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Abstract

Small molecules that modulate the 14-3-3 protein-protein interaction (PPI) network represent 

valuable therapeutics and tool compounds. However, access has been lost to 14-3-3 PPI molecular 

glues of the cotylenin class, leading to investigations into practical chemical syntheses of 

congeners and analogues. Here we report a concise synthesis of (−)-cotylenol via a 10-step 

asymmetric entry into a diversifiable 5-8-5 core. This route features a mild Liebeskind-Srogl 

fragment coupling that tolerates unprecedented steric hindrance to produce a highly congested 

ketone, and a tandem Claisen-ene cascade that establishes the 8-membered ring. Late-stage control 

of stereochemistry and functionality leads to (−)-cotylenol and sets the stage for focused library 

synthesis.
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INTRODUCTION

Cotylenin A (1) is a member of the fusicoccanes, a family of 5-8-5 tricyclic diterpenoids 

produced by phytopathogenic fungi (Figure 1).1,2 Initially isolated as a plant growth 

regulator, 1 has since been shown to induce differentiation of human acute myeloid 

leukemia (AML) in primary culture,3 sensitize human cancer types to existing drugs,4a,5 and 

significantly decrease levels of the tumorigenic transcription factor c-Myc.6,7 Its aglycon 

cotylenol8 (3) is also bioactive, inducing differentiation in murine leukemia cells at a 

modestly lower (~10×) potency than 1.9 The activity of these compounds is believed to 

result from their function as “molecular glues” that can selectively stabilize (or disrupt10) 

complexes between the 14-3-3 signaling hub and its numerous client proteins.11 This 

property has attracted attention in both academia and industry,12 since 14-3-3 clients 

include cancer-relevant proteins such as C-RAF, p53, and BAD,4a,13 and 14-3-3 PPIs have 

been proposed to underlie resistance to standard-of-care drugs (e.g., cisplatin, etoposide, 

doxorubicin).14 As such, researchers have sought to broadly understand how 1 and 3 
modulate different PPIs within the 14-3-3 interactome, as well as determine structure-

activity relationships (SAR) to optimize potency and selectivity.4,9,15,16 Despite important 

progress, realization of these objectives has been hampered for at least 12 years because 

the producer organism of 1 and 3, a Cladosporium species, has lost the ability to 

proliferate in culture.17 Both the supply and diversification of the cotylenol scaffold are 

thus critical to advance the cotylenin chemotype towards therapeutic applications, analogous 

to immunomodulatory imide drug (IMiD) molecular glues.18

Currently, access to material requires use of mimics prepared through multistep 

semisynthesis (e.g., 2 in 14 steps from fusicoccin A)19 or total synthesis. One total synthesis 

of cotylenin A has been reported to date (25 steps, 0.15%),20 along with two syntheses of 

its aglycon, cotylenol (3) (21–32 steps, <1–3.9% yield).20,21 Here we report an alternative 

synthesis of 3 that provides expedient access to material and rapidly reaches a scaffold 

amenable to diversification.

RESULTS AND DISCUSSION

Prior syntheses by Takeshita and Nakada revealed that assembly of the Δ1,2-alkene with an 

E-configuration enabled efficient cyclooctene closure via ene or α-alkenylation reactions 

(Figure 2).20,21 However, synthesis of the cyclization precursors required 28 and 17 

steps, respectively, due to the extreme steric congestion that flanked the alkene. As an 
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important step towards broad studies of the cotylenin chemotype, we aimed to access 

3 via expedient synthesis of substrate 4, which incorporated the E-Δ1,2-alkene with all 

native A- and C-ring functionality. As shown by X-ray crystallography, these rings form 

extensive contacts with 14-3-3 and its client in a deep cleft,22 whereas the C7–9 bridge and 

sugar motif point towards solvent-exposed regions. To forge the encumbered Δ1,2-alkene, 

we reasoned that the severe steric demands would be most readily accommodated in an 

intra-molecular rearrangement coupled to a strong driving force. A Claisen rearrangement 

appeared well-suited due to 1) exothermicity of C=O bond formation to offset steric 

repulsion, 2) established models to understand and control product stereochemistry,23 and 

3) chemoselectivity.24 Analysis of Claisen transition states and experimental feedback (see 

SI and Scheme 7) eventually suggested allyl vinyl ether 5 as the required starting material, 

which could arrive in convergent fashion from prefunctionalized A- and C-rings.25

First-generation synthesis of A- and C-ring fragments and their cross-coupling.

Our first-generation synthesis aimed to couple the A- and C-ring fragments through an 

addition of an A-ring vinyllithium to a C-ring electrophile. We therefore targeted an A-ring 

hydrazone and a C-ring aldehyde, which could be united under Shapiro reaction conditions.

Preparation of the A-ring began with acyloin cyclization of dimethyl glutarate,26 followed 

by a Zn(OTf)2-catalyzed Mukaiyama aldol reaction with dimethoxymethane (Scheme 1a). 

The trimethylsilyl ether was cleanly deprotected with Montmorillonite K10 in MeOH to 

afford ketone rac-6. Chiral preparative supercritical fluid chromatography (SFC) provided 

access to pure enantiomers ((R)- and (S)-6), where the absolute configuration was 

assigned by derivatization and X-ray crystallography (see SI). Condensation of (S)-6 with 

TrisNHNH2 produced hydrazone 7, and the tertiary alcohol was silylated to produce 8.

Synthesis of the C-ring began with known alcohol 9, prepared in 50 mmol quantities from 

(−)-limonene in 4 steps and 56% yield (Scheme 1b).27 Alkylation with sodium chloroacetate 

formed 10 in quantitative yield. To generate the C11 quaternary center, 10 was treated 

with LiTMP to effect a [2,3]-Wittig rearrangement. Oxidative cleavage of the resulting 

α-hydroxyacid 11 afforded aldehyde 12 in 66% yield over two steps.

With sulfonylhydrazone 8 and aldehyde 12 in hand, we pursued their union via a Shapiro 

reaction that would convert 8 to its corresponding alkenyllithium. However, subjection of 

silyl-protected hydrazone 8 to standard Shapiro conditions (2 equiv. n-BuLi, THF, −78 

°C) consistently resulted in retro-[1,4]-Brook rearrangement to generate a vinyl silane 

(protonated form of 13, Scheme 2a). Productive reaction with aldehyde 12 required an 

excess of n-BuLi (3 equiv) to generate either a nucleophilic silicate anion or organolithium 

(14). Under such conditions, allylic alcohol 15 was produced with high diastereoselectivity, 

possibly from Felkin-Anh control or coordination of the C-ring aldehyde to the A-ring 

lithium alkoxide. Unfortunately, this diastereomer proved unproductive in the synthesis 

according to classic Claisen rearrangement models combined with experimental validation 

(vide infra, also see SI). Use of free alcohol-containing substrate 7 averted the retro-[1,4]-

Brook rearrangement, but still resulted in addition to 12 with the incorrect facial 
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selectivity (Scheme 2b). Attempts to reverse stereoselectivity with additives or alternative 

organometallics proved unsuccessful.

Because addition to the C-ring aldehyde afforded the undesired alcohol epimer, we sought 

a higher oxidation state electrophile to enable formation of a ketone that could be 

stereoselectively reduced. We thus targeted a C-ring thioester as both an electrophile and 

a gateway to alternative carboxylic acid derivatives (Scheme 3a).

Alcohol 9 was converted to thioether 16 through BF3•OEt2-promoted substitution with 

4-chlorothiophenol. This thioether was then reacted with dichlorocarbene to form sulfonium 

ylide 17, which underwent facile [2,3]-Wittig rearrangement to deliver intermediate 18.28 

Chromatography on hydrated silica gel converted this dichlorothioether to thioester 19 as a 

single diastereomer in 83% yield from 16. The use of NaOt-Bu in place of KOt-Bu enabled 

higher conversions and yields, due to either a lower rate of alkoxide addition to :CCl2 or 

slower α-elimination that limits :CCl2 concentration and thus homodimerization.29,30 This 

preparation of thioester 19 scaled easily to produce >10 grams in a single pass.

To merge the A- and C-rings while avoiding the retro-Brook rearrangement encountered 

with 8, we returned to free alcohol 7 (Scheme 3b). Treatment of 7 with n-BuLi (>3 equiv) 

and KOt-Bu at 0 °C, however, did not result in coupling with numerous acyl electrophiles, 

including acid chlorides. Given that reactivity with aldehyde 12 was achieved (vide supra), 

it was evident that the A-ring could be converted to a competent nucleophile, but that the 

steric hindrance of poorly electrophilic carboxylic acid derivatives prevented reaction. This 

challenge was ultimately overcome with a Cu(I)-mediated coupling.31 In this protocol, 7 was 

treated with n-BuLi and KOt-Bu, followed by the (2-thienyl)CuCNLi complex developed by 

the Lipshutz group,32 and lastly 19 to yield 63% of product 20. 4-Chloro substitution on the 

thioester was necessary to achieve good yield, whereas the parent phenyl thioester led to a 

low yield and low conversion of the C-ring electrophile. Whereas Cu(I)-mediated couplings 

of thioesters with hard organometallic nucleophiles have seen significant development, their 

use in the convergent coupling of highly functionalized or hindered fragments is scarce.33

The success of this Cu(I)-promoted reaction likely resulted from its mechanistic deviation 

from typical acyl substitution reactions via carbonyl addition-elimination (Scheme 3c). For 

the reaction of interest (7 + 19 to 20), an addition-elimination mechanism would require 

formation of an hindered tetrahedral intermediate with vicinal, fully substituted carbons. 

In contrast to 1,2-addition, the Cu(I)-mediated process has been proposed to involve C–S 

oxidative addition to form a considerably less hindered metal acyl complex, which then 

undergoes C–C reductive elimination.34 An analogous consideration of mechanism and 

steric effects would later guide reaction selection in our second-generation route (vide infra).

With access to 20 secured, an alcohol-directed Luche reduction (NaBH4, CeCl3•7H2O, 

−78 °C) advanced the material towards a Claisen rearrangement substrate (Scheme 4). The 

unstable diol 21 was obtained with the desired C1 stereochemistry as a single desired 

diastereomer in ca. 80% yield.35 The high reactivity and stereochemical outcome are 

consistent with transition state TS1, in which the C3 tertiary alcohol directs reduction and 

the C-ring occupies a pseudo-equatorial position. Alternative scenarios of ketone-cerium 
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coordination or chelation are disfavored by the following data: C3 silyl ether 22 did not 

undergo any reduction under identical Luche conditions, and the C3 epimer of 20 delivered 

the C1-epimeric alcohol (20:1 dr).

Whereas this route established convergent access to targeted intermediate 21, several issues 

noted by the Referees significantly limited its practicality and use in medicinal chemistry. 

First, the use of preparative chiral SFC constrained material throughput due to instrument 

time (13 h per gram of (S)-6), cost ($90/h), and reliance on specialized facilities (Waters 150 

AP). Second, the convergent coupling proved difficult to scale and was most reliably carried 

out with 40 mg 7. Operationally, it required tedious and carefully timed preparation of four 

discrete organometallic species ((2-thienyl)Li, (2-thienyl)CuCNLi, A-ring vinyllithium, A-

ring cuprate). Moreover, yields were difficult to reproduce because of the reaction’s extreme 

sensitivity to adventitious water and oxygen.36 With the objective to broadly enable studies 

of the cotylenin chemotype, we sought improved material throughput via an asymmetric 

synthesis of the A-ring and a more practical convergent coupling.

Enantioselective synthesis of A-ring fragment and second-generation cross-coupling with 
C-ring.

Our initial efforts towards an asymmetric A-ring synthesis targeted ketone 6 in 

enantiomerically enriched form. Despite its structural simplicity, its enantioselective 

synthesis was repeatedly thwarted by poor enantioselectivity or an inability to productively 

elaborate synthetic intermediates. Consequently, we explored the synthesis of a cyclic 

vinylboron coupling partner, encouraged by precedent for the formation of cyclic 

vinylboronic esters by ring-closing metathesis37 and the versatility of the C–B bond as a 

precursor to C–X or C–[M] species. This sequence commenced with ketone 23, which is 

known in one step from methoxyacetonitrile38 or accessible from methoxyacetic acid in a 

highly scalable 2-step protocol (Scheme 5).39 To establish the chiral C3 tertiary alcohol, 23 
was subjected to addition of trimethylsilylacetylene in the presence of Et2Zn and a chiral 

amino alcohol ligand, inspired by foundational work by Noyori.40

The use of 20 mol% (−)-MIB41 (L1), derived from (+)-camphor in 3 steps, was found 

to give the desired product in 81:19 er at room temperature (90% over 2 steps, following 

desilylation). Cooling to 0 °C improved enantioselectivity (95:5 er), but at the expense of 

yield (66%). An intermediate temperature (12 °C, dioxane/dry ice) provided both high yields 

and enantioselectivity, and L1 was found to be superior to other chiral amino alcohols used 

for asymmetric alkynylation of ketones with proximal coordinating groups.42 Using the 

optimized conditions, alkynylation and subsequent desilylation produced propargyl alcohol 

25 (92:8 er) in 86% yield over two steps. This protocol delivered >7 grams of 25 in a single 

pass, and L1 could be recovered in >90% yield through extractive workup.

Scalemic propargyl alcohol 25 was subjected to an efficient α-selective hydroboration based 

on a protocol from the Carretero group, introducing a handle for subsequent cross-coupling 

while setting the stage for A-ring closure (Scheme 6).43 Cyclization of 26 was accomplished 

through ring-closing metathesis with the Hoveyda-Grubbs II catalyst (5 mol %), which 

provided the boronic ester coupling partner 27 in 74% yield. This material was used 
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without chromatography to avoid substantial losses on silica gel (74% vs. 53%). This robust 

sequence enabled straightforward access to >2 grams of 27 in a single pass and 5.2 grams 

over 3 runs.

Access to gram amounts of pinacolboronic ester 27 allowed us to explore cross-coupling 

methods more practical than the cuprate-thioester coupling (Scheme 3). In keeping with 

lessons from the first-generation cuprate coupling, we first investigated transition metal-

catalyzed cross-couplings that proceeded through metal acyl complexes to avoid hindered 

tetrahedral intermediates. We considered a Liebeskind-Srogl coupling (Figure 3) to be ideal, 

as no change to either substrate would be necessary.44 However, no literature precedent 

supported use of a hindered, cyclic boronic ester nucleophile and model studies were 

discouraging. For example, PhBpin failed to couple with 19. PhB(OH)2 showed improved 

reactivity (12%, Figure 3F) but 27 could not be cleanly converted to its boronic acid due to 

facile 1,3-transposition of the allylic alcohol. In light of these unfavorable results, we were 

surprised to find that boronic ester 27 engaged thioester 19 in a Liebeskind-Srogl coupling 

under typical conditions (Pd2(dba)3, P(2-furyl)3, CuTC, THF), albeit in only 30% yield at 

50 °C. Whereas variation of phosphine ligands, Pd pre-catalysts, and Cu reagents failed 

to improve reaction efficiency, boric acid (B(OH)3) exhibited positive effects, possibly as 

a Lewis acid, pinacol scavenger,45 hydroxide donor to Pd,46 or precursor to borate esters 

involving the C3 tertiary alcohol.47 Its inclusion nearly doubled the yield to 54% (1.4 g of 

20 in one pass, Figure 3a) and allowed efficient coupling to occur without heating. This 

represents a remarkably facile synthesis of a hindered ketone under neutral conditions at 
room temperature. The successful coupling of a hindered vinylboronic ester contrasts with 

the current state-of-the-art, which requires the use of vinylstannanes48 to form challenging 

C–C bonds. Vinylborons, on the other hand, have been restricted to unhindered cases 

(trans-1-alkenyl) and almost always require the use of boronic acids.49

Intrigued by the mild formation of hindered ketone 20 from a nontraditional Liebeskind-

Srogl partner, we sought a better understanding of this reaction and the determinants of 

its success. The generally restricted scope of vinylborons in hindered Liebeskind-Srogl 

couplings suggested transmetallation to be a limiting factor (see below and Figure 3F). 

In the canonical coupling of boronic acids, Liebeskind proposed simultaneous thiolate 

abstraction and transmetallation, both mediated by CuTC (28, Figure 3b).50 A computational 

study subsequently proposed stepwise transfer of the organoboron to an acyl-Pd2+-thiolate, 

followed by thiolate departure (29).51 A third possibility involved thiolate abstraction by 

CuTC to form an acylpalladium carboxylate intermediate (30), followed by transmetallation. 

Although such an intermediate has not been invoked in the Liebeskind-Srogl coupling, it is 

a proposed intermediate in Pd-catalyzed couplings of arylcarboxylic acid anhydrides with 

boronic acids.52

In the course of improving the cross-coupling, we evaluated the reaction dependence on 

the S-aryl group, which would directly participate in the pathways 28 and 29 but not 30. 

Electronically differentiated S-aryl groups led to similar yields, suggesting that 28 and 29 
(Figure 3c) may not be major contributors to productive transmetallation of the boronic ester 

onto Pd2+. Although 28 and 29 could not be rigorously excluded, they did not account for 

all observed reactivity, as revealed by analysis of unpurified reaction mixtures. Identifiable 
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side products included 3-epi-20 (4%, from the minor enantiomer of 27) and mixed anhydride 

31 (8%), derived from 19 and CuTC (Figure 3d). The symmetrical anhydride 32 was also 

observed (4%), possibly resulting from hydrolysis of 31 under the reaction conditions, 

followed by acylation by a second molecule of 31. The structure of both anhydrides was 

confirmed by independent synthesis, and their stability to chromatographic purification 

testifies to the exceedingly encumbered environment of the C-ring. When subjected to the 

cross-coupling conditions, both 31 and 32 failed to yield product (20), establishing that 

anhydride formation is nonproductive.

These findings are most consistent with the intermediacy of an acylpalladium carboxylate 

complex (e.g. 30), which has been shown through prior stoichiometric studies to account 

for all observed reactivity (Figure 3e). Yamamoto, Ogiwara and Sakai demonstrated that 

C–C coupling occurs in good yield upon treatment of related acylpalladium carboxylate 

complexes with arylboronic acids.52b,53 Alper has shown that a complex with the less 

donating PPh3 ligand spontaneously undergoes C–O reductive elimination to generate 

anhydrides.54 This process occurs following dissociation of a phosphine ligand, and is of 

relevance since our experiments employ P(2-furyl)3, which is both thermodynamically and 

kinetically more labile than PPh3.55 Notably, numerous studies have provided evidence 

against C–O bond formation via outer-sphere nucleophilic attack on the acyl group, which 

would not require complex 30.56 Interestingly, in the coupling of less hindered systems, 

Liebeskind and Srogl have only observed decarbonylation as a side reaction, suggesting that 

the steric demands of the substrate may alter relevant reaction pathways.44

The likely involvement of intermediate 30 suggested that extremely hindered Liebeskind-

Srogl couplings require efficient transmetallation to a congested acylpalladium carboxylate 

complex in order to outcompete C–O reductive elimination. Consistent with this mechanistic 

picture, the use of excess boronic ester 27 (3 equiv) improved the yield of 20 (62% 

vs. 54% under identical conditions, Figure 3f), and not because the reaction was limited 

by protodeboronation.57 To investigate whether proximal functional groups influenced the 

transmetallating ability of 27, closely related boronic esters were reacted with thioester 

19. Unsubstituted boronic ester 33 and C3-deoxy boronic ester 34 failed to couple with 

19, whereas hydroxyl-substituted substrate 35 proved competent (36%). These observations 

were mirrored in arylboronic esters and acids, where the presence of a 2-hydroxy group 

significantly enhanced reactivity relative to the parent compound (36a–c, 37a–b). The 

pendant hydroxy group may serve to lower the barrier to transmetallation via coordination to 

Pd2+ as a directing group (as has been demonstrated for alkylboronic esters58), or hydrogen 

bonding with a Pd-bound acyl group or carboxylate; the coordination of boric acid may 

strengthen these interactions. While the experiments above demonstrated the beneficial 

effect of the proximal alcohol, it was not found to be broadly sufficient to enable cross-

coupling with hindered thioester 19 (see SI). These data emphasize the general difficulty of 

hindered Liebeskind-Srogl reactions and the unique efficiency of the coupling to form 20.

These insights into the reactivity of boronic ester 27 led us to evaluate the extent to 

which hindered Liebeskind-Srogl couplings depended on the thioester partner. In contrast 

to the boronic ester, numerous sterically encumbered thioesters coupled successfully (38a–h, 

Figure 4). These experiments revealed several insights. First, the transformation did not rely 
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on the exocyclic alkene in 19 to stabilize acylpalladium species.59 Second, the reaction yield 

increased for less encumbered thioesters, possibly due to faster transmetallation of less-

hindered acylpalladium carboxylates relative to C–O reductive elimination. Finally, under no 

circumstances did we observe decarbonylation, possibly since decarbonylation to form tert-
alkylpalladium complexes incurs prohibitive steric penalties. Overall, this investigation has 

shown that the Liebeskind-Srogl coupling can enable facile synthesis of hindered ketones if 

transmetallation is accelerated, and we have outlined key considerations for the success of 

this demanding transformation.

More importantly, this second-generation route to 20 accomplished the two goals outlined 

during its conception. The first goal of developing an asymmetric A-ring synthesis was 

made possible by an enantioselective ketone alkynylation, which enabled rapid elaboration 

to a vinylboronic ester. The second goal of developing a robust, operationally simple 

and scalable cross-coupling was achieved through a B(OH)3-enhanced Liebeskind-Srogl 

coupling. This transformation produced hindered ketone 20 under mild conditions and 

obviated the laborious and sensitive organocuprate coupling from the first-generation 

synthesis. The coupling has been scaled to produce >1 gram of 20 per run, intercepting 

the end of the first-generation route with far greater material throughput.

Claisen rearrangement and completion of cotylenol.

Access to the 5-8-5 scaffold and completion of cotylenol (3) required identification of a 

suitable enol ether substrate for Claisen rearrangement to construct the highly congested 

Δ1,2-alkene (Scheme 7a). A successful substrate would need to: (1) be accessible from 

the hindered C1 alcohol, (2) undergo Claisen rearrangement faster than decomposition 

(especially elimination of the C3 tertiary allylic alcohol), (3) afford the correct E-geometry 

at the formed Δ1,2-alkene, and (4) afford the correct R configuration at C6.

With these criteria in mind, we initially attempted to surmount these challenges from 

allylic alcohol 15, which was more readily accessed than its epimer 21 during initial route 

development (Scheme 2). The first task of forging the enol ether was met with resistance. 

Steric hinderance prevented synthesis of vinyl ether 40a using alkenyl electrophiles with 

Pd2+ or Hg2+ catalysis, while extensive decomposition thwarted access to silyl ketene 

acetal/hemiaminal 40b and 40c under forcing Johnson- or Eschenmoser-Claisen conditions 

(Scheme 7b). Enol ether synthesis was eventually accomplished to form ynol ether 40d 
(from Waser’s reagent60) and enol ethers 40e,f (from esterification/silylation or oxa-Michael 

addition). However, these compounds failed to undergo productive Claisen rearrangements, 

likely due to barriers exceeding those of decomposition pathways.

Further experimentation revealed that vinylogous ester 40g was accessible from oxa-Michael 

addition (see SI) and reactive in the Claisen rearrangement (Scheme 7c). Upon heating in 

PhMe at 130 °C, 40g converted into 41g in 56% yield, furnishing the hindered Δ1,2-alkene 

with the necessary E-geometry for elaboration to 3. The alkene geometry was rationalized 

as shown in TS2: the C3 substitution on the A-ring caused A1,2-strain to dominate over 

1,3-diaxial strain, forcing the C-ring to occupy a pseudoaxial position in the chair-like 

transition state (Scheme 7e).23 The importance of C3-substitution was verified with model 
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substrate 42 (Scheme 7d).61 This compound also underwent Claisen rearrangement, but the 

absence of C3-substitution rendered A1,2-strain insufficient to overcome 1,3-diaxial strain. 

Thus, the C-ring instead occupied a pseudoequatorial position in TS3, producing 43 with the 

undesired alkene geometry.

Although enol ether 40g satisfied 3 out of 4 requirements, its Claisen rearrangement yielded 

the incorrect C6 stereochemistry, a result of the 1S-configuration. Our collective findings led 

us to posit that all four requirements could be met with the C1-epimer of 40g.

Realization of a successful stereoselective Claisen rearrangement (Scheme 8) began with 

C1-epimeric alcohol 21, which was accessed via Liebeskind-Srogl coupling and reduction 

(Scheme 4). Oxa-Michael addition of the hindered C1 alcohol to methyl propiolate was 

mediated by N-methylmorpholine (NMM) at 0 °C with exceptional ease, likely through an 

alkoxide/enammonium caged pair.62 The resulting vinyl ether 44 was heated in silylated 

glass to provide 5-8-5 tricycle 45 via a stereoselective Claisen rearrangement/ene reaction 

cascade.21,63 In accordance with the insights gained from Scheme 7, the A-ring substitution 

at C3 and the R-configuration at C1 translated cleanly to the requisite hindered E-alkene and 

the 6R-configuration, respectively (TS4). The E-alkene placed the C8 aldehyde proximal 

to the Δ9,10-alkene, such that the thermal conditions also effected an ene reaction (TS5) 

analogous to that developed by Takeshita.21b,c This protocol readily afforded 750 mg of the 

advanced tricycle 45 in a single pass.

A simple sequence then converted 45 to cotylenol (3). First, β-hydroxyketone 46 was 

obtained following uneventful oxidation of the β-hydroxyester and decarboxylative aldol 

reaction with formaldehyde (Scheme 9a). Elimination of the β-hydroxyl group yielded 

enone 47, which was subjected to a series of stereoselective transformations to establish 

the C7–9 stereotriad. α-Hydroxylation of 47 at C9 proved efficient (94%) and highly 

stereoselective (>20:1 dr), contrasting prior syntheses wherein oxidations of related 

intermediates delivered mixtures of C9 epimers (2.7–1.5:1).20,21 The rigid conformation 

enforced by the all-sp2 C7–9 bridge of 50 (the potassium enolate of 47) may allow reagents 

to avoid the i-Pr substituent but not the C18 methyl on the opposite face (Scheme 9b).64 

Late-stage intermediates of prior syntheses possessed pseudo-equatorial methyl groups 

at C7, which likely twisted the enolate (relative to 50) to expose the internal face. α-

Hydroxyketone 48 was then subjected to a diimide reduction, which also occurred from the 

exterior face with high dr (7:1). Finally, Nakada’s protocol for directed reduction furnished 

3 in 83% yield and >20:1 dr without recourse to C3 alcohol protection/deprotection as used 

previously.20

CONCLUSION

In summary, we have developed a short synthesis of (−)-cotylenol (16 linear steps, 9 steps 

from convergence of A and C-rings) via mild Liebeskind-Srogl coupling of hindered and 

fully functionalized A- and C-rings, and a Claisen-ene cascade reaction (Scheme 10). 

The synthetic sequence scales well, expediently affording 750 mg of 5-8-5 scaffold 45 
in 10 linear steps (3.8%, 1st generation versus 4.2–6.8%, 2nd generation route, depending 

on preparation of A-ring starting material). Furthermore, the route is highly amenable to 
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diversification at numerous positions: the A and C rings through cross-coupling, and the B-

ring through manipulation of the Claisen-ene product 45. We plan to leverage this synthesis 

to prepare a focused library of analogues and explore the selective engagement of 14-3-3 

protein/client complexes.65 These efforts will benefit from available crystal structures for 

14-3-3 protein/client/cotylenin A complexes and existing SAR data for cotylenin congeners 

and semisynthetic fusicoccin analogues. We aim to identify novel natural product-based lead 

compounds for future development, and efforts toward this goal are underway.66

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Fusicoccanes such as cotylenin A function as molecular glues between 14-3-3 proteins and 

phosphoprotein clients (from PDB: 4IHL, ref. 4a). C-RAFpp = diphosphorylated C-RAF 

peptide.
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Figure 2. 
Synthetic strategies to access cotylenol.
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Figure 3. 
Discovery and investigation of an unusually hindered Liebeskind-Srogl fragment coupling.

Ting et al. Page 18

J Am Chem Soc. Author manuscript; available in PMC 2024 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Scope of hindered ketones. Reaction conditions: 27 (0.12 mmol), 38a–h (1 equiv), 

Pd2(dba)3•CHCl3 (5 mol %), P(2-furyl)3 (15 mol %), CuTC (1.6 equiv), B(OH)3 (2 equiv), 

4:1 acetone/EtOAc, rt, 16 h.
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Scheme 1. 
Initial synthesis of A- and C-ring fragments, revised in Schemes 3, 5 and 6.
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Scheme 2. 
Addition to C-ring aldehyde yields incorrect diastereomer 15.
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Scheme 3. 
Realization of fragment coupling with a higher oxidation state C-ring electrophile.
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Scheme 4. 
Stereoselective Luche reduction to establish desired C1 configuration.
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Scheme 5. 
Asymmetric synthesis of C3 tertiary alcohol for second-generation A-ring synthesis.

Ting et al. Page 24

J Am Chem Soc. Author manuscript; available in PMC 2024 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 6. 
Elaboration to an A-ring cyclic vinylboronic ester.
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Scheme 7. 
Incremental progress towards identification of a suitable Claisen rearrangement substrate.
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Scheme 8. 
Tandem Claisen-ene cascade.
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Scheme 9. 
Completion of cotylenol via stereoselective B-ring manipulations.
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Scheme 10. 
Summary of completed synthesis.
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