states; our observations suggest this pat-
tern extends to stress conditions as well.

Although eQTL mapping provides detailed insight into the gen-
etic control of a given trait by examining elements that contribute 
to trait variation on a gene-by-gene basis, there are several chal-
lenges with this approach. Power to detect eQTL with modest ef-
fects is directly related to the number of strains in which the 
trait is measured (Ruden et al. 2009; King, Macdonald et al. 2012; 
Qu et al. 2018; Arvanitis et al. 2022). By using 93–96 strains in our 
eQTL analyses, lack of power to detect modest-effect eQTL likely 
contributes to our estimates of tissue-specificity. For example, 
power estimates to detect a QTL with an effect size of 10 with 
100 DSPR strains is approximately 20% (King, Macdonald et al. 
2012). Detection of tissue-specific eQTL is also more sensitive to 
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false negatives, for example due to low levels of expression of a 
particular gene in a given tissue. We also note the increased like-
lihood of detecting false positives given the large number of tests 
completed for six datasets. However, despite these challenges our 
data suggest that allelic variation that contributes to the regula-
tion of gene expression is tissue-specific for approximately 65% 
of eQTL detected in the control and copper datasets.

Similar studies of tissue-specific eQTL mapping are relatively 
rare in model organisms but have provided examples of tissue- 
specific eQTL. Using a mouse multiparental mapping population 
(Collaborative Cross, Aylor et al. 2011) that is similar in concept 
to the DSPR, Keele et al. (2020) demonstrated that among lung, li-
ver, and kidney tissue genetic control of several genes varied 
across tissues. Spatially discrete genetic control of gene expres-
sion can also vary at the subtissue level. Munro et al. (2022) de-
monstrated gene expression patterns that are specific to five 
regions of the rat brain are influenced by a combination of shared 
and subtissue-specific eQTL. Shared eQTL were most common in 
similar brain tissue types, but subtissue-specific eQTL were com-
mon between more distinct types of brain tissue (Munro et al. 
2022). eQTL mapping studies of human disease and native state 
gene expression have also provided evidence of tissue- and cell 
type-specific genetic control of gene expression (Dimas et al. 
2009; Nica et al. 2011; Fairfax et al. 2012; Peters et al. 2016; GTEx 
Consortium 2017; Gamazon et al. 2018). A recent study presenting 
a novel analytical approach to identify colocalized eQTL suggests 
that tissue-specific eQTL may be more common than previously 
thought and key for identifying regulatory variants associated 
with complex disease traits (Arvanitis et al. 2022). The existence 
of other examples of tissue-specific eQTL combined with our evi-
dence strongly suggest that tissue-specific eQTL contribute to the 
stress response to copper toxicity in D. melanogaster.

Consistent vs tissue-specific effects of eQTL
In addition to identifying tissue-specific eQTL, our study also pro-
vides insight into eQTL that have consistent vs environment- 
dependent effects within tissue type. Complex traits are depend-
ent on both genotype and environmental variation, and the inter-
action between genotype and environment can contribute to 
overall susceptibility of individuals to stress and disease (Li et al. 
2006; Duveau and Félix 2012; Moyerbrailean et al. 2016; Lea et al. 
2022). The importance of genotype by environment interactions 
and the detection of quantitative loci with context-dependent ef-
fects was demonstrated by Lea et al. (2022) in a study using 544 hu-
man cell lines exposed to 12 environments. Using a high-powered 
experimental design, they demonstrated that the complex traits 
measured were influenced by a combination of eQTL with consist-
ent effects in multiple environments as well as eQTL with 
environment-dependent effects (Lea et al. 2022). Similarly, 
Umans et al. (2021) offer a review and perspective on the import-
ance of examining regulatory variants in multiple contexts. 
Recognizing the dynamic nature of context-dependent effects of 
alleles associated with disease in humans, Umans et al. (2021) pro-
pose that a critical approach to characterizing allelic variation in 
regulatory elements is to use multiple treatment conditions to de-
tect important disease associated variants.

Overall, the majority of the eQTL we detected were near the 
position of the gene they were associated with (cis-eQTL), suggest-
ing that genetic variation in local regulatory elements plays an im-
portant role in the gene expression response to copper stress. 
cis-eQTL generally have larger effects on trait variation and are 
thus easier to detect with modestly powered designs (Hill et al. 
2021), and trans-eQTL are additionally difficult to detect because 

they may not act at the level of mRNA regulation but instead 
have larger detectable effects at the protein level (Boyle et al. 
2017). cis regulatory variation is widely appreciated to be an im-
portant contributor to phenotypic variation and plays a decisive 
role in the evolution of traits in natural populations and in human 
disease (Wray 2007; Savinkova et al. 2009; Wittkopp and Kalay 
2011; Hill et al. 2021). At the treatment level and consistent with 
previous studies in humans, flies, and worms (Ruden et al. 2009; 
Snoek et al. 2017; Qu et al. 2018; Sterken et al. 2020; Lea et al. 
2022), we found eQTL consistently in both treatments as well as 
eQTL that were only detected in one of the two treatments 
(Supplementary Fig. 6). The number of eQTL that were consistent-
ly detected was higher than treatment-specific eQTL, similar to a 
pattern previously reported for human cell lines (Lea et al. 2022). 
Similarly, in D. melanogaster, Qu et al. (2018) and Ruden et al. 
(2009) demonstrated that a small but non-negligeable number of 
eQTL were only detected following exposure to lead in head tissue 
or whole animals, respectively. While our results highlight the po-
tential for even eQTL that are repeatedly detected across treat-
ments to have treatment-specific effects on the expression of a 
given gene, adding a deeper dimension to gene by environment 
interaction eQTL, it is important to consider that the QTL intervals 
may include more than one variant that influences gene expres-
sion. One of these variants may influence expression under con-
trol conditions while the other influenced expression under 
copper conditions. Without additional follow-up studies, our ana-
lyses do not provide sufficient resolution to distinguish this case 
from one in which the same variant has treatment-specific effects 
on gene expression.

In addition to characterizing genotype by environment eQTL 
by examining the difference between the control and copper 
datasets for each tissue, we also examined eQTL that were asso-
ciated with a summary metric of the gene expression response 
to copper stress. The majority of eQTL detected in the Head- and 
Gut-Response datasets were trans-eQTL. Our study design partial-
ly accounts for the deficit in cis-eQTL in the Response datasets, as 
any effects of cis-eQTL that were detected with similar effects in 
control and copper datasets would be reduced in the Response 
eQTL mapping analyses. However, an enrichment of trans-eQTL 
associated with specific environments has been previously ob-
served in C. elegans in response to temperature stress (Li et al. 
2006; Snoek et al. 2017). trans-eQTL that are associated with the dy-
namic shift in gene expression response to the environment call 
attention to allelic variants that may play a role in the regulation 
of stress-dependent expression change that may otherwise not be 
detected if the treatment conditions are considered independent-
ly. We found several Response trans-eQTL near genes with a wide 
range of functions related to response to toxic conditions (Fig. 3) 
that highlight potential candidate regulatory QTL. Additional fol-
low up would be necessary to corroborate our observations and to 
fully characterize the role that these potential QTL sites may play 
in the regulation of the response to copper stress.

Correspondence between eQTL and previous 
work
Regulatory variation has been established as an important con-
tributor to trait variation in diverse species and for diverse traits 
with evolutionary and biomedical consequences (reviewed in 
Wray 2007; Pai et al. 2015). SNPs associated with variation in 
gene expression can modify phenotypic variation through tran-
scriptional and translational mechanisms (reviewed in Pai et al. 
2015), and regulatory SNPs can have multiple effects, for example 
modifying histones that influence epigenetic regulation as well as 
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impacting the binding of transcriptional machinery that directly 
changes mRNA levels (Rockman and Kruglyak 2006; Duncan 
et al. 2014; Pai et al. 2015). While traditional phenotype GWAS 
and QTL mapping studies can provide important insight into the 
genetic architecture of complex traits, the candidate SNPs fre-
quently fall in noncoding regions and candidate genomic regions 
implicated by these studies are often not narrow enough to clearly 
definitively identify the specific variants that influence trait vari-
ation. eQTL mapping studies of traits that have also been charac-
terized using GWAS or QTL mapping can assist with refinement 
and characterization of variants that influence trait variation by 
examining overlap between studies (Nica et al. 2010; Nica and 
Dermitzakis 2013; Pai et al. 2015). We previously examined pheno-
typic variation in copper resistance in a larger set of DSPR strains 
and identified six QTL (referred to herein as pQTL) that encom-
passed 1,369 protein coding genes, a fraction of which may con-
tribute to variation in copper resistance in the B panel of the 
DSPR (Supplementary Table 4 of Everman et al. 2021). While not 
all of the genes under the six pQTL peaks will contribute to copper 
resistance, overlap between pQTL genes and eQTL may help fur-
ther characterize the genetic control of copper resistance.

cis-eQTL that are associated with genes that fall under pQTL in-
tervals may be more likely to contribute to regulatory variation 
that influences copper resistance (Pai et al. 2015). Of the 1,369 
pQTL-associated genes, 906–910 were tested for eQTL. cis-eQTL 
were detected for between 0.4% and 24% of the pQTL associated 
genes (Supplementary Table 3). In our previous study, we ex-
plored the contribution of 16 potential candidate genes to copper 
resistance using RNAi knockdown and found that all but six influ-
enced copper resistance (Supplementary Fig. 10 of Everman et al. 
2021). The majority of these previously identified candidate genes 
also had cis-eQTL in this study (Supplementary Table 4); however, 
these cis-eQTL were frequently detected under both control and 
copper conditions, potentially reducing their likelihood to be 
strong candidates. Additional tests would be necessary to validate 
the potential mechanistic link between genes identified in our 
pQTL and eQTL mapping studies.

We also determined the number of trans-eQTL that overlapped 
with pQTL regions, using peak positions of trans-eQTL and the 
genomic intervals defined for each pQTL in our previous paper 
(Supplementary Table 1 in Everman et al. 2021). Between 2 and 
57 trans-eQTL fell within each pQTL interval. For all but one 
gene (CG30357) with overlapping trans-eQTL, trans-eQTL genes 
and pQTL interval genes were distinct. Two genes with overlap-
ping trans-eQTL (GstO1 and Zip42C-1) have been previously linked 
to detoxification (Gramates et al. 2022; Martin et al. 2023), and se-
ven genes with overlapping trans-eQTL have been linked to oxida-
tive or endoplasmic stress (Edem2, CG15547, Khc, rl, shep, slim, and 
IP3K1) (Gramates et al. 2022; Martin et al. 2023). None of the genes 
with trans-eQTL within the pQTL regions have been previously 
linked to copper resistance, response, or toxicity.

Other studies have noted modest overlap between pQTL and 
eQTL mapping studies (e.g. Steibel et al. 2011; Van Den Berg et al. 
2019), pointing to lack of power to detect QTL (particularly 
trans-eQTL; Nica et al. 2010; Pai et al. 2015) and key differences in 
the compared studies related to the tissues assessed. Because 
our previous work examined phenotypic variation in copper re-
sistance exhibited by whole adult females and the current study 
examined expression variation in specific tissues in response to 
copper stress in a subset of the previously assessed DSPR strains, 
additional follow up would be needed to determine how candi-
dates identified from our pQTL and eQTL mapping studies are 
related.

Conclusions
Exposure to heavy metal stress results in a profound change in 
transcriptional activity across multiple tissues, and the genetic 
control of the gene expression response varies depending on the 
environmental conditions and tissue. By taking a combined ap-
proach of DE analysis and eQTL mapping, we were able to dissect 
and characterize more subtle differences in tissue-specific re-
sponse to copper toxicity. Our work provides a novel set of candi-
date loci that may have context-dependent effects on gene 
expression and plasticity. From the patterns that differentiate 
the genetic response observed in head and gut tissue, we gain dee-
per insight into the level of toxicity response that is activated by 
short exposure to copper stress.

Data availability
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24579133). Supplementary material contains Supplementary 
Methods that provide more detail on the isolation of head tissue 
and PCA correction of gene expression in preparation for eQTL 
mapping. Supplementary material also includes documentation 
and code used in the alignment pipeline, code to carry out eQTL 
mapping analysis, and all input and output data generated for 
each analytical step including raw expression values, complete 
DE results, and datafiles generated for each eQTL analysis.
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