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Abstract 
Spatial transcriptomics (ST) has become a powerful tool for exploring the spatial organization of gene expression in tissues. Imaging-
based methods, though offering superior spatial resolutions at the single-cell level, are limited in either the number of imaged genes or 
the sensitivity of gene detection. Existing approaches for enhancing ST rely on the similarity between ST cells and reference single-cell 
RNA sequencing (scRNA-seq) cells. In contrast, we introduce stDiff, which leverages relationships between gene expression abundance 
in scRNA-seq data to enhance ST. stDiff employs a conditional diffusion model, capturing gene expression abundance relationships 
in scRNA-seq data through two Markov processes: one introducing noise to transcriptomics data and the other denoising to recover 
them. The missing portion of ST is predicted by incorporating the original ST data into the denoising process. In our comprehensive 
performance evaluation across 16 datasets, utilizing multiple clustering and similarity metrics, stDiff stands out for its exceptional 
ability to preserve topological structures among cells, positioning itself as a robust solution for cell population identification. Moreover, 
stDiff’s enhancement outcomes closely mirror the actual ST data within the batch space. Across diverse spatial expression patterns, 
our model accurately reconstructs them, delineating distinct spatial boundaries. This highlights stDiff’s capability to unify the observed 
and predicted segments of ST data for subsequent analysis. We anticipate that stDiff, with its innovative approach, will contribute to 
advancing ST imputation methodologies. 
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INTRODUCTION 
Single-cell RNA sequencing (scRNA-seq) is a high-throughput 
technique utilized to assess gene expression at the individual cell 
level, affording researchers a profound understanding of cellular 
heterogeneity. However, scRNA-seq involves a cell dissociation 
step, resulting in the loss of spatial context. Because of the impor-
tance of spatial information in comprehending intricate physi-
ological processes and enhancing our understanding of disease 
pathology, spatial transcriptomics (ST) emerges as an advanced 
method for measuring gene expression in tissue or cell sam-
ples while retaining spatial location information. This technology 
empowers researchers to unravel the spatial distribution of gene 
expression in tissues, contributing to insights into cell types, func-
tions, interactions, and critical details in developmental, disease, 
and biological processes. 

Currently, ST technologies can be broadly classified into two 
main categories. The first category encompasses imaging-based 
technologies such as MERFISH [1], osmFISH [2] and seqFISH+ 
[3]. While excelling in single-cell resolution, this technology is 
typically limited to hundreds of preselected genes. The second 

category involves sequencing-based technologies using spatial 
barcoding, including methods like Slide-seq [4], 10x Visium and 
Stereo-seq [5]. Although this category can detect transcriptome-
wide gene expression, it operates at a spatial resolution larger 
than a single cell and has a limited capture rate. Researchers 
are currently utilizing scRNA-seq data to enhance ST data to 
transcriptome-wide, or deconvolve ST data to infer the cell-type 
composition in a spatial spot. 

In recent years, various models have been proposed to impute 
ST data based on reference scRNA-seq data. These models, includ-
ing Tangram [6], gimVI [7], stPlus [8], SpaGE [9], uniPort [10] and  
SpatialScope [11], assume that scRNA-seq data and ST data share 
similar gene expression distributions. They identify similarities 
between scRNA-seq cells and ST cells by examining the expres-
sion patterns of shared genes. Then, these methods use referenc-
ing similar scRNA-seq cells to complete unmeasured portions in 
the ST data. Consequently, the accuracy of aligning cells from the 
two different -omics significantly influences imputation results. 

Due to the sparsity of both scRNA-seq and ST data and 
the reliance on a limited number of shared gene expression
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abundances for calculating similarity between scRNA-seq cells 
and ST cells, finding precise alignments is often challeng-
ing. Moreover, batch effect between scRNA-seq data and ST 
data poses an additional challenge in establishing accurate 
alignments between cells of the two -omics through shared 
genes. 

Furthermore, when using scRNA-seq cells as a reference for 
imputation, either through reconstruction via a decoder [7] or  
averaging over the top K similar scRNA-seq cells [8, 9], it is 
difficult to avoid introducing batch bias from scRNA-seq. As a 
result, the measured gene expression in ST and the predicted gene 
expression exist in different batch spaces, thereby increasing the 
complexity of downstream analysis tasks. 

Cells serve as the fundamental units that collectively form 
the intricate structure of biological tissues. Within multicellular 
organisms, cell types differentiate through the synthesis and 
accumulation of distinct sets of RNA molecules. The specific 
combination and regulation of expressed genes within a cell 
contribute to its unique cell type. Gene expression patterns play a 
crucial role in defining and maintaining cell identity, and the coor-
dinated regulation of genes is fundamental to establishing and 
preserving various cell types in biological organisms. In essence, 
a sophisticated control logic is embedded in the gene expression 
profile. ScRNA-seq data reveal the expression pattern in a cell, 
providing an opportunity to uncover the regulatory relationships 
that govern the gene expression profile. Since scRNA-seq data 
and ST data share the same gene expression distributions, the 
control rules learned from scRNA-seq data can be employed 
to impute the unmeasured portions in the ST data. Consider-
ing that the control rules for expression vary among different 
cell types, the appropriate set of rules is selected based on the 
measured gene of an ST cell. In summary, our enhancement 
strategy does not seek similarity between scRNA-seq cells and 
ST cells; instead, it involves learning the regulatory rules hidden 
in scRNA-seq data and utilizing them to impute ST data, guided 
by the ST cell itself. This process is analogous to treating each 
scRNA-seq cell as a complete image, with the ST data seen as 
a masked and perturbed version of that image. The imputa-
tion task for ST data is comparable to completing the masked 
image. 

In this paper, we introduce a novel method named stDiff 
that employs a diffusion model to comprehend the gene 
expression relationships within scRNA-seq data. Its objective 
is to impute missing gene expressions in ST data by leveraging 
the learned gene expression relationships. While diffusion 
models [12, 13] have achieved notable success in the field 
of image processing and demonstrated excellence in protein 
generation [14], their application in genomics remains relatively 
limited. 

We have conducted comparative experiments on 16 data sets, 
evaluating our model against several representative methods. The 
results indicate that our model yields the best clustering results 
and exhibits strong competitiveness in terms of the correlation 
between predicted and real data. This suggests that stDiff effec-
tively preserves the global topological relationships among cells 
when enhancing missing gene expressions in ST data, showcasing 
strong capabilities in identifying cell populations. Furthermore, 
the enhancement results of our model closely resemble real ST 
data in batch space, and for various spatial expression patterns, 
our model accurately reconstructs them with clear spatial bound-
aries. This underscores that stDiff enables the integration of the 
measured and predicted portions of ST data for downstream 
analysis. 

MATERIALS AND METHODS 
Methods 
ST data and reference scRNA-seq data, derived from the same 
biological tissue or organ, exhibit similar gene expression regu-
lation relationships and profiles across identical cell types. How-
ever, the two -omics data types originate from distinct exper-
imental platforms, introducing specific technical noise to the 
actual gene expression data. In light of this, we propose stDiff, a 
model designed to discern the relationships between genes within 
scRNA-seq data. Subsequently, we leverage this model to impute 
ST data, guided by the existing measured ST data. 

stDiff is a denoising diffusion probability model (DDPM) com-
posed of two interconnected Markov chains [12]: forward diffusion 
and reverse diffusion. Illustrated in Figure 1(A), the forward 
diffusion process of stDiff gradually introduces random noise to 
the initial RNA data x0, utilizing a known conditional distribution 
q(xt|xt−1). This process continues incrementally until the data 
distribution converges to the prior distribution (Gaussian noise), 
where t denotes the time step for the gradual addition of noise. 
In contrast, the reverse diffusion process employs the learned 
denoising conditional distribution pθ (xt−1|xt) to progressively 
recover the original data from the given prior. Specifically, starting 
with a noise matrix xT ∼ N (0, I), it denoises step by step to ulti-
mately generate a target c × g two-dimensional matrix x0

′, where  
c represents the number of cells and g represents the number of 
genes. 

The training phase of stDiff, as shown in Figure 1(B), involves  
learning the complex functional relationship between gene 
expression abundance during noise introduction and denoising 
in scRNA-seq data. To enhance the robustness of stDiff, we 
commence by applying perturbation to the scRNA-seq data. 
Considering that batch effects introduce variations in noise 
between ST data and reference scRNA-seq data, random noise 
is introduced into the scRNA-seq data (represented as x0). This 
step aims to diversify the training data while preserving gene 
relationships. The goal is to prevent the model from excessively 
focusing on the absolute values of gene expression in scRNA-
seq data and instead emphasize the interrelationships between 
gene expressions. The augmented scRNA-seq data, denoted as x̂0, 
subsequently serves as the training dataset. 

During each training iteration, a time step t is randomly sam-
pled from a uniform distribution {1, ..., T}. Following Equation (2), 
Gaussian noise ε is added to the scRNA-seq data at the corre-
sponding time step t, resulting in x̂t: 

q(x̂t | x̂0) = N (x̂t | √
γtx̂0, (1 − γt)I), (1)  

x̂t = √
γtx̂0 + √

1 − γtε, ε ∼ N (0, I), (2)  

where γt = �t 
i=1αi, and the hyperparameters α1:T are determined 

by the cosine function in Equation (3), ensuring 0 < αt < 1. 

αt = cos2

(
t 
T + 0.008 

1.008 
· π 

2

)
(3) 

These parameters control the mean and variance of the noise 
added at each iteration. 

Subsequently, the unique gene part of x̂t and the shared gene 
part of x̂0 are selectively extracted and combined to form the input 
x̂

′
t. The term unique gene part’ refers to genes specific to scRNA-

seq data, while shared gene part’ denotes genes measured in both 
scRNA-seq data and ST data. The outcome achieved by masking
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Figure 1. Framework of stDiff. (A) Brief framework of DDPM. The forward diffusion process q (left to right) gradually introduces Gaussian noise to the 
target data. The reverse process pθ (right to left) iteratively denoises the target data. (B) Training process of stDiff. ScRNA-seq data x0 undergoes noise 
perturbation to get x̂0. It is then introduced noise dependent on time step t, resulting in x̂t. Shared part of x̂0 and unique part of x̂t are concatenated 
to form x̂

′
t. Finally, a denoising network fθ is trained to predict the introduced noise. The training process is guided by the shared gene part of x̂0. (C) 

Inference process of stDiff. ST data serve as condition to guide the learned denoising network fθ to denoise step by step from a random noise. The final 
result after removing introduced noise is the predicted imputation for ST data. 

out the unique gene part of x̂0 is represented as the condition y. 
x̂

′
t and the condition y are then fed into the denoising network fθ 

to predict the added noise ε
′
: 

x̂
′
t = x̂0 ∗ m + x̂t ∗ (1 − m) (4) 

y = x̂0 ∗ m (5)

ε
′ = fθ (x̂

′
t, y, t) (6) 

where m ∈ {0, 1}c×g, the shared gene part of m is set to 1, and the 
unique gene part is set to 0. The symbol ∗ denotes element-wise 
matrix multiplication. 

The backbone network of stDiff is built upon the Diffusion 
Transformer (DiT) [15]. As illustrated in Figure 1(B), the DiT block 
primarily comprises the multi-head self-attention mechanism, 
the feed-forward linear layer (FF) and AdaLN-zero. The atten-
tion mechanism enhances the understanding of the relation-
ship between known and unknown segments, surpassing tradi-
tional multi-layer neural networks. AdaLN-zero is employed to 

incorporate the condition y. The denoising network fθ is responsi-
ble for predicting the noise ε

′
. 

During the training process, the loss function exclusively 
focuses on the noise component of the unique genes that has 
been masked: 

loss = ‖ε ∗ (1 − m) − ε
′ ∗ (1 − m)‖2 (7) 

The inference phase of stDiff, as depicted in Figure 1(C), uti-
lizes the learned functional relationship from the training phase 
to impute missing values in the ST data. First, the ST data is 
expanded to condition y, in which the unique gene part is filled 
with zeros. A random noise xT is sampled at time t = T. The  
shared gene part of condition y(serving as condition guidance for 
the reverse diffusion process) and the unique gene part of xT, 
are concatenated to form the input xT

′, as shown in Equation 
(8). Subsequently, xT

′ and the condition y are fed into the pre-
trained denoising network fθ to predict the noise at time T, which  
is then used to further produce x′

T−1 at time t = T − 1, following 
Equation (9). This iterative process is repeated for T steps until the
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Table 1: Summary of the 16 validation dataset pairs 

Spatial data scRNA-seq data 

Data pair Tissue Cell num Gene num Reference Cell num Gene num Reference 

Dataset1_MERFISH Mop 5551 247 [16] 14 249 34 041 [17] 
Dataset2_osmFISH Somatosensory cortex 3405 33 [2] 5613 30 527 [17] 
Dataset3_ExSeq Primary visual cortex 1154 42 [18] 14 249 34 041 [17] 
Dataset4_seqFISH+ Cortex 524 10 000 [3] 14 249 34 041 [17] 
Dataset5_MERFISH Osteosarcoma 645 12 903 [19] 9234 19 098 [20] 
Dataset6_MERFISH Primary visual cortex 2399 268 [21] 14 249 34 041 [17] 
Dataset7_ISS Primary visual cortex 6000 119 [21] 14 249 34 041 [17] 
Dataset8_FISH Embryo 3039 84 [22] 1297 8924 [22] 
Dataset9_BARISTAseq Primary visual cortex 11 426 80 [23] 14 249 34 041 [17] 
Dataset10_seqFISH Embryonic 175 45 [24] 9991 16 477 [25] 
Dataset11_seqFish Gastrulation 8425 351 [26] 4651 19 103 [26] 
Dataset12_seqFISH+ Olfactory bulb 2050 10 000 [3] 31 217 30 593 [27] 
Dataset13_MERFISH Hypothalamic preoptic region 4975 154 [1] 31 299 18 646 [1] 
Dataset14_STARmap Visual cortex 1549 1020 [28] 14 249 34 041 [17] 
Dataset15_STARmap Prefrontal cortex 1380 166 [28] 7737 14 837 [29] 
Dataset16_ISS MTG 6000 120 [30] 15 928 48 278 [30] 

final prediction is obtained when t = 0: 

x
′
t = y ∗ m + xt ∗ (1 − m) (8) 

xt−1 ← 
1√
αt

(
xt − 

1 − αt√
1 − γt 

fθ (x
′
t, y, t)

)
+ √

1 − αtεt, (9)  

where εt ∼ N (0, I). 

Validation data sets 
We have selected 16 pairs of ST and scRNA-seq datasets for vali-
dation. These ST datasets represent a diverse range of experimen-
tal protocols, encompassing various tissue and organ types, and 
exhibiting significant variations in both gene and cell numbers. A 
detailed overview of these comprehensive datasets is presented 
in Table 1. Notably, the first data-set, ST cell, comes with known 
cell type labels, while the remaining ST data sets lack this infor-
mation. 

Baselines 
We compared the performance of stDiff with six baseline meth-
ods, including Tangram [6], gimVI [7], stPlus [8], SpaGE [9], uniPort 
[10], SpatialScope [11]. Data processing procedures, such as nor-
malization and scaling, were performed following the source code 
of each method. 

Tangram. We followed the guidelines on the Tangram GitHub 
repository: https://github.com/broadinstitute/Tangram. We  set  
the parameters as modes = ‘clusters’, density = ‘rna_count_based’. 

gimVI. We followed the guidelines on the gimVI’s intro-
duction website: https://docs.scvi-tools.org/en/0.8.0/user_guide/ 
notebooks/gimvi_tutorial.html. The spatial distribution of genes 
was obtained using the model.get_imputed_values function with 
parameter normalized = False. 

SpaGE. We followed the instructions on the GitHub reposi-
tory of SpaGE: https://github.com/tabdelaal/SpaGE/blob/master/ 
SpaGE_Tutorial.ipynb. We set the parameter n_pv = gene_num / 
2. 

stPlus. We followed the guidelines on the stPlus GitHub 
repository: http://github.com/xy-chen16/stPlus. We  set  tmin  =  5,  
neighbor = 50. 

uniPort. We followed the instructions of official example on 
its website: https://uniport.readthedocs.io/en/latest/examples/ 
MERFISH/MERFISH_impute.html. 

SpatialScope. We followed the instructions on the Spa-
tialScope GitHub repository: https://github.com/YangLabHKUST/ 
SpatialScope. We set epoch = 5000, batch_size = 512, 
replicates = 5. 

Evaluation metrics 
We conducted a quantitative evaluation of various imputation 
algorithms, considering both cellular and gene perspectives. From 
the cellular perspective, we assessed the ability of imputed ST 
data to identify cell populations or maintain the consistency in 
the intercellular similarity relationships between the real mea-
surement and imputed ST data. Four clustering-related met-
rics [31]—Adjusted Rand Index (ARI), Adjusted Mutual Informa-
tion (AMI), Normalized Mutual Information (NMI) and Homo-
geneity(Homo) were employed to evaluate these aspects. From 
the gene perspective, we utilized a cross-validation approach 
to assess the similarity between imputed data and the real ST 
data at the gene level. This evaluation employed four metrics: 
Spearman Rank Correlation Coefficient (SPCC), Structural Simi-
larity Index (SSIM), Root Mean Square Error (RMSE) and Jensen– 
Shannon Divergence (JS). 

The formulas for ARI, AMI, NMI, Homo are as follows. 

ARI =
∑

ij

(nij 
2

) − [
∑

i

(ai 
2

)∑
j

(bj 
2

)
]/

(n 
2

)
1 
2 [

∑
i

(ai 
2

) + ∑
j

(bj 
2

)
] − [

∑
i

(ai 
2

)∑
j

(bj 
2

)
]/

(n 
2

) (10) 

where n is the total number of samples, nij is the number of 
samples assigned to both class i and class j, ai is the number 
of samples assigned to class i, and  bj is the number of samples 
assigned to class j: 

MI(A, B) = H(A) − H(A|B) (11) 

NMI = 
MI(A, B)√
H(A) · H(B) 

(12) 

AMI = 
MI(A, B) − E(MI(A, B)) 

avg(H(A), H(B)) − E(MI(A, B)) 
(13) 

https://github.com/broadinstitute/Tangram
https://github.com/broadinstitute/Tangram
https://github.com/broadinstitute/Tangram
https://github.com/broadinstitute/Tangram
https://github.com/broadinstitute/Tangram
https://docs.scvi-tools.org/en/0.8.0/user_guide/notebooks/gimvi_tutorial.html
https://docs.scvi-tools.org/en/0.8.0/user_guide/notebooks/gimvi_tutorial.html
https://docs.scvi-tools.org/en/0.8.0/user_guide/notebooks/gimvi_tutorial.html
https://docs.scvi-tools.org/en/0.8.0/user_guide/notebooks/gimvi_tutorial.html
https://docs.scvi-tools.org/en/0.8.0/user_guide/notebooks/gimvi_tutorial.html
https://docs.scvi-tools.org/en/0.8.0/user_guide/notebooks/gimvi_tutorial.html
https://docs.scvi-tools.org/en/0.8.0/user_guide/notebooks/gimvi_tutorial.html
https://docs.scvi-tools.org/en/0.8.0/user_guide/notebooks/gimvi_tutorial.html
https://docs.scvi-tools.org/en/0.8.0/user_guide/notebooks/gimvi_tutorial.html
https://docs.scvi-tools.org/en/0.8.0/user_guide/notebooks/gimvi_tutorial.html
https://docs.scvi-tools.org/en/0.8.0/user_guide/notebooks/gimvi_tutorial.html
https://docs.scvi-tools.org/en/0.8.0/user_guide/notebooks/gimvi_tutorial.html
https://github.com/tabdelaal/SpaGE/blob/master/SpaGE_Tutorial.ipynb
https://github.com/tabdelaal/SpaGE/blob/master/SpaGE_Tutorial.ipynb
https://github.com/tabdelaal/SpaGE/blob/master/SpaGE_Tutorial.ipynb
https://github.com/tabdelaal/SpaGE/blob/master/SpaGE_Tutorial.ipynb
https://github.com/tabdelaal/SpaGE/blob/master/SpaGE_Tutorial.ipynb
https://github.com/tabdelaal/SpaGE/blob/master/SpaGE_Tutorial.ipynb
https://github.com/tabdelaal/SpaGE/blob/master/SpaGE_Tutorial.ipynb
https://github.com/tabdelaal/SpaGE/blob/master/SpaGE_Tutorial.ipynb
https://github.com/tabdelaal/SpaGE/blob/master/SpaGE_Tutorial.ipynb
https://github.com/tabdelaal/SpaGE/blob/master/SpaGE_Tutorial.ipynb
http://github.com/xy-chen16/stPlus
http://github.com/xy-chen16/stPlus
http://github.com/xy-chen16/stPlus
http://github.com/xy-chen16/stPlus
http://github.com/xy-chen16/stPlus
http://github.com/xy-chen16/stPlus
https://uniport.readthedocs.io/en/latest/examples/MERFISH/MERFISH_impute.html
https://uniport.readthedocs.io/en/latest/examples/MERFISH/MERFISH_impute.html
https://uniport.readthedocs.io/en/latest/examples/MERFISH/MERFISH_impute.html
https://uniport.readthedocs.io/en/latest/examples/MERFISH/MERFISH_impute.html
https://uniport.readthedocs.io/en/latest/examples/MERFISH/MERFISH_impute.html
https://uniport.readthedocs.io/en/latest/examples/MERFISH/MERFISH_impute.html
https://uniport.readthedocs.io/en/latest/examples/MERFISH/MERFISH_impute.html
https://uniport.readthedocs.io/en/latest/examples/MERFISH/MERFISH_impute.html
https://uniport.readthedocs.io/en/latest/examples/MERFISH/MERFISH_impute.html
https://uniport.readthedocs.io/en/latest/examples/MERFISH/MERFISH_impute.html
https://uniport.readthedocs.io/en/latest/examples/MERFISH/MERFISH_impute.html
https://github.com/YangLabHKUST/SpatialScope
https://github.com/YangLabHKUST/SpatialScope
https://github.com/YangLabHKUST/SpatialScope
https://github.com/YangLabHKUST/SpatialScope
https://github.com/YangLabHKUST/SpatialScope


stDiff | 5

where MI(A, B) represents the mutual information between A and 
B, H(A) and H(B) represent the entropy of A and B, respectively, and 
E(MI(A, B)) represents the mutual information expectation under 
the stochastic model: 

Homo = 1 − 
H(B|A) 
H(B) 

(14) 

where B represents the set of true cell categories, and A represents 
the set of predicted cell categories. 

For SSIM, RMSE, and JS, we followed the definitions outlined in 
[21]. In the case of these four metrics, high SPCC/SSIM values or 
low RMSE/JS values indicate better prediction accuracy: 

SPCC(i) = 1 − 
6

∑n 
j=1 d

2 
ij 

n(n2 − 1) 
(15) 

dij = rank ofTij − rank of Pij (16) 

where i represents the ith gene, j represents the jth cell and n 
represents the total number of cells. Tij is the expression value 
of the ith gene for the jth cell in the ground truth, while Pij is the 
predicted one. 

Before calculating SSIM, normalization is performed: 

X
′
ij =

Xij 

max ({Xi1, . . .  , Xin}) (17) 

where Xij represents the expression value of the ith gene in the 
jth cell. SSIM is calculated after normalizing both the true and 
predicted values: 

SSIM(i) =
(
2P̄iT̄i + C2 

1

) (
2cov(P

′
i, T

′
i) + C2 

2

)
(
P̄ 2 

i + T̄ 2 
i + C2 

1

) (
σ(Pi)

2 + σ(Ti)
2 + C2 

2

) (18) 

where Pi and Ti, respectively, represent the vector corresponding 
to the ith gene in the predicted values and in the ground truth. 
P̄i, T̄i denotes the mean of Pi, Ti. σ()  denotes the process of 
calculating the standard deviation. C1 and C2 are set to 0.01 and 
0.03, respectively. 

Before calculating RMSE, it is necessary to compute the z-score 
for gene i across all cells. Use z̃ to denote the z-score for the 
predicted values and z for the z-score of the ground truth: 

RMSE(i) =
√√√√ 1 

n 

n∑
j=1

(̃
zij − zij

)2 (19) 

JS(i) = 
1 
2 

KL
(

φi(P)

∣∣∣∣φi(P) + φi(T) 
2

)
+ 

1 
2 

KL
(

φi(T)

∣∣∣∣φi(P) + φi(T) 
2

)
(20) 

φij(X) = 
Xij∑n 
j=1 Xij 

(21) 

KL (Pi|Ti) = 
n∑

j=1

(
Pij × log 

Pij 

Tij

)
(22) 

where φi(X) computes the spatial distribution probability of gene 
i across all cells in X, and  KL(|) calculates the KL divergence 
between the true gene expression values and the predicted 
values. 

We utilized multiple metrics to evaluate the performance 
across various data sets. The effectiveness of each method may 
vary across different data sets. To present a comprehensive 

and consistent ranking, we employed an Accuracy Score (AS) 
[21]. For each evaluation metric on a data set, we ranked the 
performance of each method in ascending order and assigned a 
rank accordingly. The AS is the average rank across all evaluation 
metrics and datasets. A higher AS value indicates superior overall 
performance. 

RESULTS 
stDiff excels in bringing the imputed data close 
to the real ST data 
To visually illustrate the proximity between the predicted and 
real data, we employed a 5-fold cross-validation method with 
UMAP plots. Genes in the ST data were divided into five parts. 
Beginning with four of these parts, we predicted the expression of 
the remaining set of genes, repeating this process for all genes in 
ST cells to generate the imputed data. UMAP plots were generated 
for scRNA-seq data, real ST data and imputed ST data, as depicted 
in Figure 2. 

The results demonstrate that stDiff’s predictions (in orange) 
closely match with the real ST data (in green), while predictions 
from Tangram, gimVI, stPlus, SpaGE, uniPort and SpatialScope 
methods distinctly deviate from the real ST data. In the case 
of Dataset2_osmFISH shown in Figure 2(A), an interesting obser-
vation is that predictions made by Tangram, gimVI, SpaGE and 
stPlus methods appear to be closer to scRNA-seq data than to 
real ST data. It indicates that batch noises from scRNA-seq are 
kept in the predicted ST data. In the case of Dataset3_ExSeq 
shown in Figure 2(B), with only 1154 ST cells compared to 14 249 
scRNA-seq cells, where the scRNA-seq cell population is more 
abundant, stDiff consistently and accurately predicts ST data, 
while predictions from other methods are significantly distant 
from real ST data. In comparison, stDiff demonstrates a more 
accurate alignment between predicted results and real data. 

The imputation strategy of stDiff differs from other methods. 
stDiff learns mutual relationships between gene expression abun-
dance from scRNA-seq data, effectively functioning as a predictive 
model. This function is then used to enhance the gene expression 
in ST data with the input of the real ST data. Consequently, 
the predicted data aligns more easily with real data in a batch 
space. In contrast, other methods calculate the similarity between 
scRNA-seq cells and ST cells based on shared gene expression 
levels. They employ one of the following imputation approaches: 
averaging the top K most similar scRNA-seq cells, reconstructing 
ST data using a decoder trained on scRNA-seq data, or sampling 
from the scRNA-seq distribution using batch-effect-removed ST 
data. In summary, these methods map ST data to the batch space 
of scRNA-seq data and enhance ST data based on the scRNA-seq 
data space, posing a challenge for the predicted data to align well 
with the correct batch space of the ST data since usually ST data 
resides in different batch space from scRNA-seq data. 

stDiff exhibits the most significant improvement 
in identification of cell population 
In this evaluation, we utilized the ST data set with known cell type 
labels, specifically Dataset1_MERFISH in Table 1. Each method 
was employed to enhance ST data to the whole-genome level. 
The imputed results encompass both the gene expression levels 
measured in the authentic ST data and the predicted expression 
levels for other genes by each method. Subsequently, Leiden 
clustering [32] was applied to the imputed ST data at the whole-
genome level. The known cell types served as the ground truth for 
clustering, and four clustering metrics (AMI, ARI, Homogeneity,
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Figure 2. UMAP plots illustrating scRNA-seq data, real ST data and imputed ST data generated by Tangram, gimVI, stPlus, SpaGE, uniPort, SpatialScope 
and stDiff. (A) and (B) correspond to Dataset2_osmFISH and Dataset3_ExSeq in Table 1, respectively. 

NMI) were employed to evaluate the predictive performance of 
each method. The clustering results obtained from the authentic 
ST data were used as the baseline for comparison. 

As presented in Table 2, Tangram, gimVI, uniPort and Spa-
tialScope do not exhibit superiority in imputed results when 
compared to the authentic ST data. In contrast, SpaGE, stPlus 
and stDiff show improvements in clustering metrics, with stDiff 
achieving the most favorable outcome. This suggests that stDiff 
stands out as the top-performing method, enhancing the capabil-
ity to discover cell populations. 

stDiff’s imputed results best preserve the 
topological structure among cells 
For most ST datasets lacking cell type annotations, we conducted 
an evaluation of the similarity in topological structure among 
cells between authentic and imputed datasets using a 5-fold 

cross-validation approach. Employing the Leiden clustering 
method and four clustering metrics (AMI, ARI, Homogeneity, NMI), 
with authentic ST data clustering results as the ground truth, this 
evaluation aimed to quantify the consistency between predicted 
and authentic data in terms of clustering outcomes, providing 
insights into the similarity in topological structure among cells. 

For each experimental platform of the ST data, we individually 
selected representative datasets, and the outcomes are illustrated 
in Figure 3. Numeric results for all 15 datasets without cell type 
labels can be referenced in Supplementary Table 1. 

As shown in Figure 3, stDiff consistently outperforms other 
methods across the four clustering metrics, exhibiting the highest 
similarity to authentic ST data in terms of topological structure 
among cells. It demonstrates that stDiff’s imputed results are 
most conducive to discovering cell populations. In contrast, Tan-
gram shows the poorest clustering results, while gimVI, SpaGE,
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Table 2: Clustering metrics for authentic ST data and imputed results at the whole-genome level using various methods 

ARI AMI Homo NMI 

authentic ST data 0.640 0.807 0.837 0.810 
Tangram 0.674 0.794 0.821 0.797 
gimVI 0.683 0.804 0.832 0.807 
SpaGE 0.690 0.816 0.843 0.818 
stPlus 0.702 0.829 0.859 0.832 
uniPort 0.593 0.793 0.829 0.796 
SpatialScope 0.613 0.783 0.777 0.787 
stDiff 0.725 0.834 0.865 0.836 

Figure 3. Clustering metrics (ARI, AMI, Homogeneity, NMI) demonstrating the topological consistency among cells between authentic ST data and 
predicted data generated by Tangram, gimVI, stPlus, SpaGE, uniPort, SpatialScope and stDiff across different platforms of ST data. 

stPlus, uniPort and SpatialScope demonstrate unstable perfor-
mance across different datasets. Notably, stDiff’s clustering met-
rics often significantly surpasses other methods’ (Supplementary 
Table 1), highlighting stDiff’s superiority in preserving the similar-
ity relationships among cells within authentic ST data. 

From gene perspective, stDiff’s imputed data 
demonstrates competitive similarity to authentic 
data 
The preceding experimental results focused on assessing predic-
tion outcomes from the cellular perspective. In this section, we 
evaluated imputed results from the gene standpoint using four 
metrics (SPCC, SSIM, RMSE, JS) after 5-fold cross-validation. Partial 
results are depicted in Figure 4, with complete dataset results 
available in Supplementary Table 2. 

Across the four datasets in Figure 4, stDiff’s imputed data 
exhibits the highest similarity to authentic data. However, over-
all, the correlation coefficients between imputed and authentic 
data are relatively low, indicating room for improvement in all 
methods. 

stDiff accurately reconstructs gene expression 
abundance with clear spatial patterns 
In addition to quantitative assessments of gene expression sim-
ilarity between authentic and predicted ST data, we visually 
showcased the concordance in spatial patterns in Figure 5. 

Four genes with clear spatial patterns were chosen from 
Dataset8_FISH embryo tissue for this illustration. The Sna gene, 
expressed in the lower-half region with a horizontal spatial 
pattern, is accurately predicted by stDiff, SpaGE, stPlus and 
uniPort. These methods precisely capture the lower-half region, 
and, notably, stDiff provides more accurate predictions on the 
left and right sides. In contrast, predictions from Tangram, 
gimVI appear somewhat messy between regions of high and low 
expression, and SpatialScope narrows down the highly expressed 
regions. 

For the gene Trn with a vertical pattern, stDiff predictions 
exhibit clear vertical boundaries, accurately recovering each ver-
tical contour. In contrast, predictions from other methods show 
less distinct spatial contours. stPlus, SpaGE and uniPort tend to 
favor higher expression abundance across the entire space, while 
predictions from Tangram, gimVI and SpatialScope lean towards 
an overall lower expression. 

For the complex spatial pattern of the Tkv gene, stDiff pre-
dictions best match this intricate pattern. Moreover, only stDiff 
clearly recovers the high-expression area in the upper-left corner. 

The Antp gene expression, concentrated in a narrow central 
region, sees stDiff’s predictions closely resembling the real 
scenario, while other methods except SpatialScope significantly 
expand the spatial expression range of this gene. The spatial 
boundary of SpatialScope’s predictions is not as clear as the 
real pattern, and for all these four genes, SpatialScope seems
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Figure 4. Evaluation metrics (1-SPCC, 1-SSIM, RMSE, JS) to assess gene expression similarity between authentic ST data and predicted data generated 
by Tangram(Tan), gimVI(gim), SpaGE(Spa), stPlus(stP), uniPort(uni), SpatialScope(SpS) and stDiff(stD) across different platforms of ST data. (A)–(D) 
correspond to Dataset2_osmFISH, Dataset5_MERFISH, Dataset6_MERFISH and Dataset10_seqFISH in Table 1, respectively. 

to underestimate the expression abundance of the marker 
gene. 

stDiff demonstrates superior overall performance 
across multiple datasets. 
Our evaluation spanned 15 datasets, utilizing four clustering 
metrics and four similarity evaluation metrics. Each method dis-
played varying performance across datasets. To provide a com-
prehensive evaluation, we employed the AS index, as shown in 
Figure 6. 

Cluster results reflect the consistency between the predicted 
and authentic data in terms of cellular topological relationships. 
Figure 6(A) illustrates that stDiff achieves the best clustering 
results, far exceeding other methods. stDiff’s median value on the 
AS composite index surpasses the upper quartile values of other 
methods. gimVI, SpaGE and stPlus are in the second tier, with 
stPlus exhibiting relatively more stable performance. Surprisingly, 
Tangram’s clustering results lag far behind other methods, consis-
tently ranking at the bottom in most cases. 

Figure 6(B) demonstrates the similarity between predicted and 
authentic results at the gene level. Overall, Tangram performs the 
best, and stDiff, gimVI and SpaGE achieve the second position on 
the AS median value and shows good stability. In contrast, Tan-
gram and SpatialScope demonstrate less stability across different 
datasets in terms of gene similarity. 

It is important to note that this evaluation calculates the 
similarity between authentic and imputed data for each gene 
across all cells. Due to the high dimensionality caused by a large 
number of cells, metrics like SPCC face challenges in accurately 
reflecting the real similarity between imputed and authentic data. 

Finally, the combined results from both cell clustering and 
gene similarity across 15 datasets are shown in Figure 6(C). stDiff  
stands out as the best-performing method, displaying the most 
stable outcomes. Overall, stDiff significantly outperforms other 
methods in maintaining cellular topological similarity and ranks 
in second place in gene similarity. Tangram excels in gene sim-
ilarity, though all methods struggle to predict gene similarity 
accurately. However, Tangram’s predictions at the cell level fall 
far behind other methods, suggesting potential loss of original 
cellular similarity and limited applicability for cell population 
discovery. gimVI, SpaGE and stPlus perform relatively similarly. 
On closer inspection, stPlus shows slightly better performance in 
cell clustering and slightly worse performance in gene similarity, 
while gimVI and SpaGE exhibit better gene similarity but less 
stable cell clustering performance. 

Time cost 
To investigate the time complexity of the methods in the exper-
imental comparison, we have selected Dataset2_osmFISH as an 
example and documented the time cost for each method, as 
presented in Table 3. Our time cost experiment is conducted on 
an Ubuntu server with an AMD Ryzen 9 5950X 16-Core Processor, 
NVIDIA GeForce RTX 3090 GPU and 125GB of memory. 

From Table 3, it is evident that stDiff’s time cost is in a moder-
ate position among all methods, with SpaGE being the fastest. 

Model details of stDiff 
The backbone of stDiff utilizes DiT [15], consisting mainly of three 
components: AdaLN-zero, multi-head self-attention mechanism 
and multi-layer perceptron (MLP). In AdaLN-zero, the guidance
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Figure 5. The predicted expression abundance of known spatially patterned genes in Dataset8_FISH. Each column corresponds to a single gene with a 
clear spatial pattern. The first row from the top displays the ground truth of spatial gene expression in Dataset8_FISH, while the subsequent rows show 
the corresponding predicted expression patterns through 5-fold cross-validation experiments using stDiff, Tangram, gimVI, SpaGE, stPlus, uniPort and 
SpatialScope. 
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Figure 6. Boxplots and scatter plots of the AS for the data generated by the seven methods across all 15 paired datasets. The central line represents the 
median, the box depicts the interquartile range, whiskers extend to 1.5 times the interquartile range, and dots represent the AS of individual datasets. 
(A) The AS scores for clustering metrics. (B) the AS scores for gene similarity metrics. Panel (C), The overall AS scores for all eight metrics. 

Table 3: Time cost of five cross-validations on 
Dataset2_osmFIsh for different methods 

Methods Time cost 

Tangram 1 min 
gimVI 30 min 
SpaGE 30 s 
stPlus 3 min 
uniPort 75 min 
SpatialScope 14 h 
stDiff 60 min 

Table 4: Parameter details of stDiff 

Gene num < 512 < 1024 < 2048 

block num 6 6 6 
hidden size 512 1024 2048 
heads 16 16 16 
sample_timestep 1500 1500 1500 
parameter num 29M 117M 480M 
learning rate 1.6e-4 1.6e-4 1.6e-4 
train_step (epoch) 900 900 900 
batch size 2048 512 512 

condition is projected to 6 times the feature dimension through 
the SiLU activation function and a linear layer. Subsequently, it is 
split into six parameters used for combining the guidance condi-
tion and input. The multi-head self-attention mechanism allows 
the module to focus on information from different positions in the 
input sequence, with num_heads’ in Table 4 meaning the number 
of attention heads. The MLP employs the GELU activation function 
to nonlinearly transform the input, enhancing the module’s abil-
ity to model complex patterns. 

The hyperparameters of stDiff are listed in Table 4, applicable 
to all datasets used in this study. 

Since stDiff is a diffusion model, we investigated the impact 
of diffusion steps by varying the values of sample_timestep 
and train_step. The performances of stDiff are depicted in 
Supplementary Figure 1 and 2. Overall, stDiff exhibits robustness, 
although optimal hyperparameter settings may slightly differ for 
tasks such as cell population discovery and gene similarity across 
cells. 

DISCUSSION 
In this paper, we introduced stDiff, a novel method for imputing 
ST data. Methodologically, stDiff differs from existing approaches. 

While existing methods enhance ST cells based on the similarity 
between ST cells and reference scRNA-seq cells, stDiff takes a dis-
tinct approach by considering the gene expression profile as the 
determinant of cell populations. It enhances ST data by leveraging 
the correlations between gene expression abundances within a 
cell. 

StDiff is a conditional diffusion model, where the processes 
of adding noise and denoising learn the relationships between 
gene expression abundances from scRNA-seq data. During the 
inference stage, the original ST data are conditionally introduced 
into the denoising process, facilitating the imputation of ST data. 
Currently, the application of diffusion models in genomics and 
transcriptomics data is underexplored. This paper provides valu-
able exploration in this field. 

We conducted a comprehensive evaluation of stDiff across 16 
datasets, employing multiple clustering and similarity metrics. 
The stDiff algorithm exhibits superior performance in preserving 
topological structures among cells and demonstrates competi-
tiveness in similarity between predicted data and authentic data 
at the gene level, highlighting its potential for cell population 
discovery. Moreover, stDiff’s predictions closely match the authen-
tic ST data in batch space, indicating that stDiff facilitates the 
integrated analysis of both measured and predicted segments 
of ST data. These findings contribute to the advancement of ST 
analysis and data imputation methodologies. 

In the future, we could explore the possibility of integrat-
ing both methodologies, simultaneously considering the relation-
ships between gene expression levels and the similarity between 
ST cells and scRNA-seq cells. This approach has the potential 
to significantly improve the performance of ST data imputa-
tion, potentially opening new avenues for advancements in this 
field. 

It should be noted that when the ST data lacks marker signals, 
indicating that the measured gene expressions are unable to 
discern a cell’s identity, the effectiveness of current imputation 
methods, including stDiff, might be compromised. This limitation 
arises from the inadequacy of measured ST data to identify 
clear cell-type neighbors in scRNA-seq cells and to determine the 
underlying whole transcriptome pattern necessary for guiding the 
imputation process. 

Key Points 
• stDiff represents an innovative approach to enhance 

spatial transcriptomics data (ST) by utilizing correlations 
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among gene expression levels within cells from refer-
ence scRNA-seq data. Unlike existing methods that rely 
on the similarity between ST cells and reference scRNA-
seq cells, stDiff introduces a novel perspective. 

• stDiff operates as a conditional diffusion model, con-
tributing to the exploration of diffusion models in 
genomics and transcriptomics data. 

• The extensive evaluation, covering 16 data sets and 
utilizing various clustering and similarity metrics, con-
sistently positions stDiff as the leading and most sta-
ble imputation method across both cell and gene 
dimensions. 
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