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New treatment alternatives 
for primary and metastatic 
colorectal cancer by an integrated 
transcriptome and network 
analyses
Caner Karaca 1,6, Ezgi Demir Karaman 2,6, Asim Leblebici 1, Hasan Kurter 1, Hulya Ellidokuz 3, 
Altug Koc 1, Ender Berat Ellidokuz 4, Zerrin Isik 2* & Yasemin Basbinar 5*

Metastatic colorectal cancer (CRC) is still in need of effective treatments. This study applies a holistic 
approach to propose new targets for treatment of primary and liver metastatic CRC and investigates 
their therapeutic potential in-vitro. An integrative analysis of primary and metastatic CRC samples 
was implemented for alternative target and treatment proposals. Integrated microarray samples were 
grouped based on a co-expression network analysis. Significant gene modules correlated with primary 
CRC and metastatic phenotypes were identified. Network clustering and pathway enrichments 
were applied to gene modules to prioritize potential targets, which were shortlisted by independent 
validation. Finally, drug-target interaction search led to three agents for primary and liver metastatic 
CRC phenotypes. Hesperadin and BAY-1217389 suppress colony formation over a 14-day period, 
with Hesperadin showing additional efficacy in reducing cell viability within 48 h. As both candidates 
target the G2/M phase proteins NEK2 or TTK, we confirmed their anti-proliferative properties by 
Ki-67 staining. Hesperadinin particular arrested the cell cycle at the G2/M phase. IL-29A treatment 
reduced migration and invasion capacities of TGF-β induced metastatic cell lines. In addition, this 
anti-metastatic treatment attenuated TGF-β dependent mesenchymal transition. Network analysis 
suggests IL-29A induces the JAK/STAT pathway in a preventive manner.

Metastasis is the major cause of death in patients with colorectal cancer1. The most common metastasis sites of 
colorectal cancer are the liver, followed by the lung, lymph node, and peritoneum2. Chemotherapy, immuno-
therapy, targeted therapy, and their combinations are used for metastatic colorectal cancer (CRC) treatment3. 
Even despite these current therapies, metastatic CRC still needs enhanced treatments.

Cell cycle regulators have emerged as prominent targets in cancer treatment, considering that cancer is 
fundamentally characterized by uncontrolled proliferation. Various chemotherapeutic agents aim to hinder 
the function of checkpoint proteins involved in cell division, particularly cyclin-dependent kinases (CDKs), to 
impede the signaling for cell division. FDA-approved examples are palbociclib, ribociclib, and abemaciclib, which 
specifically inhibit CDK 4/6. Similarly, the regulation of the G2/M transition and the proper separation of sister 
chromatids during mitosis have been targeted to obstruct cell division and induce aneuploidy. This approach is 
frequently employed, often in combination with other chemotherapy drugs, utilizing aurora kinase inhibitors 
and taxane-based chemotherapeutics in the treatment of various cancers.

The IL-10 family consists of a wide range of cytokines. IL-28A, IL-28B, and IL-29 form the subfamily of IL-204. 
IL-29 exhibits multiple biological activities including immune regulatory activity, anti-viral5, obesity-induced 
inflammation6, and anti-tumor properties7. IL-29 has been shown to have anti-tumor effects on many human 
cancer cells such as melanoma8, neuroendocrine cancer9, colorectal cancer10, and glioblastoma11. However, there 
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is no descriptive study on the effect of IL-29 on the metastatic phenotype of colorectal cancer. In this study, the 
anti-metastatic effect of IL-29 on colorectal cancer cell lines obtained from different metastatic sites was dem-
onstrated for the first time.

Recent bioinformatics studies applied co-expression networks, differential expression gene (DEG), pathway, 
and protein–protein interaction (PPI) analysis on CRC samples. A study used weighted gene co-expression 
network analysis (WGCNA) on CRC samples obtained from two Gene Expression Omnibus (GEO) datasets12. 
After differentially expressed genes of important modules were mapped on the STRING network, then the 
genes with higher degrees were identified as hubs, which were associated with the overall survival of patients. A 
similar analysis workflow was applied, and three hub genes (HCLS1, EVI2B, and CD48) were validated as tumor 
suppressors by the qPCR method13. Another study identified significantly expressed genes between four CRC 
datasets14. The common genes were clustered on the STRING network; core genes of modules were analyzed in 
terms of survival effects and protein levels. A study considered samples of CRC with liver metastasis to iden-
tify metastasis-related pathways15. They applied DEG analysis and WGCNA, finally revealing the roles of the 
complement-coagulation cascade and the focal adhesion pathway in CRC progression. Commonly expressed 
genes of several CRC datasets revealed new biomarkers, which were validated by in-silico analysis to propose new 
therapeutic agents for CRC treatment16. Although several studies considered primary samples to reveal the main 
reasons for CRC development, meta data analysis is quite limited for understanding CRC with liver metastasis.

The current study reveals new targets for the treatment of primary CRC and liver metastatic ones. Microarray 
samples of CRC patients were integrated from different GEO datasets. The integrated samples were analyzed by 
WGCNA. Significant modules were identified, which are highly correlated with primary and metastatic pheno-
types. The important modules were further analyzed by applying network clustering algorithms. The differential 
expression and pathway enrichment analysis revealed target genes, which were validated on two independent 
datasets. The potential compounds targeting selected biomarkers were found by considering gene expression 
regulations. As a final step, three candidate compounds were validated by in-vitro experiments to show their 
anti-proliferative effects on CRC cell lines.

Results
This section presents the experimental results of the applied analysis. The computational results are followed by 
experimental validations.

Gene co‑expression analysis
The training dataset was analyzed using the WGCNA method to create a co-expression network and identify 
gene modules that were highly correlated with given phenotypes. WGCNA utilizes the scale-free topology cri-
terion to construct a gene co-expression network17. The choice of the soft thresholding power (β) is crucial as 
it determines the co-expression similarity to calculate adjacency. To identify the best soft threshold, a network 
topology analysis was conducted for various values, as shown in Supplementary Fig. S1. The scale-free topol-
ogy fit index curve’s highest value was obtained before it flattened out, yielding the soft threshold value of "8".

Figure 1a indicates the correlation coefficient and p-value that represent the relationship between the respec-
tive module eigengenes (in rows) and sample phenotype (in columns) for the training set. A dynamic tree-cutting 
technique was utilized to identify modules that have similar gene expression profiles18. In this regard, a threshold 
of 0.25 height cut was set which corresponds to a correlation of 0.75. The modules with similar expression profiles 
were combined based on this threshold, resulting in 22 different modules. After examining the correlation and 
p-values, we selected six significant modules: the m2 module is for the liver metastasis from the primary CRC 
phenotype; m6 and m7 represent the primary CRC phenotype; m16, m17, and m18 are significant modules for 
the liver metastasis from the normal colon tissue phenotype.

The significant modules were merged to represent related genes into a main module for each phenotype. 
The members of these main modules show opposite mRNA expression patterns, e.g. the module members are 
down-regulated in normal colon samples, same genes are up-regulated in primary CRC samples. Supplementary 
Table S1 shows the number of genes in the main module of each phenotype. A vast number of genes (#7537) 
were observed in the “primary from normal” module, then followed by “metastasis from normal” (#2453) and 
“metastasis from primary” (#733) modules.

Network clustering and submodule selection
The tissue-specific interaction networks of the selected three phenotypes were constructed based on related tissue. 
For the “metastasis from primary” module, its functional interaction network (FIN) was constructed on the liver 
tissue-specific network; for the “primary from normal” module, the FIN was constructed on the colon tissue-
specific FIN; for the “metastasis from normal” module, the FIN was constructed on the liver tissue-specific FIN. 
The total number of genes and interactions in these FINs are given in Supplementary Table S2. Then network-
based clustering algorithms run on these FINs. The performance of each clustering algorithm was calculated 
with evaluation metrics. The obtained results for the three phenotypes are summarized in the following sections.

Submodules for metastasis from primary colon samples
Markov clustering (MCL), fuzzy neighborhood (FN), spectral clustering algorithms as well as Infomap and Label 
Propagation (LP) were used in the FIN created for this phenotype. Five clustering algorithms run on the same 
FIN. The performance of each algorithm was evaluated using both internal and biological metrics, these evalua-
tions are summarized in Supplementary Fig. S2. Considering evaluation metrics, the LP and Infomap algorithms 
achieved the best clustering results. The submodules detected by these two algorithms were re-evaluated with 
their individual Biological Homogeneity Index (BHI), Wang Biological Process (Wang-BP), and Molecular 



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8762  | https://doi.org/10.1038/s41598-024-59101-8

www.nature.com/scientificreports/

Function (Wang-MF) metrics. First, submodules with the highest BHI, Wang-BP, and Wang-MF values were 
analyzed, additionally, the presence of significantly regulated genes in the relevant submodule was considered. 
Accordingly, the analysis was applied to submodules given in Supplementary Table S3 for biomarker selection.

As a result of these analyses, the submodules 1, 12, and 13 of the Infomap algorithm and the submodule 2 of 
the LP algorithm were determined for further biomarker analysis. When all these submodules are considered, 
57 genes represented increased expression values in metastatic samples compared to the primary CRC.

Submodules for primary from normal samples
All clustering algorithms were used in the FIN constructed for the phenotype of primary CRC developed from 
normal colon samples (Supplementary Fig. S3). FN and Spectral algorithms led to the best results. The sub-
modules detected by these two algorithms were re-evaluated by metrics as given in Supplementary Table S4. 
As a result, submodules 2 and 7 in the FN algorithm and submodules 2 and 16 in the Spectral algorithm were 
chosen for further analysis. Within different submodules, 120 genes have increased expressions in primary CRC 
samples compared to the normal colon group. On the other hand, 9 genes showed decreased expressions in the 
same patient groups.

Submodules for metastasis from normal samples
Five clustering algorithms were applied to identify biomarker genes that play an important role in liver metastasis 
development from normal colon samples (Supplementary Fig. S4). We observed that LP and Infomap algorithms 
created too many clusters having few members. Since the results of the FN algorithm are quite consistent, the 
most significant submodules formed by this algorithm were selected for further analysis. For this process, the 
submodules detected by the FN algorithm were re-evaluated by biological metrics summarized in Supplementary 
Table S5; the presence of genes that changed significantly in the relevant submodule was also considered. As 
a result, submodules 1, 4, 5, and 12 were found to be significant. When these submodules were evaluated, 107 
and 10 genes showed increased and decreased expressions, respectively in metastatic samples compared to the 
normal colon group. Supplementary Table S6 lists the genes in all key submodules identified by the clustering 
algorithms in the relevant phenotype.

Validation set analysis
Statistically significant modules were also determined by applying WGCNA to the validation dataset. The Pearson 
correlation and p-values of the selected modules are given in Fig. 1b.

Four significant modules were extracted. Two of modules were in the "primary colon developed from normal 
colon tissue" phenotype (m5, m12), and two of them were in the "primary colon and metastasis developed from 
normal colon tissue" phenotype (m14, m15). Members of modules associated with the same phenotype were 

p≥ 0.05

0.01≤p< 0.05

(b)

-1

m1
m2
m3
m4
m5
m6
m7
m8
m9

m10
m11
m12
m13
m14
m15
m16
m17
m18
m19
m20
m21

(a)

TRAINING VALIDATION

Normal Colon Primary Colon Liver Metastasis Normal Colon Primary Colon Liver Metastasis

m1
m2
m3
m4
m5
m6
m7
m8
m9

m10
m11
m12
m13
m14
m15
m16
m17
m18
m19
m20
m21
m22

0

-0.5

0.5
1

p< 0.01

p - value

Pearson correlation

Figure 1.   Identification of the most related co-expression modules (row) to specific phenotypes (column). The 
size of each circle indicates the p-value, while the color represents the Pearson correlation. (a) The correlation 
heatmap for the training dataset. (b) The correlation heatmap for the validation dataset. The original heatmaps 
of the WGCNA method are reorganized using the ggpubr R-library19.
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combined and two giant modules were obtained, the information on these modules is given in Supplementary 
Table S7.

Based on relevant phenotypes, the genes in the significant modules identified by WGCNA on the validation 
and training datasets were compared, and common genes within the same phenotypes in both datasets were 
extracted. Supplementary Table S8 summarizes the number of these common genes. Supplementary Table S9 
lists their names, gene expression levels, and related phenotypes.

Biomarker selection
A gene enrichment analysis was carried out for common genes given in Supplementary Table S9. Final biomark-
ers were chosen from genes with increased or decreased mRNA expression profiles and involved in significant 
biological processes or pathways.

Biomarkers for primary CRC​
Significantly expressed genes for the development of primary CRC from normal colon tissue were explored. 
Increased levels of mRNA expression were observed for all genes. Based on the gene set enrichment analysis, 
significant KEGG pathways include the cell cycle, p53 signaling pathway, and cellular senescence. Important bio-
logical processes cover positive regulation of the cell cycle process, regulation of G2/M transition of the mitotic cell 
cycle, G1/S transition of the mitotic cell cycle, regulation of signal transduction by p53 class mediator, regulation 
of cell population proliferation, and regulation of the apoptotic process. Details regarding the gene set enrichment 
analysis for primary CRC are provided in Supplementary Table S10.

Biomarkers for primary CRC and metastasis development
Genes that are significantly expressed in the development of primary CRC and metastasis from normal colon 
tissue were examined. Based on the gene set enrichment analysis, important biological processes include nega-
tive regulation of ERK1 and ERK2 cascade and regulation of cell migration. Important hallmarks of cancer terms 
include KRAS signaling up and IL-6/JAK/STAT3 signaling. DUSP10, CLDN1, SERPINA3, and SLPI genes, which 
are involved in important biological processes, show increased expression in both datasets. It was determined that 
SLC9A3R1, CEACAM1, IL10RB, and IL1R2 genes showed decreased expression in both training and validation 
datasets for primary CRC and metastasis. Details regarding the gene set enrichment analysis for primary CRC 
and metastasis are provided in Supplementary Table S11.

Therapeutic drugs
The biomarkers summarized Supplementary Table S12 were mutually observed in significant modules for both 
training and validation datasets, thus they were provided as input to search for drugs that can therapeutically 
target these proteins. The drugs, that can therapeutically target the given biomarkers, were searched from the 
Drug-Gene Interaction Database (DGIdb)20 as explained in the method section.

Drugs suggested for treating primary CRC​
There are 61 biomarker genes with increased expressions in the normal colon and primary CRC samples. As 
a result of drug screening, many drugs were retrieved to target these proteins. Figure 2 shows the enrichment 
results of target biomarkers, associated pathways / processes and their therapeutic drugs. The large drug list was 
re-scanned in the literature by using "tumor growth”, “proliferation”, “cell death”, “apoptosis”, “autophagy”, “G1-S 
arrest”, “invasion”, “EMT mechanism”, or “colorectal cancer” keywords. As a result of all these analyses, more 
specific protein targets and drugs were identified. Supplementary Table S12 shows the limited drug list. Among 
these drugs, the BAY-1217389 and Hesperadin compounds, which inhibit TTK protein kinase, were considered 
for in-vitro experiments to show their efficacy in the primary CRC cell lines.

Drugs suggested for treating liver metastatic CRC​
In the sample group of normal colon, primary CRC, and liver metastasis, there were 42 genes (34 of them with 
decreased, 8 of them with increased mRNA expression). Figure 3 shows the enrichment results of biomarkers 
and their therapeutic drugs. The drugs targeting biomarkers, which work in cancerization and metastasis pro-
cesses, have been investigated. There was no inhibitory group that targets proteins with increased expression 
levels. Among the biomarkers with decreased expressions, the “Peginterferon λ-1a” from the activator group was 
detected for targeting IL10RB, which is a member of the IL-6/JAK/STAT3 signaling pathway (Supplementary 
Table S13). This agent was used to prove its in-vitro efficacy in the liver metastatic CRC cell line.

Experimental validation
Hesperadin decreases cell viability in short‑term cytotoxic effect
In-silico analysis predicts that TTK and NEK2 are promising targets to treat the proliferative behavior of CRC. 
The network analysis indicates these proteins are related to cell division and proliferation. Therefore, the in-
silico model suggests that their potent inhibitors Hesperadin and BAY-1217389 (BAY-12) could decline cancer 
progression (Fig. 4a).

First, we investigated if Hesperadin and BAY-12 could decrease cell viability of grade II-III human colon 
carcinoma lines, HT-29 and HCT-116. The cells were treated with 0.1–1000 nM concentrations of these agents 
and cell viability was measured by formazone forming WST-1 assay. The result points out that Hesperadin has 
a potent effect on the viability. Its IC50 values are 379 nM and 306.1 nM for HCT-116 and HT-29 respectively 
(Fig. 4b,c). Whereas Hesperadin abates cell viability of both lines within this dosage range in 48 h, BAY-12 
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indicates no cytotoxic effect. However, we hypothesized that BAY-12 could have a cytostatic effect in the long 
term due to its possible relation with the cell cycle.

BAY‑1217389 led to a decline in colony formation in 14‑days (long‑term period)
We performed a colony formation assay to estimate if there is a long term cytostatic effect on the cell reproductive 
system. Even though BAY-12 did not cause a cytotoxic effect in 48 h in the WST-1 viability assay, it decreased 
the colony forming capacity. In response to 10 nM of this agent, there was no colony counted after 14 days. 
Similarly, Hesperadin inhibited clonogenic behavior in a dose-dependent manner. HCT-116 cells tolerated this 
agent better than HT-29, consistent with their IC50 values. The survival fraction declined progressively at 15 to 
62.5 nM concentration and the colonies cleared away at 125 nM for HCT-116 (Fig. 4d,e). There were no colonies 
observed in response to a 62.5 nM dose of hesperidin for HT-29 (Fig. 4d,e). Thus, we suggest while HT-29 is more 
vulnerable to Hesperadin treatment, BAY-12 affects both cells at lower doses (10 nM) (Fig. 4f,g).

Even though both Hesperadin and BAY-12 have cytotoxic or cytostatic effects on cell viability in CRC, BAY-
12 was more likely cytostatic in long-term periods considering low response to WST-1 while high performance 
in colony formation. Both candidates have anti-proliferative effects on CRC.

(a) (b)

(c)

Figure 2.   The pathway-gene-drug relations were obtained after gene enrichment and drug screening for normal 
versus primary colon cancer groups. (a) KEGG pathway, (b) GO-Biological Process, and (c) Cancer Hallmark 
term.
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Hesperadin and BAY‑1217328 have anti‑proliferative effect
The effect on viability was researched whether it was an anti-proliferative or cytotoxic response. Immunofluo-
rescence Ki-67 stainings were performed to evaluate proliferative cells. The proliferation index of both lines was 
decreased in a dose dependent response against Hesperadin. While the Ki-67 positive cells were 80% for control 
samples, it was 57.25% and 52.68% for IC50 concentrations of this agent in HT-29 and HCT-116 cells, respectively 
(Fig. 5a–c). Although Hesperadin shows a slightly more potent cytotoxic effect on HT-29 in account of WST-1 
and colony formation assays, there is no statistical difference in Ki-67 count.

Whereas there were no IC50 values measured through WST-1 viability assay in 48 h for BAY-12, 10 nM, or 
higher doses abated colony formation. Henceforward, the anti-proliferative effect of this agent was investigated 
in a range of 10–1000 nM doses. The proliferation indexes of control samples were 83.91% and 93.06%. This 
ratio was reduced to 72.03% and 73.30% in response to 100 nM of BAY-12 treated samples for HT-29 and HCT-
116 cells, respectively (Fig. 5d–f). At higher doses, HT-29 was more sensitive to BAY-12. 1000 nM maximum 
dose decreased Ki-67 positive cell to 56.90% for HT-29 while this highest concentration diminishes the signal 
no more than 70.13% for HCT-116.

Hesperadin and BAY‑1217389 arrest cell cycle at the G2/M phase
Because the Ki-67 biomarker indicates that Hesperadin and BAY-12 have a degree of anti-proliferative effect on 
cell viability and the identified therapeutics target cell cycle regulators TTK and NEK2, we investigate in which 
phase they hinder the cell cycle. To characterize the anti-proliferative mechanism of these drugs, the DNA 
amount of pre-treated cells stained by Rnase I/ Propidium Iodide (PI) assay after 48 h incubation and measured 
in flow cytometry. As shown in Fig. 5g–j, these candidates arrest cell cycles at the G2/M phase in HCT-116 and 
HT-29 cell lines. Hesperadin has a more potent effect on this behavior (56.9%, 61.0% for HCT-116 and HT-29, 
respectively) than Bay-12 (22.6%, 18.1% for HCT-116 and HT-29, respectively).

IL‑29A inhibits the metastatic behavior in colorectal carcinoma
In-silico analysis also predicts the agent Peginterferonλ-1A for metastatic CRC. Network analysis suggested that 
the decrease in the expression level of IL10RB in the IL-6/JAK/STAT3 pathway in metastatic CRC patients may 
be associated with the metastatic phenotype. We thus verified the data derived from in-silico analysis under 
in-vitro conditions.

To validate the effect of the agent Peginterferonλ-1A for metastatic CRC, we investigated its non-pegylated 
form, interferonλ-1A (IL-29A). Firstly, the efficiency of IL-29A on migration and invasion capacities of LoVo 
and JVE-371 metastatic CRC cell lines was identified by transwell assay. IL-29A was treated with 10, 50, and 
100 ng/ml concentrations on LoVo and JVE-371 cell lines at 48 h. In the lymph node metastatic CRC LoVo cell 
line, IL-29A decreased the migration rate at 10, 50 and 100 ng/ml concentrations, respectively, compared to 
the TGFβ-induced control group (Fig. 6a–c, p-value < 0.0001). IL-29A also decreased invasion rate compared 
to the TGFβ-induced control group in increasing concentrations on the LoVo cells (Fig. 6d,f, p-value = 0.0065, 

(a) (b)

(c)

Figure 3.   The pathway-gene-drug relations were obtained after gene enrichment and drug screening for normal 
versus primary colon cancer versus liver metastasis groups. (a) GO-Biological Process, (b) KEGG pathway, and 
(c) Cancer Hallmark term.
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p-value = 0.0003 and p-value < 0.0001). In the liver metastatic colorectal carcinoma JVE-371 cell line, migration, 
and invasion rates were decreased compared with the TGFβ-induced control group (Fig. 6d,e p-value < 0.0001).

Afterwards, epithelial-mesenchymal transition (EMT) was evaluated, since EMT is a highly dynamic process 
that allows cells to transition from the epithelial form to the mesenchymal form. Therefore, EMT leads to the 
initiation of the metastatic cascade21. TGF-β induced JVE-371 cells to induce EMT showed a significant decrease 
in the amount of E-cadherin (Fig. 6g, p-value < 0.0001) and a significant increase in the amount of N-cadherin 
(Fig. 6g,i p-value < 0.0001) compared with the non-TGF-β induced group. A significant increase in the amount 
of E-cadherin was observed when IL29A was applied to TGF-β-induced JVE-371 cells (Fig. 6g,i p-value < 0.0001, 
p-value = 0.0041). At the same time, a significant decrease was observed in the amount of N-cadherin at 50 
and 100 ng/ml concentrations (Fig. 6g,i, p-value < 0.0003, p-value < 0.0274), without any change at 10 ng/ml 
concentration (Fig. 6i. p-value = 0.5951). According to the immunofluorescence staining results, no statistically 
significant change was observed in LoVo cells at 10 ng/ml IL29A concentration compared to the TGFβ-induced 
control group. However, a statistically significant increase in the amount of E-cadherin was observed at 50 ng/ml 
and 100 ng/ml concentrations (Fig. 6g,j, P = 0.4706, p-value = 0.0012, and p-value < 0.0001). Likewise, a significant 
decrease was observed in the amount of N-cadherin, an indicator of mesenchymal phenotype, at increasing 
concentrations of IL29A in LoVo cells compared to the TGFβ-induced control group (Fig. 6g,j, p-value < 0.0001).

Figure 4.   Cell viability and survival graphs in response to drug treatments. (a) A basic graphical abstract of 
in the vitro pipeline indicating hesperadin and BAY-1217389’s mechanism of anti-proliferative and cytotoxic 
effects is shown. While red color represents cancer status, light blue serves as treatment status. The direction of 
the arrows points out an increase (▲) and a decrease (▼). (b) Hesperidin dose–response curve in HCT-116. (c) 
Hesperadin dose response curves in HT-29. Colony images along with relative dose/survival fraction graphs are 
shown for HCT-116 (d,e) and HT-29 (f,g).
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To investigate migrative phenotype, a wound healing assay was established in addition to a transwell migra-
tion assay. We monitored wound closure distance (µm) of LoVo cells for 48 h in control and IL-29 treatment 
groups. IL-29 treatment decreased the capacity of wound closure of LoVo cells at 24 and 48 h, indicating that 
this treatment decreased migrative potential (Fig. 6h,k,l). The data is correlated with the results of the transwell 
migration assay. JVE-371’s growth pattern is not suitable for wound healing assay, therefore we couldn’t monitor 
it in this experiment.

Overall, we investigated the metastatic phenotype by transwell migration invasion capacity, wound closure 
potential, and mesenchymal phenotype. The results indicate that in silico predicted IL-29A attenuates metastatic 
phenotypes in lymph metastatic LoVo and liver metastatic JVE-371 cells.

Discussion
In this study, we present a general pipeline that defines and optimizes new therapeutic targets for CRC treat-
ment through in-silico workflow and experimental research to evaluate their therapeutic potential in-vitro. We 
conducted bioinformatic analyses to identify potential anti-proliferative and anti-metastatic agents for the treat-
ment of CRC. Based on our analysis, we selected three agents: Hesperadin and BAY-1217389 as anti-proliferative 
agents, and IL-29A as an anti-metastatic therapeutic.

Of the three agents Hesperadin, an inhibitor of Aurora kinases, has been studied in various cancers includ-
ing ovarian, kidney, pancreas cancers, and leukemia. It can induce cell cycle arrest and impair spindle assem-
bly checkpoint in cancer cells, leading to reduced cell proliferation and even increased sensitivity to radiation 
therapy22–25. To the best of our knowledge, this study is the first one reporting the anti-cancer effect of Hesperadin 

Figure 5.   Proliferation and cell cycle graphs. Immunofluoresense images of Ki-67 (red) as proliferation marker 
and Hoescht-33342 as counter staining (blue) in response to (a) hesperadin and (d) BAY-1217328 treatments 
are presented. Bar graphs represent proliferation indexes for each doses according to Ki-67 positive cell count 
percentage in hesperadin treated for (b) HCT-116, for (c) HT-29 and BAY-1217389 treated groups for (e) HCT-
116, for (f) HT-29. Cell cycle histograms are stand for (g) HCT-116 and (h) HT-29. Red indicates control, blue 
is hesperadin treated and green is BAY-1217389 treated cells. Bar graphs represent cell cycle phases percentages 
of cell counts are shown for (i) hesperadin and (j) BAY-1217328 treatments. “n.s” stands for non-significant. 
Asterisk (*) indicates p-value < 0.05, and double asterisk (**) means p-value < 0.01.
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Figure 6.   Migration, invasion and EMT capacity in response to IL-29. (a) Cells migrated and (d) invaded 
the lower membrane in transwell assay treated with IL-29 doses and control groups stained with crystal violet 
(dark blue). Bar graphs represent migrated cells by doses of IL-29 for (b) JVE-371 and (c) LoVo. Similarly, 
invaded cells are presented for (e) JVE-371 and (f) LoVo. (g) IL-29 metastatic cell lines are stained with EMT 
markers. Green stands for E-Cadherin, Red is N-Cadherin, and Blue is Hoescht 33,342 (as counterstain). 
Relative protein expression is analyzed according to IF intensity and shown in bar graphs for (i) JVE-371 
and (j) LoVo. (h) Wound healing images are presented. Wound closure in time (k) 0–24 h and (l) 0–48 h are 
shown. Also, Bar graphs represent cell cycle phases percentages of cell counts are shown for hesperadin (i) and 
BAY-1217389 (j) treatments. “n.s” stands for non-significant. Asterisk (*) indicates p < 0.05, double asterisks 
(**) means p-value < 0.01, Triple asterisks (***) means p-value < 0.001, and quadruple asteriks (****) indicates 
p-value < 0.0001.
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on CRC cells. Our validation pointed out that Hesperadin has both cytotoxic and anti-proliferative effects on 
HCT-116 and HT-29 cell lines. Together with Hesperadin as an inhibitor of Aurora kinases, our model also sug-
gested that it could potentially suppress NEK2 and TTK, which (Mps1) are mitotic regulators in the G2/M phase 
of cell division. Since hesperadin and BAY-1217389 target these two regulators of the G2/M checkpoint that are 
associated with colon cancers according to our research panels, we proceeded to examine the in-vitro effects of 
Hesperadin on cell division and proliferation. We observed that Hesperadin arrests the cell cycle at G2/M phase. 
Various studies in other cancer types support our results24,25. Hesperadin has been reported to have a cytotoxic 
effect on cells by causing G2/M phase retention and apoptosis in pancreatic cancer and uveal melanoma24,25. 
Similarly, we suggest that hesperadin causes an anti-proliferative effect and cytotoxicity through G2/M arrest 
and impairment of spindle assembly in CRC.

NEK2 is an intriguing mitotic regulator that offers promising therapeutic potential. Its overexpression has 
been strongly linked to histological differentiation, advanced TNM stage, lymph node metastasis, and tumor 
invasion26,27. Notably, Lu et al. have highlighted that elevated levels of NEK2 protein in CRC indicate the pres-
ence of malignant behavior28. Recent knockdown-based studies suggested that NEK2 inhibition could serve as a 
novel combination treatment29,30. While certain inhibitors like MBM-5 have demonstrated the ability to induce 
apoptosis and polypleoid nuclei through NEK2 inhibition, none of these inhibitors have progressed to clinical 
trials for CRC​31. The majority of irradiation and chemotherapy induced polyploid giant cancer cells (PGCC) 
goes into cell death or lose proliferative capacity. However, the PGCC population is also related to relapse and 
therapy-resistance32. Recently, NEK2 inhibition has been found to impair oncogenesis and radioresistance in 
cervical cancer33. Therefore, combination approaches of radio- and chemotherapy with hesperadin would be 
promising to decrease relapse and resistance. Consequently, the pursuit of new drug candidates targeting NEK2 
continues unabated.

Recent studies suggest that inhibiting monopolar spindle 1 (MPS1) may be a promising new approach to 
treating cancer. The expression of the TTK gene is significantly reduced or absent in quiescent cells and tissues 
with a low proliferation index34. In contrast to conventional antimitotic therapies, emerging evidence suggests 
that the strategy is not to arrest cell proliferation, but rather to inactivate the spindle assembly checkpoint. This 
inhibition therapy leads to aneuploidy and ultimately cell death35,36. Our in-silico model suggests MPS1 as a 
promising target in CRC. Our experimental validation indicates that BAY-1217389, an MPS1 inhibitor, has a 
long-term effect viability of HCT-116 and HT-29 cell lines supporting the idea. Yet, there are a limited number 
of studies indicating that inhibiting TTK leads to the promotion of aneuploidy and induction of cell death in 
CRC​37. Schulze et al. reported that BAY-1217389 also inhibits HT-29 cell viability at IC50 62 nM in 48 h36. Also, 
ovarian tumor xenograft models showed moderate efficacy as a monotherapy in preclinical studies38 and good 
tolerability without increasing toxicity when combined with paclitaxel in preclinical studies. However, a phase 
I clinical trial on the combination of BAY-1217389 with paclitaxel has shown considerable toxicity without a 
clear therapeutic window in breast and lung cancers39. Together with results in colon carcinoma, these studies 
suggest that further investigation is needed to optimize this promising approach and identify clinically viable 
combinations with BAY-1217389 for translation into the clinic.

The metastatic effect of INF-λ has not yet been fully clarified and there are opposite ideas about the effect 
of INF-λ in literature. Lee et al. claimed that IL-28A, also known as INF-λ2, induced cell migration by NF-κB-
dependent matrix metalloproteinases-9 expression in bladder cancer40. Likewise, in different studies, it has been 
shown that INF-λ2 induces cancer cell migration and angiogenesis in mouse and canine carcinoma cells41,42. 
On the other hand, Gao et al. have shown that INF- λ1 (IL-29) suppressed invasion and increased autophagy in 
human osteosarcoma cells43. Similarly, Hubert et al. suggest that both the receptor and the IFN-λ correlated with 
good prognosis in breast cancer patients. Moreover, they point out that a conventional dendritic cell 1, which 
synthesizes INF- λ1, is negatively correlated with EMT transition44. To the best of our knowledge, we reported 
for the first time the effects of IL-29 on the metastatic phenotype of CRC. Our experiments revealed that IL-29 
suppresses both migratory and invasive behavior for human lymph nodes and liver metastatic CRC cell lines. 
In addition, TGF-β induced epithelial-mesenchymal transition, which is an inducer marker of the metastatic 
process, is inhibited by IL-29. Recently, Zhang et al. claimed that type III interferons including IL-29 activate 
JAK1 and STAT1 signaling pathway to repress migration and invasion in breast carcinoma cell line MCF-745. 
Similarly, our network analysis indicates that metastatic behavior is correlated to diminished function of the IL-6/
JAK/STAT pathway due to decreased expression of IL10RB. Collectively, PEG-IFN-λ1a, which is the pegylated 
form of IL-29, would be promising anti-metastatic therapeutic to restore the protective function of IL-6/JAK/
STAT pathway due to IL10RB activation in CRC.

This study proposes new targets for treatment of primary and liver metastatic CRC. The validations of BAY-
1217389 and hesperadin revealed their anti-proliferative effects on HCT-116 and HT-29 cell lines. Additionally, 
they have the potential to arrest cell cycles at the G2/M phase. On the other hand, IL29A decreased the migra-
tion and invasion capacities of LoVo and JVE-371 metastatic CRC cell lines. Although these experiments have 
potential as alternative CRC treatment, there is a need for further investigation for optimization of the treatment 
protocol.

Methods
Data analysis
Tissue samples for normal colon, various stages of CRC, and liver metastases from CRC were retrieved from the 
GEO database12. Twelve datasets using the Affymetrix hgu133plus2 chip were selected. The first nine microarrays 
were used to train the model, and the other three were used for in-silico validation of the identified biomarkers. 
Table 1 shows the total number of samples for both the training and validation datasets. If it is provided in the 
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GEO repository, the demographic data (sex, age) and sample type (normal, primary, metastatic, etc.) are sum-
marized in Supplementary Table S14.

Various preprocessing steps have been applied on the microarray samples. Firstly, the "rma" (Robust Multi-
Array Average) method of the "affy" library in Bioconductor was used for the normalization of probes46. After 
this normalization process, the remaining probes were labeled by the gene "Entrez Identifier" and the probes 
with "NA" gene identifiers were eliminated. A gene can be represented by more than one probe in microarray 
chips. To resolve this issue, the median value of mRNA measurements was calculated for repetitive probes and 
this median value was assigned as the mRNA expression value for the relevant gene. Since each of the normalized 
data sets is produced from experiments performed by different laboratories, it is necessary to reduce their batch 
effect to obtain statistically more meaningful results. For this purpose, the "Combat" function in the "sva" package 
in Bioconductor is used47. Supplementary Fig. S5 presents data distribution before and after the removal of the 
batch effect. As the batch effect was reduced, it was observed that phenotype clusters showed better separation.

All these data preprocessing methods were also applied to the validation datasets by following the same steps. 
As a result, a total of 20,174 probes representing individual gene regions remained for 194 samples in the training 
dataset and 86 samples in the validation set.

Construction of tissue‑specific functional interaction networks
An integrated FIN was constructed using interaction data from the study of Linghu et al.48. This network uses 
protein pairs that participate in the same biological process. In this network structure, each node is a human 
protein, and an interaction (link) connecting two proteins shows their functional similarity. The FIN consists 
of 20,790 proteins and 21,952,150 interactions. The weight value of each interaction represents the similarity of 
biological function between two proteins, and these values range from 0 to 1. Proteins with very low functional 
similarity (those within the 0–0.1 range) were excluded. After this filtering, 15,002 proteins and 334,225 interac-
tions remained in the FIN.

Proteins that are not synthesized in the relevant healthy (colon or liver) tissue and the connections between 
them were extracted from the original FIN by using the "Tissue Atlas" data from the "Human Protein Atlas" 
Project49. Thus, noise that may be caused by irrelevant proteins was prevented; liver and colon-specific FINs 
were obtained. As a result of this analysis, the liver-specific FIN covered 13,184 genes and 200,492 common 
interactions. The colon-specific FIN contained 14,486 genes and 234,189 interactions. Then, submodules on these 
tissue-specific networks were determined by using the "components" function in the "igraph" library50. For liver 
tissue, 27 submodules were identified, with the largest module containing 10,359 genes and 200,458 links. For 
colon tissue, 24 submodules were identified, with the largest module containing 11,355 genes and 234,152 links. 
The following analyses were continued with the largest modules obtained for both tissues.

Weighted gene co‑expression network analysis
The WGCNA method was used to construct a gene co-expression network for 194 samples in the training set 
and 86 samples in the validation datasets, individually. It was aimed to determine the gene expression modules 
showing the highest correlation with the considered phenotypes of patients.

First, the "pickSoftThreshold" function was used to select an appropriate soft-thresholding power for network 
construction by calculating the scale-free topology fit index for several powers17. Next, a weighted adjacency 
matrix representing a gene co-expression network was constructed using this threshold value. Additionally, the 
adjacency matrix was converted into a topological overlap matrix (TOM) to estimate gene connectivity in the 
network. The hierarchical clustering of the TOM-based dissimilarity matrix calculated by subtracting the TOM 
from 1 (with the "hclust" function) was used. The clustering tree was pruned with the dynamic tree-cutting 

Table 1.   Dataset details.

GEO ID Normal colon Primary colon Metastatic liver Training set Validation set

GSE4107 10 12 ✓

GSE4183 8 15 ✓

GSE8671 32 ✓

GSE9348 12 12 ✓

GSE10714 3 7 ✓

GSE10961 18 ✓

GSE13471 4 4 ✓

GSE15960 6 6 ✓

GSE18105 17 28 ✓

GSE18462 2 2 2 ✓

GSE37364 38 27 ✓

GSE40367 8 7 ✓

Training 92 84 18

Validation 40 37 9

Total 132 121 27
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method from the “dynamicTreeCut” package, and significant modules with similar gene expression profiles 
were identified and labeled by a different color18. The original heatmap of the WGCNA method, which shows 
the relationship between the respective module eigengenes and sample phenotypes, is reorganized using the 
ggballoonplot function of the ggpubr R-library19.

Implementation of clustering algorithms
Genes in each selected module were pooled and directly mapped on colon or liver specific FINs. For this process, 
the phenotypes associated with each module were considered. The "ego" function in the "igraph" library is used 
for this filtering process50. A network structure in which the genes in each module are directly adjacent/neighbor 
to each other in the FIN was considered for further analysis.

When analyzing complex and large networks, traditional clustering methods that only consider genes can 
lead to insufficient module generations. For this reason, network-based clustering methodologies, which both 
consider the genes and interaction weights in the network, were used to analyze the functional properties of the 
networks and identify the interacting genes in the modules. There are many algorithms for network clustering, as 
well as several different libraries available for their implementation. Since colon and liver specific FINs comprised 
more than 10,000 nodes and more than 200,000 weighted edges, this required us to choose the algorithms we used 
based on their runtime, ability to handle large data sets and return a reasonable number of clusters. MCL, FN, 
and spectral clustering algorithms were run separately on the same network (colon specific FIN or liver specific 
FIN) to find the most significant submodules in terms of biological functions. Due to a lack of finding statistically 
significant results for phenotypes of “metastasis development from normal colon tissue” and “metastasis develop-
ment from primary colon cancer”, Infomap and LP clustering algorithms were also applied for these phenotypes.

The MCL algorithm runs using libraries in Python and R languages. Since the highest modularity score was 
obtained when the inflation operator was "1.2" and the expansion operator was "2", the algorithm runs with these 
values. For the fuzzy neighborhood algorithm, the "cluster" function in the “ProNet” package was used by setting 
the method parameter as "FN". For the spectral clustering algorithm, the "SpectralClustering" function in the 
Python "Sklearn" library was used. The algorithm runs with the following parameter values: affinity as "precom-
puted", assign_labels as "discretize", and random_state as "0". The "cluster_infomap" function in the "igraph" 
library was used for the infomap algorithm, and the "cluster_label_prop" function was used for the LP algorithm.

The performance of each clustering algorithm was evaluated using both internal and biological metrics. Inter-
nal evaluation metrics used are modularity and silhouette. Biological metrics assess the capability of a clustering 
algorithm to produce more biologically significant gene modules. The biological metrics are the BHI, Wang-BP, 
and Wang-MF Index. Details about the metrics used were described in our previous study51. The submodules that 
provide the optimum clustering results were re-evaluated with the individual BHI, Wang-BP, and Wang-MF cri-
teria, and finally the submodules with the highest biological evaluation criteria were selected for further analysis.

Gene expression analysis
Gene expression analysis was also performed to show the mRNA changes between patient groups (e.g. normal 
colon vs. primary colon) based on the phenotypes of the modules obtained by WGCNA. In this analysis, both 
the student’s t test and fold change calculation were applied. The p-values were corrected by the “False positive 
rate (FDR)” method. Statistically significant gene lists were obtained by filtering genes with absolute fold change 
values > 1.0 and FDR < 0.05. Next, the mutual genes were identified by intersecting genes in the selected modules 
and statistically significant ones for the same phenotype group. Then, significantly expressed genes within these 
selected submodules were proposed for candidate biomarkers.

In‑silico validation of biomarkers
The same systems biology methods were applied on the validation dataset and the potential of biomarker genes 
identified on the training set was re-evaluated. After the data preprocessing stage, WGCNA was performed with 
the expression data of 20,174 genes for a total of 86 patients in the validation set. The genes in the significant 
modules obtained from the WGCNA applied on the validation samples and the sub-modules obtained from the 
analysis of the training dataset were compared based on the relevant phenotypes, and the mutual genes observed 
in the same phenotypes in both datasets were determined. The EnrichR enrichment library identified the sig-
nificant biological processes (GO-BP, GO-MF) and signaling pathways (KEGG) of the mutual genes by setting 
the FDR < 0.05 threshold. To determine expression changes of genes obtained in the modules of WGCNA, the 
genes showing statistically significant expression changes were selected. Finally, the biomarkers were identified by 
selecting genes with significant mRNA expressions enriched within the related biological processes and pathways.

Therapeutic drug identification
DGIdb combines information from 41 different databases and presents drug and target protein interactions both 
as a web interface and as an R package20. Although drug interactions are defined in many modes of actions, we 
grouped them into two main groups. The activatory mode covers drugs that increase the biological activity or 
expression of a target. The inhibitory mode includes drugs that reduce the biological activity or expression of a 
target. The inhibitor group contains antagonist, antibody, antisense oligonucleotide, blocker, cleavage, inhibitor, 
inhibitory allosteric modulator, inverse agonist, negative modulator, partial antagonist, and suppressor expres-
sions; while the activator contains agonist, chaperone, cofactor, inducer, partial agonist, positive modulator. The 
drugs in the activator group were used for targets with decreased expression, and the inhibitor group worked 
for targets with increased expression.

As a general search approach, targeting oncogenes with increased expression in tumor tissues is a more stra-
tegic method, as it is known to produce fewer side effects than targeting tumor suppressor genes with decreased 
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expression in cancer. Therefore, compound screening was first focused on genes with increased expression. If 
a candidate drug was not found in this screening, the target genes with decreased expression were searched 
within the activator group drugs. The entire search process was done using the rDGIdb R package of the DGIdb.

Cell culture
HCT-116 (CCL-247, ATCC), HT-29 (HTB-38, ATCC), Lovo (CCL-229, ATCC), and JVE-371 (ACC 825, DSMZ) 
cell lines are cultured to model in vitro colon adenocarcinoma and its liver metastasis. HCT-116, HT-29, and 
LoVo lines are cultured in complete media consisting of DMEM/Ham’s F12 media (E0500-210, Cegrogen) com-
plemented with 10% fetal bovine serum (FBS) and peniciline/streptomycin. Metastatic JVE-371 cells were grown 
in RPMI-1640 (E0500-360, ATCC) enriched with 20% FBS. All lines were cultured at 37 °C with a humidified 
5% CO2 atmosphere.

Cell viability assay
Cell viability was measured with formazone forming WST-1 assay according to the manufacturer’s protocol. 
Cultured cells were trypsinized and counted with trypan blue in hemocytometer and seeded 104 cells per well. 
After 24 h of incubation to let the cells attach and get their morphology, cells are treated with 0.1–1000 nM 
concentrations of drug candidates for 24 and 48 h to estimate IC50 values. Absorbance values were measured at 
430 nm with 650 nM reference wavelength.

Colony formation assay
To estimate cytotoxicity and cell reproductive death induced by candidate agents, a colony formation assay was 
established. 103 Cells were seeded per well in 6-well plates and cultured in complete media supplemented with 
5 doses in the range of minimum to IC50 doses for 14 days. Every third day culture media were renewed. Cells 
were fixed with ice-cold methanol and stained with crystal violet (0.5% v/v). Colonies were photographed and 
counted with the ImageJ software.

Immunofluorescence microscopy (IF)
Immunofluorescence imaging was established to display and measure proliferative and mesenchymal phenotypes 
in response to drug candidates. Cells were seeded on 96-well plate, washed three times with PBS, and fixed with 
ice-cold methanol. Then they were blocked with 1% Bovine Serum Albumin (BSA), followed by incubation 
with primer antibodies (rabbit pAb anti-67, ABCAM; rabbit mAb N-Cadherin, Thermofisher Sc.; Mouse mAB 
E-Cadherin, Thermofisher Sc.) overnight. Cells were washed three more times and treated with anti-rabbit or 
anti-mouse goat seconder antibodies (anti-rabbit goat Alexa Fluor 568, Thermofisher Sc.; anti-mouse goat Alexa 
Fluor 488, Thermofisher Sc.; dilution 1:1000) for 1 h at room temperature.

Cell cycle assay
Cell cycle phases were measured by RNase I/ Propidium Iodide (PI) assay in response to drug candidates. Fol-
lowing the drug treatment by hesperadin and Bay-1217389, cells were harvested and fixed with drop-based 
ice-cold 70% ethanol while vortexing the samples. Fixed samples were washed three times with cold PBS to 
remove excessive ethanol before flow cytometry analysis. Samples were treated with RNase A (0.5 µg/ml)/PI and 
incubated overnight. Samples were analyzed by flow cytometry.

Wound healing
Cells were seeded in 24-well plates and cultured until they covered the well surface to nearly 80% confluency. 
Then they were stretched by 100 µl pipette tips to produce wounds. Culture media refreshed with supplemented 
complete media with IC10 and IC50 drug doses. The closure was observed after 0-, 24-, and 48-h incubation 
with an inverted microscope (Zeiss Axio Vert.1, Germany). The images of each well were captured three different 
points and repeated independently three times.

Transwell migration and invasion assay
Transwell assays were performed in 24-well inserts with 8.0 µM pore size (a) for cell migration and invasion. 
Before the experiment was established, cells were starved in serum-free media overnight. In addition, upper 
wells were coated with 200 µl of matrigel to model invasion through the extracellular matrix. 5 × 104 cells were 
seeded in upperwells of inserts in serum-free media (three replicates for each dose). Then, Inserts were placed 
into complete media (with 10% FBS). Both migration and invasion experiments were observed for 24 and 48 h. 
Cells in the upper chambers were removed and migrated/invaded cells were fixed with ice-cold methanol and 
stained with crystal violet (0.5% v/v). The cells were imaged and counted with an inverted microscope.

Data availability
All patient samples are available from the GEO database (accession numbers: GSE4107, GSE4183, GSE8671, 
GSE9348, GSE10714, GSE10961, GSE13471, GSE15960, GSE18105, GSE18462, GSE37364, GSE40367).
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