Skip to main content
. 2024 Apr 17;16:16. doi: 10.1186/s11689-024-09534-z

Table 2.

Statistical analysis results

Figure Outcome Model Predictor Output p value
1 Number of USVs rmANOVA Genotype F(1,42) = 5.669 .022
Sex F(1,40) = 3.352 .075
Age F(2,84) = 1.894 .157
Genotype* Age F(2,84) = 0.863 .863
Mann–Whitney Genotype U(132) = 1373 .0011
Weight rmANOVA Genotype F(1,42) = .016 .900
Sex F(1,40) = .001 .977
Age F(1.5,61) = 871.279 3.0E-44
Genotype* Age F(1.5,61) = .347 .640
Latency to right Mann–Whitney Genotype U(44) = 289.5 .148
Sex U(44) = 249.5 .629
Temperature rmANOVA Genotype F(1,42) = 5.706 .021
Sex F(1,40) = .386 .538
Age F(2,84) = 7.969 .001
Genotype* Age F(2,84) = .411 .664
Number of USVs with temperature covariate ANCOVA Genotype F(1,125) = 11.021 .001
Age F(2,125) = .911 .405
Genotype* Age F(2,125) = .111 .895
Number of phrases Linear mixed model Genotype F(1,42.3) = 4.264 .045
Sex F(1,39.9) = 2.935 .094
Age F(2,52.6) = .686 .508
Genotype*Age F(2,52.6) = 1.265 .291
Call duration Linear mixed model Genotype F(1,28) = 11.198 .002
Sex F(1,24.6) = 2.055 .164
Age F(2,41.3) = 3.679 .034
Genotype*Age F(2,41.3) = .282 .756
Pause duration Mann–Whitney Genotype U(102) = 892 .048
Sound pressure level Mann–Whitney Genotype U(102) = 972 .159
Mean frequency Linear mixed model w/ simple main effects Genotype F(1,77.1) = 8.973 .004
Sex F(1,68.7) = .156 .694
Age F(2,96) = 4.364 .015
Genotype*Age F(2,96) = 6.274 .003
P6, Genotype F(1,96) = 20.942 .00001
Frequency range Linear mixed model Genotype F(1,66.7) = 9.557 .003
Sex F(1,76) = 3.623 .061
Age F(1,96) = 5.084 .008
Genotype*Age F(1,96) = .280 .757
% calls with frequency jump Mann–Whitney Genotype U(127) = 1348.5 .006
2 Developmental data collection attempts rmANOVA Genotype F(1,42) = .144 .706
Sex F(1,42) = .144 .706
Age F(1.5,68) = 2.545 .096
Genotype*Age F(1.5,68) = .992 .361
Developmental body weight rmANOVA Genotype F(1,42) = .007 .932
Sex F(1,42) = 12.837 .0009
Age F(1.9,80.3) = 1294.4 1.9E-94
Genotype*Age F(1.9,80.3) = 3.599 .034^
Developmental body length rmANOVA Genotype F(1,42) = .504 .481
Sex F(1,42) = 16.008 .0003
Age F(3,126) = 89.130 5.3E-31
Genotype*Age F(3,126) = .214 .887
Developmental forelimb brake duration Hierarchical mixed covariate model Genotype F(1,71.4) = 18.499 .00005 (.002*)
Sex F(1,82.9) = .785 .378
Age F(3,127.9) = .731 .536
Genotype*Age F(3,130.6) = 2.734 .046 (.510*)
Developmental hindlimb absolute paw angle Hierarchical mixed covariate model Genotype F(1,65.1) = 10.979 .002 (.033*)
Sex F(1,79.5) = 2.581 .112
Age F(3,124.8) = 3.604 .015 (.045*)
Genotype*Age F(3,128.6) = 1.384 .251
Adult body length ANOVA Genotype F(1,40) = 8.278 .006
Sex F(1,40) = 18.846 .00009
Genotype*Sex F(1,40) = .107 .745
Adult body weight ANOVA Genotype F(1,40) = 10.809 .002
Sex F(1,40) = 59.719 3.5E-9
Genotype*Sex F(1,40) = .001 .972
30 cm/s data collection attempts ANOVA Genotype F(1,42) = 2.261 .140
Sex F(1,40) = 1.222 .276
Genotype*Sex F(1,40) = .629 .433
40 cm/s data collection attempts ANOVA Genotype F(1,36) = 6.746 .014
Sex F(1,34) = .089 .767
Genotype*Sex F(1,34) = .831 .368
Adult 30 cm/s forelimb brake duration ANCOVA Genotype F(1,41) = 17.812 .0001 (.0006*)
Sex F(1,39) = 2.067 .308
Genotype*Sex F(1,39) = 1.473 .232
Adult 40 cm/s hindlimb % shared stance ANCOVA Genotype F(1,35) = 12.092 .001 (.06*)
Sex F(1,33) = .114 .738
Genotype*Sex F(1,33) = .042 .838
Adult 40 cm/s hindlimb % swing ANCOVA Genotype F(1,35) = 8.555 .006 (.088*)
Sex F(1,33) = .814 .374
Genotype*Sex F(1,33) = .030 .863
Adult 40 cm/s hindlimb % stance ANCOVA Genotype F(1,35) = 8.555 .006 (.088*)
Sex F(1,33) = .814 .374
Genotype*Sex F(1,33) = .030 .863
3 Body weight

rmANOVA w/

simple main effects

Genotype F(1,35) = 16.179 .0003
Sex F(1,35) = 93.839 1.9E-11
Genotype*Sex F(1,35) = .139 .712
Females, Genotype F(1,35) = 6.484 .015
Males, Genotype F(1,35) = 9.927 .003
Age F(2,72.9) = 221.81 3.7E-32
Genotype*Age F(2,72.9) = 9.667 .0002
Mean visual acuity ANOVA Genotype F(1,37) = .573 .454
Sex F(1,35) = 2.732 .107
Genotype*Sex F(1,35) = .436 .513
Mean contrast ANOVA Genotype F(1,37) = .003 .960
Sex F(1,35) = 2.409 .130
Genotype*Sex F(1,35) = 1.034 .316
4 Body weight during Acoustic Startle/PPI testing ANOVA Genotype F(1,36) = 6.187 .018
Sex F(1,36) = 27.528 7.1E-6
Genotype*Sex F(1,36) = .136 .714
Startle magnitude – 120 dB rmANCOVA Genotype F(1,37) = 4.282 .046
Sex F(1,35) = .823 .371
Trial F(3,111) = .338 .798
Genotype*Trial F(3,111) = 1.216 .307
Startle magnitude – 80-120 dB rmANCOVA Genotype F(1,37) = .921 .343
Sex F(1,35) = .042 .839
dB F(3.8,143.8) = 3.208 .016
Genotype*dB F(3.8,143.8) = .192 .939
% inhibition of startle rmANCOVA w/ simple main effects Genotype F(1,37) = 5.151 .029
Sex F(1,35) = 2.035 .163
dB F(2,74) = .046 .955
Genotype*dB F(2,74) = 1.033 .361
4 dB, Genotype F(1,113) = .712 .401
8 dB, Genotype F(1,113) = 4.221 .042
16 dB, Genotype F(1,113) = 8.444 .004
% freezing: tone + shock paring rmANOVA Genotype F(1,35) = .027 .872
Sex F(1,35) = 9.960 .003
Minute F(2,70) = 10.981 .00007
Genotype*Minute F(2,70) = .053 .949
% freezing: contextual fear rmANOVA Genotype F(1,35) = .592 .447
Sex F(1,35) = 5.635 .023
Minute F(7,245) = 2.506 .017
Genotype*Minute F(7,245) = 1.049 .397
% freezing: cued fear rmANOVA Genotype F(1,35) = 4.210 .048
Sex F(1,35) = 2.129 .153
Minute F(7,245) = 18.164 2.1E-19
Genotype*Minute F(7,245) = .670 .697
5 SA distance traveled rmANOVA Genotype F(1,36) = .943 .338
Sex F(1,36) = 1.674 .204
Genotype*Sex F(1,36) = .051 .823
SA habituation investigation time rmANOVA Genotype F(1,36) = .538 .468
Stimulus F(1,36) = .645 .427
Sex F(1,36) = 6.231 .017
Genotype*Stimulus F(1,36) = .004 .950
Genotype*Sex F(1,36) = .018 .893
SA sociability preference index ANOVA Genotype F(1,36) = .886 .353
Sex F(1,36) = 5.800 .021
Genotype*Sex F(1,36) = 2.992 .092
SA sociability investigation time

rmANOVA w/

simple main effects

Genotype F(1,36) = .233 .632
Stimulus F(1,36) = 140.790 5.3E-14
Sex F(1,36) = 12.039 .001
Genotype*Sex F(1,36) = .059 .809
Genotype*Stimulus F(1,36) = .429 .517
Controls, stimulus F(1,36) = 78.384 1.4E-10
MPS IIIB, stimulus F(1,36) = 62.836 2.1E-9
SA sociability preference index across time rmANOVA Genotype F(1,36) = .143 .708
Genotype*Minute F(8.9,322.9) = 1.867 .056
SA novelty preference index ANOVA Genotype F(1,36) = .000 .991
Sex F(1,36) = .094 .761
Genotype*Sex F(1,36) = .301 .586
SA social novelty investigation time

rmANOVA w/

simple main effects

Genotype F(1,36) = 2.784 .104
Stimulus F(1,36) = 96.732 9.7E-12
Sex F(1,36) = 12.258 .001
Genotype*Sex F(1,36) = 2.390 .131
Genotype*Stimulus F(1,36) = 1.479 .232
Controls, stimulus F(1,36) = 37.144 5.2E-7
MPS IIIB, stimulus F(1,36) = 61.067 2.9E-9
SA novelty preference index across time rmANOVA Genotype F(1,36) = .058 .811
Genotype*Minute F(9,324) = 1.651 .100
Tube Test percent wins One-sample t-test (to 50%) Female MPS IIIB t(8) = -3.900 .005
Male MPS IIIB t(9) = -.919 .382
RI bout with an attack Fisher’s Exact Test Genotype OR = 1.25 [95% CI 1.045,1.495] .024
RI anogenital sniff duration Mann–Whitney Genotype U(20) = 22 .035
RI head sniff count Mann–Whitney Genotype U(22) = 20 .023
6 Whole brain volume ANOVA Genotype F(1,22) = 28.585 .00002
Sex F(1,22) = 4.137 .054
Genotype*Sex F(1,22) = .185 .671
Body weight ANOVA Genotype F(1,22) = 61.441 8.3E-8
Sex F(1,22) = 82.188 7.0E-9
Genotype*Sex F(1,22) = 3.582 .072
Cerebellar volumetric ratio ANOVA Genotype F(1,22) = 5.693 .026
Sex F(1,22) = 2.131 .158
Genotype*Sex F(1,22) = 1.144 .296
Cerebellar apparent diffusion coefficient ANOVA Genotype F(1,22) = 2.883 .104
Sex F(1,22) = .081 .779
Genotype*Sex F(1,22) = .782 .386
Corpus callosal volumetric ratio ANOVA Genotype F(1,22) = 10.219 .004
Sex F(1,22) = .016 .900
Genotype*Sex F(1,22) = .926 .346
Corpus callosal fractional anisotropy ANOVA Genotype F(1,22) = 1.394 .250
Sex F(1,22) = .010 .923
Genotype*Sex F(1,22) = 3.241 .086
Cortical thickness ANOVA Genotype F(1,22) = 1.399 .250
Sex F(1,22) = .113 .740
Genotype*Sex F(1,22) = .110 .743

*FDR q = .1 adjusted observed p value

^simple main effects not significant