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Abstract

Pain is a significant global health issue, and the current treatment options for pain management 

have limitations in terms of effectiveness, side effects, and potential for addiction. There is 

a pressing need for improved pain treatments and the development of new drugs. Voltage-

gated sodium channels, particularly Nav1.3, Nav1.7, Nav1.8, and Nav1.9, play a crucial role 

in neuronal excitability and are predominantly expressed in the peripheral nervous system. 

Targeting these channels may provide a means to treat pain while minimizing central and cardiac 

adverse effects. In this study, we construct protein–protein interaction (PPI) networks based on 

pain-related sodium channels and develop a corresponding drug–target interaction network to 

identify potential lead compounds for pain management. To ensure reliable machine learning 

predictions, we carefully select 111 inhibitor data sets from a pool of more than 1000 targets 

in the PPI network. We employ 3 distinct machine learning algorithms combined with advanced 

natural language processing (NLP)–based embeddings, specifically pretrained transformer and 

autoencoder representations. Through a systematic screening process, we evaluate the side effects 

and repurposing potential of more than 150,000 drug candidates targeting Nav1.7 and Nav1.8 

sodium channels. In addition, we assess the ADMET (absorption, distribution, metabolism, 

excretion, and toxicity) properties of these candidates to identify leads with near-optimal 
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characteristics. Our strategy provides an innovative platform for the pharmacological development 

of pain treatments, offering the potential for improved efficacy and reduced side effects.
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1. Introduction

Pain is a complex phenomenon with various categories, including acute and chronic pain, 

nociceptive and neuropathic pain, among others. It affects approximately 35% of the US 

population, surpassing the morbidity rates of cancer and heart disease.49 There is an urgent 

demand for new pain medications.

Voltage-gated sodium channels (Nav channels or VGSCs) are vital membrane proteins 

essential for generating and transmitting action potentials in neurons and excitable cells. 

They facilitate the rapid entry of sodium ions, leading to cell depolarization and the 

initiation of action potentials. These channels regulate sodium ion permeability and 

contribute to various intercellular functions linked to diseases such as chronic pain and 

cardiac arrhythmia. Notably, specific Nav channel subtypes (Nav1.3, Nav1.7, Nav1.8, 

and Nav1.9) encoded by genes SCN3A, SCN9A, SCN10A, and SCN11A, respectively, 

are highly expressed in the peripheral nervous system, sympathetic ganglia, olfactory 

epithelium, and dorsal root ganglion sensory neurons, making them promising targets for 

pain therapeutics.13 Much attention has been paid to Nav1.3,44,46 Nav1.7,4,12,18 Nav1.8,5,48 

and Nav1.9,20,21,34,45 in their connection to pain management.42 However, the specific 

roles of these pain-related Nav channels in generating and transmitting pain signals remain 

unclear.

Protein–protein interactions (PPIs) are crucial for various biological processes, including 

DNA replication, signaling, and metabolism. The String Database v11 (https://string-

db.org/) provides a comprehensive collection of protein–protein interactions and can be 

used to construct PPI networks. By focusing on major sodium channels involved in pain 

(Nav1.3, Nav1.7, Nav1.8, and Nav1.9), medication treatments and side effects can be 

analyzed. However, traditional testing methods are time consuming and resource intensive. 

To address this, artificial intelligence (AI), including machine learning (ML) techniques, can 

be employed for large-scale predictions in this area.2

Recently, many advanced ML methods have been applied to pain treatment and 

analysis.36,41,47,53 Currently, numerous in silico methods have been developed for virtual 

screening of sodium channel inhibitors.1,2,6,17,22,29,30,35,57 From 2018, more studies on 

VGSCs can be found in review articles.24,37,40,43 However, these studies lack consideration 

of drug–target interaction networks, as well as comprehensive ADMET (absorption, 

distribution, metabolism, excretion, and toxicity) analysis.
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Pain management is not limited to sodium channels and related inhibitors. Opioids, 

also known as narcotics, have been used for centuries in the treatment of pain. To 

deal with opioid use disorder (OUD), advanced ML predictors were used to screen and 

repurpose thousands of DrugBank compounds and evaluate their ADMET properties.16 

More sophisticated AI models were also developed for drug addiction.58

In this study, we construct an extended drug–target interaction (DTI) network induced by 

pain-related sodium channels, which are analyzed by advanced ML models using natural 

language processing (NLP) tools. We build PPI networks with more than 1000 targets using 

the String Database v11 and an associated DTI network with 111 targets and more than 

150,000 compounds from the Chembl database (https://www.ebi.ac.uk/chembl/). We employ 

transformer and autoencoder to develop 111 ML models for the screening and repurposing 

of these compounds and FDA-approved drugs and existing medications. Furthermore, we 

study ADMET and synthesizability to identify lead compounds as shown in Figure 1. This 

investigation of the extended DTI network offers an innovative approach to pain therapeutic 

development.

2. Methods

2.1. Data sets

All inhibitor data sets were collected from the Chembl database for all proteins in the 

present DTI network, which was informed by 4 investigated sodium channels or treatment 

targets (Nav1.3, Nav1.7, Nav1.8, and Nav1.9, corresponding to encoded genes SCN3A, 

SCN9A, SCN10A, and SCN11A, respectively). Because the predictive results of machine 

learning–based models depend on high quality and quantity of data, we set the minimal 

size of the collected inhibitor data sets to be 250 samples and obtained a total of 111 data 

sets, including SCN9A and SCN10A. The data sets for SCN3A and SCN11A were not 

included due to their small data size. The labels for these data sets are binding affinities 

(BAs) obtained using the following formulas: BA = 1.3633 × log10Ki
9 and Ki = IC50/2.28 

Ki refers to inhibition constant and also represents the dissociation constant describing the 

binding affinity between the inhibitor and the enzyme, whereas IC50 stands for inhibitory 

concentration 50%, that is, the concentration of inhibitor required to reduce the biological 

activity of interest to half of the uninhibited value. The drug–target binding affinity is 

indicated by the dissociation constant Kd = [L][P]/[LP], where [L], [P], and [LP] are the 

molar concentration of drug, target, and drug–target complex, respectively. Particularly, the 

Gibbs free energy (kcal/mol) can be derived by ΔG = RTlnKd, where R and T are the 

gas constant and temperature, respectively. ΔG = −1.3633pKd can be obtained with room 

temperature T = 298.15K.9 Here, pKd represents −log10Kd with Kd in the unit of mol. 

Following the way that PDBbind database mixes Kd and Ki in their refined data sets,54 in 

present work, we calculate the binding energy with the above BA calculation formula. In 

addition, because hERG is a key target for side effects in virtual screening of drug design, 

an inhibitor data set was also collected from the Chembl database. All details of the data sets 

are provided in Table S3 in the Supporting Information (available at http://links.lww.com/

PAIN/B940).
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2.2. Molecular fingerprints

Molecular fingerprints represent the property profiles of a molecule, typically in the form 

of vectors where each element represents the presence, degree, or frequency of a specific 

structural characteristic. These fingerprints can be used as features in machine learning 

(ML) models. The original molecular fingerprints for the inhibitors in the collected 111 data 

sets are 2D simplified molecular-input line-entry system (SMILES) strings. In this study, 

we used 2 types of latent-vector molecular fingerprints in the ML models: bidirectional 

encoder transformer fingerprint (BET-FP) and autoencoder fingerprint (AE-FP). These 

fingerprints were generated from pretrained models based on natural language processing 

(NLP) algorithms such as transformers and sequence-to-sequence autoencoders.10,55 They 

are latent embedding vectors with a length of 512, obtained by encoding the 2D SMILES 

strings of the inhibitor compounds using the pretrained models.

2.2.1. Sequence-to-sequence autoencoder fingerprint—Recently, Winter et al.55 

proposed a data-driven unsupervised learning model for extracting molecular information 

embedded in the SMILES representation. Their approach involved using a sequence-to-

sequence autoencoder to translate one form of molecular embedding to another by capturing 

the chemical structure’s complete description in the latent space between the encoder and 

decoder. This translation model was capable of extracting physical and chemical information 

during the embedding process, enabling the translation to a distinct molecular representation 

with the same semantics but different syntax. Notably, the translation model was trained on 

a large data set of chemical structures and could be used to extract molecular fingerprints for 

query compounds without the need for retraining or labels.

Typically, the translation model consists of encoder and decoder networks. The encoder 

network compresses the essential information from the input SMILES, which is then fed as 

input to the decoder network. Convolutional neural networks (CNNs) and recurrent neural 

networks (RNNs) were employed in the decoder, with fully connected layers mapping the 

output of the CNN or concatenated cell states of the RNN to intermediate vector embeddings 

between the encoder and decoder networks. Consequently, the decoder incorporates RNN 

networks with latent vectors as input. To extract more physical and chemical information 

from the latent vectors, the translation model was extended based on a classification model 

that predicts molecular properties using these vectors. The output of the RNN in the decoder 

network represents the probability distributions of various characters in the translated 

molecular embeddings. During the training of the autoencoder model, the loss function 

consists of the sum of cross-entropies between the predicted probability distributions and the 

correct characters encoded in a one-hot format, as well as the mean-squared errors of the 

molecular property predictions made by the classification model.

In this study, the translation model was trained on approximately 72 million molecular 

compounds obtained from the ZINC (https://zinc15.docking.org/) and PubChem databases 

(https://pubchem.ncbi.nlm.nih.gov/). The compounds underwent preprocessing, including 

filtering based on criteria such as molecular weight, number of heavy atoms, partition 

coefficient, and more. By training the translation model on this processed data set, the 

resulting model generated embedding vectors that served as molecular fingerprints.
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2.2.2. Bidirectional transformer—Recently, Chen et al.10 developed a deep learning 

network that was pretrained on millions of unlabeled molecules using a self-supervised 

learning (SSL) platform to extract predictive molecular fingerprints. The SSL approach 

employed the bidirectional encoder transformer (BET) model, which relies on the attention 

mechanism. Unlike constructing a complete encoder–decoder framework, SSL used the 

decoder network solely for encoding the molecular SMILES.

In the SSL pretraining platform, the input consisted of molecular SMILES strings. Pairs of 

real SMILES and masked SMILES were created by hiding a certain number of meaningful 

symbols within the strings. The model was then trained using these data-mask pairs in 

a supervised manner with the SSL method. During the pretraining process, the masked 

symbols were learned by studying the unprocessed symbols in the SMILES, enhancing the 

understanding of the SMILES language. Data masking was performed as a preprocessing 

step before training the model with SSL. A total of 51 symbols were considered as elements 

in the SMILES strings. The SMILES were used as input to train the model, with a maximum 

length set to 256. Two special symbols, “<s>” and “</s>,” were added to the beginning and 

end of the SMILES strings. If a string’s length was less than 256, the “<pad>” symbol was 

used to complete the SMILES string. For the data masking process, 15% of the symbols in 

the SMILES were manipulated, with 80% being masked, 10% remaining unchanged, and the 

remaining 10% randomly changed.

The BET module plays a crucial role in achieving SSL from a substantial number of 

SMILES strings. It uses the attention mechanism in the transformer module to extract 

the importance of each symbol in the SMILES sequence. The BET module consists of 8 

bidirectional encoder layers, where each layer includes a multihead self-attention layer and 

a subsequent fully connected feed-forward neural network. Each self-attention layer has 8 

heads, and the embedding size of the fully connected feed-forward layers is 1024. During 

training, the Adam optimizer with a weight decay of 0.1 is employed, and the loss function 

chosen is cross-entropy. The input SMILES have a maximum length of 256, including the 

special symbols added at the 2 ends, and each symbol is embedded in a dimension of 512. 

Consequently, the resulting molecular embedding matrix consists of 256 embedding vectors, 

each with a dimension of 512.

The transformer module offers high parallelism capability and training efficiency, allowing 

for the use of a large amount of SMILES to train deep learning models. In this study, 

SMILES strings from the Chembl, PubChem, and ZINC databases, either individually or 

fused together, were used to train 3 separate pretrained models. The resulting transformer-

based molecular embeddings generated from the pretrained models using the Chembl 

database were used as molecular fingerprints.

2.3. Machine learning models

Three classic machine learning algorithms, namely, gradient boosting decision tree (GBDT), 

support vector machine (SVM), and random forest (RF), are employed to construct our ML 

models. The GBDT algorithm, an ensemble approach, possesses several advantages such 

as resistance to overfitting, insensitivity to hyperparameters, and ease of implementation. 

Consequently, it is competitive when training with small data sets and can yield better 
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prediction performance compared with deep neural networks (DNNs) and other common 

ML algorithms. However, it is important to note that one of the challenges of GBDT is 

to strike a balance between accuracy and efficiency for large data sets. The algorithm 

assembles multiple weak learners (individual trees) into an iterative prediction model. 

Although weak learners may produce suboptimal predictions individually, the combination 

of all weak learners through the ensemble approach helps reduce overall errors. The primary 

procedure of GBDT involves learning decision trees, where most of the time is consumed 

in finding the best split points. Gradient boosting decision tree has already demonstrated 

good performance in various quantitative structure–activity relationship (QSAR) prediction 

tasks.25,26 In this study, the GBDT algorithm provided by the Scikit-learn library (version 

0.24.1) was used.

Support Vector Machine, introduced by Cortes and Vapnik, is a nonprobabilistic kernel-

based supervised learning method that maps input vectors into a high-dimensional feature 

space.11 The core concept behind SVM is to identify the optimal decision boundary 

that separates different classes in the feature space. This decision boundary is defined 

by a hyperplane that maximizes the margin between the support vectors and the data 

points closest to the decision boundary. Support vector machine offers advantages such as 

high efficiency in high-dimensional spaces, robustness against overfitting, and versatility. 

However, SVM also has some limitations, including computational complexity and 

sensitivity to parameter tuning.

Random forest, developed by Breiman, is an ensemble of decision trees where the 

predictions of individual trees are averaged to obtain an ensemble performance.7 It employs 

a bootstrap sampling technique, and each decision tree uses only a subset of randomly 

chosen samples and features, starting with a trunk that splits into multiple branches before 

reaching the leaves. The leaf nodes represent the final prediction, whereas all other nodes are 

assigned with molecular features. Random forest is widely used in solving QSAR prediction 

problems and often does not require a complex feature selection procedure. Moreover, it is 

robust to redundant features and exhibits insensitivity to parameter variations.

We collected a total of 111 inhibitor data sets in our DTI network. The 3 aforementioned 

ML algorithms were used to build ML models for these data sets. The details of the 

hyperparameters for these 3 ML algorithms are provided in Table S5 in the Supporting 

Information (available at http://links.lww.com/PAIN/B940). In the ML models, we used 2 

types of molecular fingerprints, namely, BET and AE fingerprints, to embed the inhibitor 

compounds. Our ML models were created by pairing these molecular fingerprints with the 

GBDT, SVM, or RF algorithm. Consequently, we built a total of 111 ML models, each 

corresponding to one inhibitor data set.

For each data set, 6 individual models were constructed by combining BET and AE 

fingerprints with the 3 ML algorithms. The average of the predictions from these 6 

individual models was considered as our final binding affinity prediction, which we refer 

to as the consensus method for prediction. The consensus results typically outperform those 

obtained from individual models. We compared the prediction results using the 3 different 

algorithms and found that the SVM algorithm with the consensus method performed the 
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best among the other algorithms using individual fingerprints. This was validated using a 

set of provided samples, as shown in Table S6 in the Supporting Information (available at 

http://links.lww.com/PAIN/B940). Hence, the prediction results in the main text are from 

the SVM algorithm with the consensus method. To reduce the impact of randomness, each 

individual ML model was trained 10 times using different random seeds, and the average 

of the 10 predictions was considered as the final result for each individual model. In 

addition, the Pearson correlation coefficients (R) and root-mean-square deviation (RMSD) 

of 10-fold cross-validations for the 111 data sets are presented in Table S7 of the Supporting 

Information (available at http://links.lww.com/PAIN/B940).

3. Results

3.1. Pain-related voltage-gated sodium channel informed drug–target interaction 
networks

Voltage-gated sodium channels, which consist of a family of 9 distinct proteins or genes 

(Nav1.1–1.9), exhibit different pharmacological properties. Specifically, the proteins Nav1.3, 

Nav1.7, Nav1.8, and Nav1.9 are involved in neuropathic pain and are associated with 

both human Mendelian pain disorders and common pain disorders such as small fiber 

neuropathy.3 These 4 VGSC proteins play a role in modulating different types of pain, 

offering potential for the development of specific sodium channel inhibiting agents for 

chronic pain treatment. Functionally, Nav1.7 is classified as tetrodotoxin sensitive (TTX-S), 

whereas Nav1.8 and Nav1.9 are considered tetrodotoxin resistant (TTX-R). Anatomically, 

these proteins exhibit broad and distinct expression patterns across neuronal and smooth 

muscle cells throughout the body, as well as in cells of the immune system where they 

participate in migration and phagocytosis.14 Traditionally, Nav1.3 is primarily expressed 

in the brain and spinal cord, whereas Nav1.7, Nav1.8, and Nav1.9 tend to be expressed 

in the peripheral nervous system. Furthermore, these channels are regulated by a variety 

of enzymes and structural proteins, such as kinases, auxiliary β-subunits, and ubiquitin-

protein ligases, which collectively influence sodium channel biophysical properties and 

expression.32,52

Pain-related VGSCs are widely distributed throughout the body, and their interactions 

with various upstream and downstream proteins play a crucial role in specific biological 

functions. To analyze these interactions, we constructed protein–protein interaction (PPI) 

networks centered around each of the 4 pain-related VGSCs or treatment targets, namely, 

SCN3A, SCN9A, SCN10A, and SCN11A. These 4 targets were used as inputs to the 

String database to extract the corresponding PPI networks. The resulting networks, shown in 

Figure 1A, represent direct and indirect interactions between proteins and each pain-related 

VGSC. Each PPI network contains 401 proteins, focusing on critical interactions rather than 

considering a larger number of proteins. It is important to note that there is some overlap 

between the networks, indicating interdependencies among the VGSCs, and there are 1032 

unduplicated proteins in 4 PPI networks. In addition, blocking these proteins may result in 

other severe off-target effects. Hence, these proteins could be critical sources of side effects, 

and thus, 4 proteomic PPI networks provide a pool of 4 potential treatment targets and 

critical side effect targets. It is necessary to systematically explore potential compounds that 
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inhibit distinct pain targets and the putative side effects from compounds blocking these 

targets.

Considering that compounds that act as agonists or antagonists on pain-related VGSCs 

can influence their pharmacological behavior in pain treatment, we aimed to identify 

additional compounds that bind to these VGSCs. To evaluate the binding effects of inhibitors 

on VGSCs and other proteins in the PPI networks, we searched and collected inhibitor 

compounds from the Chembl database for each protein. This process resulted in an extended 

DTI network, encompassing 111 targets or related data sets and a total of 150,147 inhibitor 

compounds, which is illustrated in Figure 1B. The protein names of these 111 data sets 

are listed in Table S2 in the Supporting Information, and additional details about the 

collected data sets can be found in Table S3 in the Supporting Information (available at 

http://links.lww.com/PAIN/B940).

The framework of present work is illustrated in Figure 1. Essentially, for 4 pain-related 

VGSCs, ie, 4 treatment targets, namely, SCN3A, SCN9A, SCN10A, and SCN11A, we 

take a proteome-informed approach through protein–protein interaction (PPI) networks to 

identify potential side effect targets. As such, we found more than 1000 targets within 

the 4 PPI networks centered around SCN3A, SCN9A, SCN10A, and SCN11A, as shown 

in Figure 1A. We hope to set up machine learning (ML) models for all these targets, in 

principle. In practice, when we checked databases, we could only build 111 models because 

of insufficient inhibitors in these DTI networks, as displayed in Figure 1B. Among the 111 

models, 2 models are designated for the treatment targets SCN9A and SCN10A, and the 

remaining 109 models are allocated to side effect targets (one of the side effect targets is 

hERG). We found a total of 150,147 inhibitors for these 111 targets. As shown in Figure 1C, 

all inhibitors associated with side effect targets are screened for their repurposing potential 

using the ML models associated with the treatment targets SCN9A and SCN10A. Moreover, 

all SCN9A and SCN10A inhibitors, including the repurposed ones, are screened for their 

potential side effects with respect to the 109 side effect ML models and ADMET models, 

leading to nearly optimal leads for the treatment targets.

3.2. Binding affinity predictions for the extended drug–target interaction network

Using autoencoder and transformer embeddings, we developed 111 ML models for all 111 

targets and 150,147 compounds in the extended DTI network. The cross-target binding 

affinity (BA) predictions were carried out using these 111 ML models, and the results 

are presented in Figure 2. The diagonal elements of the heatmap represent the Pearson 

correlation coefficient (R) obtained from 10-fold cross-validation for each ML model. 

The mean, maximum, and minimum values of R across the models are 0.77, 0.93, and 

0.25, respectively. Notably, 53 models achieved R values greater than 0.8, indicating high 

predictive performance.

Furthermore, the root-mean-square deviation (RMSD) values of these models, as shown 

in Table S3 in the Supporting Information (available at http://links.lww.com/PAIN/B940), 

range from 0.43 to 1.15 kcal/mol. These values fall within a reasonable range, suggesting 

that the ML models exhibit excellent prediction accuracy and reliable performance for 

binding affinity predictions.
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3.2.1. Cross-target binding affinity predictions for the extended drug–target 
interaction network—In this section, we conduct an analysis of compound cross-target 

interactions to estimate their side effects on other proteins in the protein–protein interaction 

(PPI) network, providing a better understanding of the extended DTI network. The off-

diagonal elements of the heatmap in Figure 2 represent the maximum binding affinity (BA) 

values (ie, BA with the largest absolute values) of inhibitor compounds from one data set 

predicted by other ML models. The labels on the left side of the heatmap correspond to the 

111 inhibitor data sets, whereas the labels on the top of the heatmap correspond to all the 

111 ML models. Each column in the heatmap represents the predictions made by a specific 

model.

For instance, the i-th element in the j-th column indicates the prediction result of the i-th 

data set by the j-th model. These cross-target prediction results serve as indicators of the 

potential side effects of one inhibitor data set on other proteins. In our analysis, we use 

an inhibition threshold value of −9.54 kcal/mol (Ki = 0.1 μM) for the BA values.19 If 

a compound has a BA value below this threshold, it is considered active in terms of its 

biological function. Otherwise, it is classified as an inactive compound.

According to our analysis, of the 12,210 cross-predictions, 9262 were found to exhibit 

side effects based on this threshold value because their predicted maximal BA values were 

below −9.54 kcal/mol. In addition, the remaining 2948 cross-prediction results showed 

weak side effects because their maximal BA values exceeded −9.54 kcal/mol. The color 

of the off-diagonal elements in the heatmap indicates the strength of the side effects, with 

closer proximity to green representing stronger side effects and closer proximity to yellow 

indicating weaker side effects.

It is worth noting that in Figure 2, several yellow vertical lines can be observed, suggesting 

very slight predicted side effects on these proteins. This could be because the majority 

of collected experimental BA labels being larger than −9.54 kcal/mol, which limits the 

predictive power of the ML models in such cases.

The reasons for side effects caused by drug candidates targeting a specific protein are 

often complex, and one possible factor is the presence of similar binding sites on off-target 

proteins. Proteins within the same family often share similar structures or sequences, leading 

to the existence of comparable binding sites. As a result, an inhibitor compound that is 

effective against one protein may also bind to another protein within the same family, giving 

rise to mutual side effects.

As observed in Figure 2, mutual side effects occur among the 3 targets CAMK2A, 

CAMK2B, and CAMK2D, which belong to the calmodulin-dependent protein kinase II 

(CAMK2) family and share similar 3D structural conformations or 2D sequences. This 

observation is further supported by the alignments of their 3D structures and 2D sequences, 

as shown in Fig. S1 of the Supporting Information (available at http://links.lww.com/PAIN/

B940).

We can identify more examples of mutual side effects among proteins within the same 

family. For instance, the fibroblast growth factor target (FGFR) family, which includes 

Chen et al. Page 9

Pain. Author manuscript; available in PMC 2024 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://links.lww.com/PAIN/B940
http://links.lww.com/PAIN/B940


FGFR1, FGFR2, FGFR3, and FGFR4, as well as the mitogen-activated protein kinase 

(MAPK) family, which comprises MAPK3, MAPK8, MAPK9, and MAPK10, exhibit 

mutual side effects. These examples illustrate the occurrence of mutual side effects among 

proteins in the same family, emphasizing the importance of considering family-wide effects 

in drug development and analysis.

3.2.2. Predictions of side effects and repurposing potentials for the extended 
drug–target interaction network—Side effects occur when a drug candidate exhibits 

strong binding affinity to the intended target but inadvertently affects other proteins as 

potential off-target inhibitors. These side effects can be identified through cross-target 

predictions, as illustrated in Figure 3A, for the extended DTI network. Each panel in the 

figure represents a specific treatment target and 2 corresponding off-target proteins or side 

effect targets, indicated by the panel title, x-axis, and y-axis, respectively. The scattered 

points in the plot are color coded based on the experimental binding affinities (BAs) of the 

inhibitors for the treatment target. Red and green colors represent high and low binding 

affinities, respectively. The x-axis and y-axis values represent the predicted BAs obtained 

from 2 machine learning (ML) models constructed using inhibitor data sets for the 2 off-

target proteins or side effect targets.

The blue frames in the 9 panels of Figure 3A indicate regions where no side effects are 

predicted on the 2 side effect targets. The 3 rows of the figure represent different scenarios 

for inhibitors targeting a specific treatment target, showing the presence of side effects on 

zero, one, or both of the given side effect targets. For instance, in the first panel of the 

first row, all active inhibitors for treatment target SCN10A are predicted to have weak 

inhibitory effects, with binding affinity (BA) values greater than −9.54 kcal/mol, on the 2 

side effect targets CAMK2A and CACNA1C. In the first panel of the second row, a part 

of the active inhibitors for treatment target SCN9A is predicted to exhibit strong binding 

affinity to the hERG protein, whereas none of its active inhibitors are predicted to bind to 

the side effect target GAPDH. Furthermore, in the second panel of the third row, most active 

inhibitors of SCN10A are predicted to efficiently bind to both the FLT4 and FGFR1 proteins 

simultaneously.

The repurposing potential of inhibitors can also be determined through cross-target 

predictions. Drug candidates that exhibit weak binding affinity to their designated targets 

but exhibit potent inhibition of other proteins are defined to possess repurposing potential. 

Figure 3B displays 6 prediction cases of repurposing identified on 2 treatment targets 

SCN9A and SCN10A by our models. In the yellow frames, the inactive inhibitors for side 

effect target exhibit strong binding to one treatment target (ie, predicted BAs less than −9.54 

kcal/mol) but weak binding to the other treatment target (ie, predicted BAs greater than 

−9.54 kcal/mol). For example, in the first panel of the first row in Figure 3B, many inactive 

inhibitors for side effect target P2RX3 are predicted to have repurposing potential for either 

SCN9A or SCN10A but not for the other one. Because both SCN9A and SCN10A are 

important treatment targets for drug design in pain treatment, it is crucial to identify more 

drug candidates for these 2 proteins through the virtual screening process. Carbamazepine, 

a voltage-dependent Nav1.7 sodium channel (SCN9A) blocker, has undergone a phase I 

clinical study in humans.39 Our models can be employed to find more inhibitors that can 
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bind to SCN9A, similar to the mechanism of carbamazepine. The second and third rows in 

Figure 3 depict additional cases where inactive inhibitors for a given side effect target have 

repurposing potential for 2 treatment targets.

3.2.3. Protein similarity inferred by cross-target correlations in the drug–
target interaction network—As side effects can arise when a drug candidate binds to 

proteins with similar 3D structures or sequences, the predicted BA values in cross-target 

BA prediction may exhibit correlation. In other words, correlated predicted BA values 

can serve as an indication of similar binding sites or 3D protein structures. Figure 4A 

illustrates a linear correlation between the predicted BAs of inhibitors for PTGS2 on 

CHRM1 and CHRM2 proteins, with a Pearson correlation coefficient R of up to 0.71. 

The high correlation is attributed to the high binding site similarity between CHRM1 and 

CHRM2 proteins, as validated by the alignments of 3D structures and 2D sequences in 

Figure 4A. The 3D structures of the 2 proteins were found to be quite similar, and the 

identity of the 2D binding site sequence reached as high as 63%.

Two additional examples can be observed in Figures 4B and C, demonstrating that the 

predicted BA correlation indicates similar 3D protein structures. The Pearson correlation 

coefficients are 0.82 and 0.72 for the cases in Figure 4B, corresponding to the predicted BAs 

for OPRM1 on CSNK2A2 and CSNK2A1, respectively. These alignments of 3D structures 

and 2D sequences validate the usefulness of cross-prediction in detecting protein similarity.

Furthermore, Figure 4C reveals a bilinear correlation relationship, where the predicted BAs 

of MAPK10 inhibitors not only linearly correlate with MAPK8 and MAPK9 proteins but 

also exhibit a linear correlation with their experimental BA values, as indicated by the color 

coding. This bilinear relationship is confirmed by the alignment of 3D structures and 2D 

sequences of the 3 proteins. This result suggests that a potent MAPK10 inhibitor is likely 

to be a strong binder for both MAPK8 and MAPK9 proteins simultaneously. The high 

structural similarities result in a drug-mediated trilinear target relationship. The observed 

bilinear or trilinear relationship indicates the possibility of developing inhibitors that can 

bind to multiple targets of major pain proteins simultaneously.

3.3. Druggable property screening

Evaluation of ADMET is of utmost importance in drug design and discovery. Absorption, 

distribution, metabolism, excretion, and toxicity encompasses several essential attributes that 

correlated with the pharmacokinetic study of a compound. A promising drug candidate 

should not only exhibit potency against the therapeutic target but also should possess 

favorable ADMET properties. Furthermore, hERG is a crucial potassium ion channel known 

for its contribution to the electrical activity of the heart. When this channel is blocked by a 

drug, it can lead to serious side effects on the heart. Therefore, the evaluation of hERG risk 

is indispensable in drug development and assessment.

In this section, we conducted the evaluation of ADMET using 6 indexes, namely, 

FDAMDD, T1/2, F20%, logP, logS, and Caco-2, along with synthetic accessibility (SAS) 

and hERG risk assessment. FDAMDD represents the FDA maximum recommended daily 

dose, which aims to avoid toxicity in the human body. The half-life (T1/2) refers to the 
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time it takes for the concentration of a drug in the body to decrease by half. A value of 

T1/2 less than 3 hours indicates a shorter half-life. F20% represents the probability of an 

administered drug reaching systemic circulation with less than 20% of the initial dose. This 

parameter is important for assessing the effectiveness, bioavailability, therapeutic efficacy, 

and potential side effects of a drug. LogP refers to the logarithm of the partition coefficient 

of a compound between a nonpolar solvent and water, providing information about its 

hydrophobicity. On the other hand, logS represents the logarithm of the aqueous solubility 

of a compound, which indicates its ability to dissolve in water. Caco-2 is a measure used to 

estimate the in vivo permeability of oral drugs. It provides valuable information about a drug 

candidate’s interaction with efflux transporters, metabolism, and other factors that influence 

its absorption. Synthetic accessibility is employed to assess the feasibility of synthesizing 

a specific compound or molecule, taking into account its structural complexity and the 

availability of synthetic routes.

During the above estimation in this work, ADMETlab 2.0 (https://admetmesh.scbdd.com/) 

solvers were used for ML predictions and provided a set of optimal ranges for these 

ADMET properties.56 The SAS assessment was implemented using Rdkit packages.33 

The optimal ranges of ADMET properties and SAS are listed in Table 1, in which a 

stricter threshold of −8.18 kcal/mol (Ki = 1 μM) is applied to exempt hERG side effects. 

Figure 5 illustrates the ADMET screening of 5 inhibitor data sets, including 3 important 

VGSCs, SCN5A, SCN9A, and SCN10A, as well as 2 important proteins CNR1 and 

steroid receptor coactivator (SRC), that play essential roles in pain treatment. Specifically, 

CNR1, a cannabinoid receptor, is involved in pain modulation through its influence on 

neurotransmitter release, anti-inflammatory effects, and potential effects on neuropathic 

pain. SRC protein, on the other hand, indirectly contributes to pain management by 

enhancing the transcription of anti-inflammatory genes in response to steroid hormone 

receptor activation. The first row of Figure 5 depicts the distributions of FDAMDD and 

hERG side effects of inhibitors from the 5 data sets. The blue frames represent the 

optimal domains of the 2 properties mentioned above. The colors of the points indicate 

the experimental BA values for targets. From this screening, all 5 data sets have sufficient 

compounds with optimal toxicity and hERG side effects. However, for the SCN10A data 

set, there are only a few potent inhibitors in the optimal domains. This suggests that 

ADMET properties and side effects should be taken into account before synthesizing a new 

compound.

The second row of Figure 5 displays the screening results on absorption properties: T1/2 

(half-life) and F20% (bioavailability 20%). It is observed that for all 5 data sets, the 

optimal domain of T1/2 and F20% occupies only a small fraction of chemical space. This 

indicates a strict screening process, emphasizing the critical roles of these 2 properties in 

physicochemical assessment.

The third row of Figure 5 illustrates the screening for logP and logS, which are closely 

related to the distribution of chemicals in the human body. In all 5 data sets, only a small 

portion of potent inhibitors is found within the optimal domain, suggesting that a large 

number of inhibitors are not well absorbed in the human body.
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The last row of Figure 5 presents the screening results for Caco-2 and SAS. These 5 plots 

demonstrate that almost all compounds from the 5 data sets are easy to synthesize, and 

approximately half of the compounds exhibit good cell permeability. Notably, a significant 

number of potent inhibitors fall within the optimal domain.

3.4. Side effect evaluations of existing medications for pain treatment

SCN3A, SCN9A, SCN10A, and SCN11A are genes that encode sodium channels in the Nav 

channels family. These channels play an important role in the generation and propagation 

of action potentials in neurons, including those involved in pain signaling. In addition, 

it has been found that blocking these channels could reduce pain hypersensitivity. There 

are several FDA-approved experimental medications available for the treatment of pain, 

which can be roughly classified into 4 classes: nonopioid analgesics, nonsteroidal anti-

inflammatory drugs (NSAIDs), opioid medications, and others. In this study, we used our 

DTI-based ML models to predict the side effects of these medications.

Acetaminophen, commonly known as Tylenol or paracetamol, is a typical over-the-counter 

nonopioid analgesic used to temporarily relieve mild to moderate pain, such as headaches, 

muscular aches, backaches, toothaches, and premenstrual and menstrual cramps. It is a weak 

inhibitor of both cyclooxygenase (COX)-1 and COX-2 in vitro and eases pain by inhibiting 

the production of prostaglandins, which are chemicals that contribute to pain in the human 

body.

Our BA predictions for acetaminophen on SCN9A and SCN10A are −9.60 kcal/mol and 

−9.29 kcal/mol, respectively, indicating that acetaminophen is a good binder on SCN9A. 

Furthermore, the predicted BA value on hERG from our model is −7.39 kcal/mol, which is 

higher than the hERG side effect threshold of −8.18 kcal/mol, validating the safety profile of 

acetaminophen on hERG. This result agrees with the conclusion of the study by Su et al.50

Our predictions suggest that acetaminophen exhibits the highest inhibitory effect on the 

LATS2 protein, with a predicted BA value of −11.2 kcal/mol. LATS2 is a protein kinase 

that plays a significant role in cell growth regulation, apoptosis, and tumor suppression. 

It is associated with various diseases, including breast cancer, lung cancer, ovarian cancer, 

neurofibromatosis type 2 (NF2), and cardiovascular diseases. Inhibiting the LATS2 protein 

could lead to serious side effects, which might explain the potential reasons for the high 

side effects of acetaminophen, such as liver damage, allergic reactions, skin reactions, 

gastrointestinal issues, blood disorders, and kidney problems.

Nonsteroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen (Advil, Motrin), and 

naproxen (Aleve), are commonly used for the treatment of mild to moderate pain 

accompanied by swelling and inflammation. These medications can inhibit certain enzymes 

in the human body that are released due to tissue damage. Ibuprofen, a nonselective 

inhibitor of the enzyme COX, plays a crucial role in the synthesis of prostaglandins through 

the arachidonic acid pathway. Cyclooxygenase facilitates the conversion of arachidonic 

acid to prostaglandin H2 (PGH2) in the body, which is further transformed into other 

prostaglandins. By inhibiting COX, ibuprofen reduces the production of prostaglandins in 

the body, resulting in pain relief.
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The predicted BA values of ibuprofen for SCN9A and SCN10A are −9.11 and −9.72 kcal/

mol, respectively, indicating strong potency of ibuprofen on SCN10A. The predicted BA 

value for hERG is −7.13 kcal/mol, suggesting a safe hERG-blockade profile. In addition, 

ibuprofen is predicted to be a potent inhibitor of LATS2, USP9X, and MTOR, which are 

the top 3 proteins with the largest absolute predicted BA values (−11.17, −10.68, 210.46 

kcal/mol). Furthermore, the predicted BA value of ibuprofen on TRPM8 is −10.04 kcal/mol, 

validating its strong binding affinity to TRPM8, a thermosensitive ion channel implicated in 

pain signaling, particularly in cold-induced pain or cold allodynia.

Despite its effectiveness, ibuprofen can cause a number of side effects, including nausea, 

constipation or diarrhea, and indigestion (dyspepsia).

Naproxen, like other NSAIDs such as ibuprofen, inhibits COX, leading to analgesic and 

anti-inflammatory effects. It is also a potent inhibitor of sodium channels, as validated by the 

predicted BA values of −9.02 and −9.6 kcal/mol for SCN9A and SCN10A, respectively. The 

predicted BA value of −6.55 kcal/mol for hERG confirms the safety profile of naproxen on 

hERG. Our predictions indicate that naproxen may have side effects on other targets, with 

the top 3 predicted BA values being −11.35, −11.32, and −11.13 kcal/mol for CSNK2A2, 

FGFR2, and LATS2, respectively. This aligns with the known fact that naproxen can cause 

a range of potential side effects, including dizziness, headache, bruising, allergic reactions, 

and stomach pain.38 In addition, naproxen demonstrates strong inhibition of TRPM8 with a 

predicted BA value of −9.97 kcal/mol.

Opioids are powerful pain-relieving medications commonly prescribed for moderate to 

severe pain. Examples of opioid medications include oxycodone (OxyContin, Roxicodone), 

hydrocodone (Vicodin, Hysingla ER), fentanyl (Actiq, Fentora), and morphine (MS Contin), 

among others. They function by binding to opioid receptors in the brain, spinal cord, and 

other parts of the body, thereby reducing the perception of pain. Because of their potential 

for misuse, addiction, and overdose, these medications are subject to strict prescribing 

guidelines.

Oxycodone, a strong semisynthetic opioid, is used medically to treat moderate to severe 

pain. Its mechanism of action involves interacting with opioid receptors in the central 

nervous system. The predicted BA values of oxycodone for SCN9A and SCN10A are −9.75 

and −10.62 kcal/mol, respectively. The predicted BA value for hERG is remarkably low at 

−7.8 kcal/mol, indicating a low potential for hERG side effects, which is consistent with 

the result of the study by Fanoe et al.15 Oxycodone demonstrates strong binding potency 

to the top 3 proteins: ROS1, CSNK2A2, and OPRM1, with the largest predicted BA values 

being 211.77, −11.47, and −11.45 kcal/mol, respectively. In addition, our predictions suggest 

that oxycodone can inhibit the TRPA1 (transient receptor potential ankyrin 1) protein, 

with a predicted BA value of −10.09 kcal/mol. Transient receptor potential ankyrin 1 is a 

thermosensitive ion channel involved in the detection and transmission of pain signals. It is 

known for its role in mediating various types of pain, particularly in response to chemical 

irritants and inflammatory stimuli.
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Hydrocodone is indicated for the relief of acute pain, sometimes in combination with 

acetaminophen or ibuprofen. It is also used for the symptomatic treatment of the common 

cold and allergic rhinitis, often in combination with decongestants, antihistamines, and 

expectorants. Hydrocodone inhibits pain signaling in both the spinal cord and brain. Its 

actions in the brain can also lead to euphoria, respiratory depression, and sedation.51

In our predictions, hydrocodone demonstrates good binding affinities for SCN9A and 

SCN10A, with BA values of −9.72 and −10.56 kcal/mol, respectively. The predicted BA 

value for hERG is −8.16 kcal/mol, suggesting a low potential for side effects on hERG. 

Hydrocodone has the potential to cause serious side effects on the top 3 proteins: ROS1, 

CSNK2A2, and TACR1, with predicted BA values of −11.98, −11.40, and −11.36 kcal/mol, 

respectively. In addition, our findings indicate that hydrocodone is a strong binder to the 

TRPA1 protein, with a predicted BA value of −9.94 kcal/mol.

Some medications prescribed to manage depression and prevent epileptic seizures have been 

found to relieve chronic pain. Tricyclic antidepressants used in the treatment of chronic pain 

include amitriptyline and nortriptyline (Pamelor). Antiseizure medications used for chronic 

nerve pain include gabapentin (Gralise, Neurontin, Horizant) and pregabalin (Lyrica).

Amitriptyline, a tricyclic antidepressant, has been used for decades to treat depression and 

has been investigated for its analgesic properties in pain-related conditions.8 Our predicted 

BA values for SCN9A and SCN10A are −9.74 and −10.04 kcal/mol, respectively, validating 

the potency of amitriptyline in pain treatment according to our predictions. The predicted 

BA value of amitriptyline on hERG is −8.25 kcal/mol, indicating a potential side effect on 

hERG, which conforms to that amitriptyline has been known to induce QT prolongation and 

torsades de pointes, which causes sudden death.27

The 3 strongest predicted BA values are for LATS2, HRH1, and KCNA3 proteins, with 

values of −11.08, −11.01, and −10.61 kcal/mol, respectively. Gabapentin, a structural 

analogue of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), was 

originally developed as an antiepileptic medication. It is now widely used to treat 

neuropathic pain.31 Our predictions suggest that gabapentin has the potential to inhibit 

SCN9A and SCN10A, with BA values of −9.0 and −9.35 kcal/mol, respectively. Moreover, 

gabapentin is predicted to have no side effects on hERG, with a BA value of −6.85 kcal/mol. 

In addition, our predictions show that the 3 strongest predicted BA values are for LATS2, 

KCNA3, and FGFR2, with values of −10.94, −10.61, and −10.6 kcal/mol, respectively.

3.5. Nearly optimal lead compounds from screening and repurposing

We dedicate our efforts to finding more potential inhibitors of the 2 pain treatment targets, 

SCN9A and SCN10A, through the screening and repurposing processes in this section. In 

the process of screening and repurposing, we used 110 ML models to predict the cross-target 

binding affinity. In addition to considering potency, we also ensured that the optimal ranges 

for the ADMET properties and SAS (as listed in Table 1), as well as the hERG side effect, 

were all well satisfied. SCN9A and SCN10A are not only major pain targets but also key 

pharmacological targets in pain treatment. To identify more promising potent compounds for 

these 2 targets, we used the 110 inhibitor data sets as a source of inhibitor compounds.
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During the screening process, we selected potent inhibitor compounds with experimental BA 

values below −9.54 kcal/mol from the inhibitor data sets of the 2 pain treatment targets, 

SCN9A and SCN10A. We then evaluated a series of other properties. It is important to 

note that if a designated inhibitor of one treatment target demonstrates high efficacy on the 

other treatment target, it is not considered a side effect. This is because it is common for an 

inhibitor to be potent on both major pain treatment targets simultaneously. However, we still 

need to evaluate the potential for side effects on the other 108 side effect targets, as well as 

hERG. We require predicted BA values greater than −9.54 kcal/mol to exclude side effects, 

except for hERG, which has a stricter requirement of BA values greater than −8.18 kcal/mol.

For repurposing, we assess the binding potency of all weak inhibitors in the other 108 data 

sets of side effect targets on the 2 pain treatment targets, SCN9A and SCN10A. Therefore, 

we select inactive inhibitors with experimental BA values greater than −9.54 kcal/mol and 

identify those with predicted BA values less than 29.54 kcal/mol on the 2 pain treatment 

targets. In our search for inhibitors with repurposing potential on the pain targets, these 

inhibitors should have no side effects on the other 107 side effect targets, as well as 

hERG. Furthermore, we also study the optimal range of ADMET properties and synthetic 

accessibility.

It is not easy to find inhibitors that satisfy all the aforementioned requirements. In the 

end, we identified 2 inhibitor compounds, CHEMBL1767278 from the MAPK8 data set 

and CHEMBL1453498 from the CASP3 data set, for repurposing. We evaluated additional 

ADMET properties of these 2 molecular compounds using the ADMETlab 2.0 prediction 

solver (https://admetmesh.scbdd.com/). Figures 6A and B show that the 2 compounds 

fall within the optimal ranges of these ADMET properties. For more details on the 

meaning and optimal ranges of the 13 ADMET properties, please refer to Table S4 in 

the Supporting Information (available at http://links.lww.com/PAIN/B940). The compound 

CHEMBL1767278 is predicted to have BA values of −8.13 and −9.68 kcal/mol on 

SCN9A and SCN10A, respectively, whereas the compound CHEMBL1453498 is predicted 

to have values of −9.68 and −8.04 kcal/mol, indicating their potency on SCN10A and 

SCN9A, respectively. Their predicted BA values on hERG are −7.13 and −7.92 kcal/

mol, respectively, suggesting favorable side effect profiles. The representations of the 2 

compounds and their side effect predictions are provided in Figures 6C and D, respectively. 

Furthermore, these 2 compounds are predicted to have no binding or side effects on the 

remaining 96 and 99 proteins, respectively.

Next, we investigated the molecular interactions between the 2 inhibitors and the 2 

main pain treatment targets, SCN9A and SCN10A, using the software AutoDock Vina.23 

Figures 7A and C shows the 3D protein–ligand docking structures, and Figures 7B 

and D shows the 2D interaction diagrams of the 2 compounds, CHEMBL1767278 and 

CHEMBL1453498, respectively. Because of the structural complexity of SCN9A and 

SCN10A, we focused on the docking between the inhibitors and the central sites of the 

targets. AutoDock Vina generated 9 docking poses with different docking scores calculated 

from its scoring function. In our figures, we selected the pose with the highest affinity 

(kcal/mol), where hydrogen bonds are formed between the inhibitors and the 2 pain 

targets SCN9A and SCN10A. In the docking of compound CHEMBL1767278 (Fig. 7B), 
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one strong hydrogen bond with Asn312 (2.85 Å) is formed, whereas in the docking of 

compound CHEMBL1453498 (Fig. 7D), 3 hydrogen bonds with Tyr1696 (2.98 Å, 2.92 Å) 

and Arg1599 (3.22 Å) are formed. The predicted binding energies of these 2 compounds 

with SCN10A and SCN9A are both −9.68 kcal/mol. In addition, we found that neither of 

the 2 compounds formed a covalent bond with the side chains of the targets during the 

docking process, suggesting that hydrogen bonds play vital roles in the interaction between 

the atoms.

4. Conclusion

Pain is a complex sensory and emotional experience that serves as a protective mechanism 

in response to potential or actual tissue damage. Sodium channels, particularly Nav1.3, 

Nav1.7, Nav1.8, and Nav1.9, play a significant role in the generation and transmission of 

pain signals in various pain conditions. However, progress in drug design for pain treatment 

has been relatively slow, and there is a need for more treatment options to be investigated.

Sodium channels are attractive targets for the development of pain medications. Pain affects 

complex molecular and biological activities in the nervous system, involving significant 

protein–protein interactions (PPI) in different brain regions. The development of pain 

treatment medications must take into account the influence of drugs on the PPI networks 

of pain targets. In this study, we construct an extended DTI network informed by 4 

pain-related sodium channels. We develop a machine learning framework to screen and 

propose additional drug candidates for pain reduction. We use 2 molecular fingerprints 

generated by advanced natural language processing (NLP) models based on transformer 

and autoencoder algorithms. These fingerprints are then used to build predictive machine 

learning models employing 3 common machine learning algorithms: SVM, GBDT, and RF. 

A consensus model combining the predictions from these algorithms is used to enhance 

the overall predictive performance. In addition, we apply these machine learning models 

to reevaluate the side effects of existing pain-relieving medications. Our ML models are 

also employed to analyze the repurposing potential of existing inhibitor compounds on 

major pain targets and screen for possible side effects associated with these inhibitors. 

Furthermore, we implement the assessment of ADMET properties using machine learning 

predictions. Finally, we identify a group of promising compounds for major pain targets. 

Further testing through in vitro or animal experiments is necessary to evaluate the toxicity 

and blood–brain barrier permeability characteristics of these candidate compounds.

Our machine learning–based framework provides a novel method for searching candidate 

compounds for pain relief and can be generalized for other diseases with neurological 

implications. Although the sodium channel genes studied in this work are associated with 

pain perception and pain disorders, it is important to note that pain is a complex and 

multifactorial phenomenon involving numerous other factors and pathways. Further research 

is needed to fully understand the roles of these sodium channels in pain processing and to 

explore their potential as therapeutic targets for pain management. We could also use the 

present methodology to carry out a detailed study of endorphin and enkephalin receptors 

in future work, which plays a pivotal role in pain modulation. In addition, future work will 
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be dedicated to stringent experimental validation and to providing robust evidence for the 

practical implications of our findings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The flowchart of screening nearly optimal lead compounds for inhibiting pain-related 

voltage-gated sodium channels (VGSCs). (A) Protein–protein interaction (PPI) networks 

of the 4 VGSCs involve more than 1000 proteins, including 4 treatment targets SCN3A, 

SCN9A, SCN10A, and SCN11A. Each of them has a core and global PPI network. Further 

details of the PPI networks are provided in the Table S1 in the Supporting Information 

(available at: http://links.lww.com/PAIN/B940). (B) The drug–target interaction (DTI) 

network involves 111 targets and 150,147 inhibitor compounds. Here, only 4 treatment 

targets (SCN3A, SCN9A, SCN10A, and SCN11A) with several compounds are displayed 

for simplicity. The yellow dashed lines indicate the connections among 111 targets. (C) 

Predictive models for side effect and repurposing evaluation, as well as ADMET screening. 

ADMET, absorption, distribution, metabolism, excretion, and toxicity.
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Figure 2. 
The heatmap of cross-target binding affinities (BAs) predictions for the extended DTI 

networked informed by 4 pain-related voltage-gated sodium channels. The left labels of the 

heatmap represent all the inhibitor data sets and those above the heatmap mean the machine 

learning (ML) models. The diagonal elements in the heatmap denote the Pearson correlation 

efficient (R) of 10-fold cross-validation for all the ML models. The off-diagonal elements 

in each row indicate the highest BA values of inhibitors of one data sets predicted by 111 

ML models. This heatmap is used to reveal the inhibitor specificity of each data set on other 

protein targets. DTI, drug–target interaction.
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Figure 3. 
Examples of predictions of side effects and repurposing potentials. (A) The first row, second 

row, and third row represent example inhibitor data sets of 2 treatment targets SCN9A 

and SCN10A that have side effects on none, 1, and 2 of the given 2 side effect targets, 

respectively. The blue frames indicate where there are no side effects. (B) Displays example 

inhibitor data sets of side effect targets that are equipped with repurposing potentials on 

treatment targets SCN9A and SCN10A. The yellow frames indicate that the inhibitors have 

repurposing potential for one treatment target but have no side effect on the other treatment 

target.
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Figure 4. 
Three examples of correlated predicted BA values suggesting the structure and/or sequence 

similarities of proteins. In each panel, the x-axis and y-axis represent the predicted BA 

values on 2 other proteins, and the scattered points with colors indicate the experimental 

labels of inhibitors of the target. The 3D structure alignment is shown in the right of the 

panel, and the 2D sequence alignment is shown below. In the 3D structure alignment, 

PDB 6ZG4 and 3UON are used for CHRM1 and CRMH2, PDB 6QY7 and 6QY9 for 

CSNK2A1 and CSNK2A2, PDB 3ELJ, 7N8T, and 3KVX for MAPK8, MAPK9, and 

MAPK10, respectively. BA, binding affinities.
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Figure 5. 
Druggable property screening based on ADMET properties, synthesizability, and hERG 

side effects on compounds from 5 protein data sets: SCN5A, SCN9A, SCN10A, CNR1, 

and SRC. The colors of the points indicate the experimental BAs for these targets. The 

x- and y-axis represent various predicted ADMET properties, synthesizability, or hERG 

side effects. Blue frames highlight the optimal ranges of these properties and side effects. 

ADMET, absorption, distribution, metabolism, excretion, and toxicity.
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Figure 6. 
Assessment of 13 ADMET properties for those molecular compounds with repurposing 

potentials. (A and B) indicate the evaluations of ADMET properties of 2 compounds 

CHEMBL1767278 and CHEMBL1453498, and C and D represent their chemical graphs 

and predictions of side effects, respectively. The boundaries of yellow and red regimes in 

A and B show the upper and lower limits of the optimal ranges for 13 ADMET properties, 

respectively. The blue curves suggest values of the specified 13 ADMET properties. The 

details of these property abbreviations are as following: MW, molecular weight; logP, log 

of octanol/water partition coefficient; logS, log of the aqueous solubility; logD, logP at 

physiological pH 7.4; nHA, number of hydrogen bond acceptors; nHD, number of hydrogen 

bond donors; TPSA, topological polar surface area; nRot, number of rotatable bonds; 

nRing, number of rings; MaxRing, number of atoms in the biggest ring; nHet, number 

of heteroatoms; fChar, formal charge; nRig, number of rigid bonds; ADMET, absorption, 

distribution, metabolism, excretion, and toxicity.
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Figure 7. 
The docking structure of our 2 optimal lead compounds bound to 2 pain targets SCN0A 

and SCN10A, and their 2D interaction diagrams. We use AutoDock Vina to implement 

the protein–ligand docking and find the hydrogen bonds generated during the docking of 2 

compounds.
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Table 1

The optimal ranges of selected absorption, distribution, metabolism, excretion, and toxicity properties and 

synthetic accessibility used for screening compounds in this work.

Property Optimal ranges

 FDAMDD Excellent: 0–0.3; medium: 0.3–0.7; poor: 0.7–1.0

 F20% Excellent: 0–0.3; medium: 0.3–0.7; poor: 0.7–1.0

 Log P The proper range: 0–3 log mol/L

 Log S The proper range: −4–0.5 log mol/L

 T1/2 Excellent: 0–0.3; medium: 0.3–0.7; poor: 0.7–1.0

 Caco-2 The proper range: > −5.15

 SAS The proper range: <6

SAS, synthetic accessibility.

FDAMDD represents the FDA maximum recommended daily dose. Caco-2 is a measure used to estimate the in vivo permeability of oral drugs.
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