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Summary

This paper develops a method based on model-X knockoffs to find conditional associations that 

are consistent across environments, controlling the false discovery rate. The motivation for this 

problem is that large data sets may contain numerous associations that are statistically significant 

and yet misleading, as they are induced by confounders or sampling imperfections. However, 

associations replicated under different conditions may be more interesting. In fact, consistency 

sometimes provably leads to valid causal inferences even if conditional associations do not. While 

the proposed method is widely applicable, this paper highlights its relevance to genome-wide 

association studies, in which robustness across populations with diverse ancestries mitigates 

confounding due to unmeasured variants. The effectiveness of this approach is demonstrated by 

simulations and applications to the UK Biobank data.
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1. Introduction

One goal of statistics is to discover which among many variables are meaningfully 

associated with an outcome of interest. Associations can have different meanings, ranging 

from marginal, a tendency of two variables to covary, to causal, a relation ensuring 

interventions on one variable affect another. For example, a genome-wide association study 

may reveal some genetic variants are more frequent among diabetic patients. This marginal 

association may occur simply because the discovered variants are shared, due to common 

ancestry, by a population following a less healthy diet (Devlin & Roeder, 1999). Of course, 

it would be more actionable to identify variants involved in biological processes which, if 

modified by a drug, could influence the disease. Marginal associations are the easiest to 

recognize but also the least informative, while causal associations are more elusive, although 

they better lend themselves to scientific interpretations.

Between marginal and causal associations one finds conditional association: the tendency of 

two variables to covary as others are fixed. Conditional testing often relies on parametric 

models, but these require assumptions that are not always justified. The alternative “model- 

X “ approach of Candès et al. (2018) requires no model for the conditional distribution 

of the outcome, assuming instead that the joint distribution of the predictors is known, at 

least within a reasonable approximation in practice. This framework is widely relevant, and 

especially so in genetic studies because reliable knowledge is available about the distribution 

of the genotypes (Sesia et al., 2018). Two types of model-X methods have been developed: a 

version of knockoffs (Barber & Candès, 2015), and the conditional randomization test, both 

of which can harness the power of any machine learning algorithm while controlling type-I 

errors in finite-samples.

Despite the advantages, conditional testing is not fully satisfactory. First, it neglects 

confounders: unobserved variables that would explain the association (Pearl, 2009). For 

instance, a genotyped variant may be associated with a disease only because physically 

close to an unseen causal one (Pritchard & Przeworski, 2001). Second, data may not be 

collected exactly from the target population, due to either sampling bias (Heckman, 1979) 

or convenience (Harford, 2014). Third, unknown sample dependencies may lead to spurious 

associations (Lee & Ogburn, 2020).

This paper mitigates the above limitations by analyzing data from many environments, 

corresponding to different populations, experimental settings, or sampling strategies. The 

motivating conjecture is that the most informative associations are those consistently 

reproducible, as these enable robust predictions and may even reflect causal relations. This 

old idea (Hume, 1739) is translated into a method for testing hypotheses of consistent 

conditional association. Our solution utilizes knockoffs because they scale well to high 

dimensions and control the false discovery rate (Benjamini & Hochberg, 1995). However, an 

alternative approach based on the conditional randomization test is possible; see Section S1 

and Figure S1 in the Supplementary Material.
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Related work

We take inspiration from Peters et al. (2016) and Heinze-Deml et al. (2018), which 

advanced invariance across environments as a framework for causal inference. Departing 

from their work, we do not assume homogeneous effects; indeed, we can obtain meaningful 

inferences without any reference to a causal model. Further, we seek different guarantees, 

controlling the false discovery rate, and we can handle hundreds of thousands of variables. 

The invariance of Peters et al. (2016) has been utilized to make predictions robust to 

covariate shift (Rojas-Carulla et al., 2018; Rothenhäusler et al., 2021)—changes in the 

distribution of explanatory variables. Although prediction is a related problem, our paper 

concentrates on testing. This work is related to causal discovery (Pearl, 2009; Mooij et al., 

2020), which aims to learn the full graph describing the relations between many variables, 

without specifying one outcome. Causal discovery can uncover causal directions, unlike 

our method, but it requires parametric assumptions and asymptotic rather than finite-sample 

guarantees. Invariance also appears in the feature selection literature (Yu et al., 2020), 

though typically without finite-sample inferences. Compared to earlier works on knockoffs 

(Barber & Candès, 2015; Candès et al., 2018), this paper differs because those mostly 

focused on the construction of the knockoffs (Gimenez et al., 2019; Romano et al., 2019; 

Bates et al., 2020a), robustness to model misspecifications (Barber et al., 2020), and power 

(Katsevich & Ramdas, 2020; Wang & Janson, 2020). Our applications are in genetics, 

exploiting knockoff constructions that account for dependencies among genotypes (Sesia 

et al., 2018, 2020), population structure (Sesia et al., 2021), and other confounders (Bates 

et al., 2020b), but did not deal with missing variants. Knockoffs are however applicable 

to many other fields (Shen et al., 2019; Chia et al., 2021; Fan et al., 2020) for which our 

methods may also be helpful.

2. Conditional associations that hold across environments

Consider observations X, Y  consisting of p variables, X ∈ Xp, and an outcome, Y ∈ Y, 

sampled from E environments. Here, X and Y may be discrete or continuous. Assume 

the joint distribution of X within any environment e ∈ E = 1, …, E , PX
e , is known. 

For simplicity, imagine different samples as mutually independent, although known 

dependencies can be accommodated (Sesia et al., 2021). The model-X framework (Candès 

et al., 2018) provides methods to test the hypothesis that Y  is independent of the j-th variable 

conditional on the other ones,

ℋj
ci, e:Y e ⫫ Xj

e ∣ X−j
e ,

(1)

for all j ∈ p = 1, …, p . Here, X−j denotes all explanatory variables except Xj, and the 

superscript e clarifies we are focusing on the distribution of the data in the e-th environment. 

Our goal is to powerfully test the following consistent conditional independence hypothesis,

ℋj
cst:  there exists e ∈ 1, …, E  such that the null ℋj

ci, e in (1) is true, 

(2)
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controlling the false discovery rate. Intuitively, we would interpret any findings by noting 

that, if ℋj
cst  (2) is false, the conditional association of Xj with Y  must hold across all 

environments.

Note that rejecting ℋj
cst does not necessarily suggest that Xj has a constant effect on Y . For 

example, Xj may be associated to Y  through interactions with other environment-specific 

variables and, in a parametric analysis, this would require environment-specific models. 

However, we simply seek variables for which there is evidence of some conditional 

association with Y  across environments, leaving the modeling task to other statistical 

methods or follow-up studies.

At first sight, it may be tempting to test ℋj
ci, e  (1) environment by environment and report 

the common discoveries. Unfortunately, this intersection heuristic does not control the false 

discovery rate for ℋj
cst  (2) even if the tests of ℋj

ci,e  (1) control it for all e (Katsevich et al., 

2021). Alternatively, one may analyze the pooled data from all environments, controlling 

the false discovery rate for ℋj
ci  (1) in the broader population defined by the union of all 

environments, but not testing consistency. Indeed, the problem is non-trivial, as illustrated by 

the simulations in Figure 1, which will be explained in Section 6.2. This gives a preview of 

our method, which provably controls the false discovery rate for ℋj
cst (2) and achieves good 

power.

A limitation of ℋj
cst  (2) is that it becomes harder to reject if E grows but the total number 

of samples remains constant, because every environment must provide sufficient evidence. 

However, consistency across most environments might be satisfactory, especially if some 

have smaller sample sizes. This motivates partial consistency testing, or partial conjunction 

(Benjamini & Heller, 2008). For j ∈ p  and r ∈ E , define the null hypothesis

ℋj
pcst, r: ∣ e ∈ 1, …, E :ℋj

ci, e is true  ∣ > E − r .

(3)

A rejection of ℋj
pcst,r suggests Xj is associated with Y  in at least r environments. This 

generalizes ℋj
cst  (2), which is recovered if r = E. Note that, unlike Benjamini & Heller 

(2008), we will not account for multiplicity over different r, which we take instead as fixed.

The next section establishes a link between ℋj
cst  (2) and causal inference under specific 

assumptions, but consistent associations can be informative even beyond any causal 

framework, including in situations where the explanatory variables do not predate the 

outcome (Castro et al., 2020) or there is no clear notion of interventions (Hernán 

& Taubman, 2008). In particular, conditional associations are useful to make reliable 

predictions, and predictive robustness across environments is a well-known challenge in 

many fields (Heckman, 1979; Duncan et al., 2019). Imagine that Y  measures competences 

acquired by students, and X collects some explanatory variables, e.g., school attendance, 

family size. Even without hoping to estimate constant causal effects, as variables may 

interact differently across environments (e.g., low vs. high income neighborhoods), 

consistent associations may help predict academic difficulties or design useful interventions. 
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While “one size fits all” is certainly wishful thinking, considerations of practicality, 

transparency, and fairness make it preferable to focus on policies that have good chances 

of being widely effective. Moreover, consistent associations are more likely to be robust to 

changes in environments or covariate shifts, such as those that may be expected with the 

passing of time.

Searching for patterns among a large number of variables can lead to fitted models relating 

X to Y  with a precision that cannot be replicated in other data sets. We typically rely on 

“cross-validation” to mitigate this problem, but that only guarantees internal consistency. 

For example, liking curly fries may predict IQ well among some Facebook users (Kosinski 

et al., 2013) but this association is probably not universal. Testing for ℋj
cst  (2) can be seen 

as “external cross-validation” (Waldron et al., 2014), thereby identifying less ephemeral 

relations (Efron, 2020).

3. From consistent associations to causal inferences

3.1. A constant causal model

This section assumes a constant causal model across all environments, which is unnecessary 

for the interest or validity of the proposed tests, but helps illustrate how consistent 

associations may facilitate the discovery of variables with causal effects in some settings.

Assume a structural equation model (Boolen, 1989) to link pZ explanatory variables Z , 

of which p are observed X  and pc are unobserved C , to the outcome Y . Note that 

we will write Z = X, C ∈ Xpz, with pz = p + pc. In this constant model, the i-th individual 

outcome, Y i , is given by Y i = f‾ Z i , V i , where f‾ is unknown and V  is exogenous noise 

from a standard uniform distribution, for example. Assume the causal direction is known: 

Y  is caused by some combination of Z and V . This simplification is appropriate in genetic 

studies, for example, because the genotypes predate the phenotype. Consider then the goal of 

discovering which variables have a direct effect on Y  and do not satisfy the following sharp 

causal null

ℋj
cs:f‾ z1, …, zj − 1, zj, zj + 1, …, v = f‾ z1, …, zj − 1, zj

′, zj + 1, …, v , ∀z, zj
′, v .

(4)

Intuitively, this says that intervening on Zj holding all other variables fixed would have no 

effect at all on Y . Alternatively, one may think of ℋj
cs as saying the potential outcomes 

are identical under all Zj (Rubin, 2005). Sharp hypotheses do not allow the estimation 

of heterogeneous treatment effects (Neyman & Iwaszkiewicz, 1935), but they are helpful 

to discover which variables are more likely to be causal, especially for a preliminary 

exploratory analysis (Imbens & Rubin, 2015). Further, our non-parametric causal model is 

very flexible and does not exclude that a variable may appear to have different linear effects 

on the outcome across environments with covariate shifts. Indeed, the sole purpose of this 

model is to concretely define causality.
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Suppose we have data from E environments, each corresponding to a distribution PZ
e  of 

explanatory variables, for e ∈ E . Conditional on Z, the outcome Y  is generated by the 

above model. For simplicity we rewrite this model as a function only of the causal variables, 

listed as Pa Y = j ∈ pz :ℋj
cs in (4) is false }, where Pa Y  stands for parents of Y . In 

particular,

Y i = f ZPa Y
i , V i ,

(5)

where f is the restriction of f‾ on Pa Y . For convenience, we split Pa Y  into observed 

Pax Y = j ∈ p : j ∈ Pa Y  and unobserved Pac Y = Pa Y ∖ Pax Y  causal variables. Of 

course, we only inquire about Pax Y  as we have no data about Pac Y .

3.2. The gap between conditional testing and causal inference

Rejecting ℋj
ci, e (1) yields a causal inference if there is no confounding, i.e., if the unobserved 

causal variables are non-existent or conditionally independent of the observed ones.

PROPOSITION 1. Fix e and j. Under the causal model and the data sampling scheme in Section 

3.1, assuming (i) Pac Y = ∅ or (ii) Xj
e ⫫ CPac Y

e ∣ X−j
e , then ℋj

cs (4) implies ℋj
ci,e  (1).

The first assumption above would require measuring every relevant variable, which seems 

unrealistic. The second holds in randomized experiments and in certain observational studies 

such as those involving genetic parents-child trio data (Bates et al., 2020b). However, it 

is unclear why the missing variables should generally be conditionally independent of the 

observed ones. Therefore, causal inference remains challenging even if the model in Section 

3.1 is acceptable. Note that more formal statements of our theoretical results, along with all 

mathematical proofs, can be found in Section S2, Supplementary Material.

3.3. Consistency improves robustness to missing variables

The assumptions necessary for causal inferences can be relaxed if the associations are 

consistent, because shifts in PZ
e  may induce different variables to pick up spurious 

associations in different environments while causal associations tend to remain unchanged. 

Figure 2 visualizes this idea with a toy example involving two causal variables, one of 

which is unmeasured. Here the environments differ in PZ
e  to a sufficient extent that their 

spurious associations have no overlap. Section 5 will explain the relevance of this idea to 

genome-wide association studies.

PROPOSITION 2. Fix any j and consider E environments. In the setting of Proposition 1 , if (i) 
Pac Y = ∅ or (ii) there exists e ∈ E :Xj

e ⫫ CPac Y
e ∣ X−j

e , the ℋj
cs  (4) implies ℋj

cst (2).

3.4. Consistency improves robustness to sampling imperfections

Perfect random samples from the target population are not always available, as real data 

sampling may involve unknown biases (Heckman, 1979; Hargittai, 2015) or network effects 

(Shalizi & Thomas, 2011; Lee & Ogburn, 2020). Consistency will not fully resolve these 
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difficulties, but it can mitigate them, as explained in Section S3, Supplementary Material. 

These results make our method relevant in many fields, including the social sciences, where 

collecting random samples is difficult, and where it is increasingly common to find large 

data sets with many associations, for which controlling the false discovery rate is desirable.

4. Methods

4.1. Review: the methodology of model-X knockoffs

Knockoffs enable testing ℋj
ci, e  (1), for all j ∈ p  and any e ∈ E . The idea is to augment 

the data for each of the n individuals with p knockoffs, based on the joint distribution of X, 

which is assumed to be known (Candès et al., 2018). The knockoffs X are created without 

looking at Y , so Y ⫫ X ∣ X, and they are pairwise exchangeable with the original variables. 

If Xe, Xe ∈ ℝn × 2p is obtained by concatenating Xe ∈ ℝn × p with the corresponding 

Xe ∈ ℝn × p, this has the same distribution as Xe, Xe
swap j , the matrix obtained from the latter 

by swapping the j-th column of Xe with the j-th column of Xe, for all j ∈ p . Therefore, 

swaps of a variable with its knockoff cannot be detected without looking at Y : the only 

significant difference between Xj and Xj may be the lack of conditional association of Xj

with Y . As our contribution does not concern this aspect of the analysis, we assume valid 

knockoffs are available based on the known PX
e , referring to the prior works mentioned in 

Section 1 for specific algorithms to construct them.

The second step is to fit a model predicting Y  from X, X, computing importance measures T j
e

and T j
e
 for each Xj and Xj, respectively. Any model can be employed, as long as swapping 

Xj with Xj results in T j
e being swapped with T j

e
. A typical choice is to fit a sparse generalized 

linear model, e.g., the lasso (Tibshirani, 1996), tuning its regularization via cross-validation; 

then, the absolute values of the (scaled) regression coefficients are powerful importance 

measures. For any true ℋj
ci,e  (1), the sign of W j

e = T j
e − T j

e
 is a coin flip, while a large positive 

value is evidence against the null. Further, if a random ϵe ∈ − 1, + 1 p is such that ϵj
e = + 1

if ℋj
ci,e is false and otherwise pr ϵj

e = + 1 = 1/2 independently of everything else, then W e

has the same distribution as W e ⊙ ϵe, where ⊙ indicates element-wise multiplication. Thus, 

the signs of W e are independent one-bit conservative p-values for ℋj
ci, e (1), if transformed as 

pj
e = 1/2 if W j

e > 0 and pj
e = 1 otherwise. The ordering provided by the absolute values of W e

allows one to powerfully test the above hypotheses sequentially. Concretely, the knockoff 

filter (Barber & Candès, 2015) computes a significance threshold such that rejecting ℋj
c, e  (1) 

for all j with larger W j
e controls the false discovery rate below a desired level α. Equivalently, 

this can be seen as applying the selective SeqStep+ test (Barber & Candès, 2015) to the 

above ordered one-bit p-values. We will extend this method to analyze data from many 

environments, testing ℋj
cst  (2).

4.2. Definition of multi-environment knockoff statistics

Consider E environments, each corresponding to data Y e ∈ ℝn, Xe ∈ ℝn × p, and knockoffs 

Xe ∈ ℝn × p; all environments have n samples here, although this is unnecessary. The first 
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ingredients for testing ℋj
cst are the following statistics, generalizing those of Candès et al. 

(2018).

DEFINITION 1. W ∈ ℝE × p are multi-environment knockoff statistics if W  has the same 

distribution as W ⊙ ϵ, where ϵ ∈ ± 1 E × p has independent entries and rows ϵe such that 
ϵj

e = ± 1 with probability 1/2 if ℋj
ci, e  (1) is true and ϵj

e = + 1 otherwise, for j ∈ p  and e ∈ E .

One way to compute the matrix W  is to separately analyze the data from each environment 

and stack the output W e row by row. This approach is fast but not necessarily very data 

efficient. For example, if all environments are identical, statistics obtained by separate 

analyses can only utilize a fraction 1/E of the samples compared to a pooled analysis, 

even though pooling already tests the correct target hypotheses ℋj
cst  (2) in this special case. 

Therefore, we also consider a more general and potentially more powerful joint analysis of 

all environments, as explained next.

Let Y ∈ ℝEn, X ∈ ℝEn × p, X ∈ ℝEn × p be the matrices obtained by stacking all observations 

or knockoffs. We define T , T ∈ ℝE × 2p as a matrix of multi-environment importance 

measures computed by a randomized function τ: T , T = τ Y , X, X . The function τ may 

involve any machine learning algorithms (examples are in the next section), as long as 

swapping variables and knockoffs in one environment has the effect of swapping the 

corresponding importance measures in that environment, leaving all other elements of τ
unchanged. This only needs to hold in distribution conditional on X, Y , X, as τ may be 

randomized. Formally, conditional on Y , X, X ,

τ Y , X, X swap S =
d

τ Y , X, X
swap S

,

(6)

for any S ⊆ E × p , where =
d

 indicates equality in distribution and X, X swap S  is obtained 

from X, X  by swapping the column Xj
e for environment e with the corresponding Xj

e
, for all 

e, j ∈ S. The definition of τ Y , X, X swap S  is analogous. Note the slight change of notation 

compared to Section 4.1: there, swapping was defined only for one environment.

The next section discusses how to compute importance measures satisfying (6) through 

a joint analysis of the data from all environments, with relatively lower power loss 

compared to pooling. Here, we note that the property in (6) is sufficient to obtain valid 

multi-environment statistics.

PROPOSITION 3. Let T , T ∈ ℝE × 2p be importance measures satisfying (6), and define 

W ∈ ℝE × p through W j
e = T j

e − T j
e
 for all e ∈ E  and j ∈ p . Then, W  satisfies Definition 

1 .
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4.3. Computation of multi-environment knockoff statistics

Some care must be exercised to ensure statistics computed by a joint multi-environment 

analysis satisfy (6), as standard techniques (Candès et al., 2018) naively applied to the 

pooled data would not be valid; see Figure S3, Section S4. A solution that works well is 

to allow each row of W e to leverage the data from other environments after perturbing the 

latter through random column swaps. This perturbation acts on a copy of X, X , so the 

order in which the environments are processed is irrelevant, and consists of swapping each 

observation of one variable with its knockoff based on independent coin flips. Then, we 

estimate importance weights that are symmetric with respect to variables and knockoffs; 

these will serve as prior information for the next step, capturing the importance of a variable 

or its knockoff based on the information from all other environments. The influence of 

this prior information on the final statistics is controlled by a scalar parameter γe ∈ 0,1
designed to summarize the overall relevance of the data from other environments to the 

prediction task in that of interest. The value of γe is tuned by cross-validation within the 

e-th environment, following the intuition that the most important features are those enabling 

the most accurate predictions (Candès et al., 2018). Figure 3 provides a schematic of this 

procedure, while the details are below. As it will become clear, if the data distributions 

in all environments are identical, this joint analysis is comparable to pooling with 1/2 of 

all samples, and this is more efficient than the separate analysis described in the previous 

section if E is large.

Let V ∈ 0,1 En × p be independent coin flips, and X, X swap V  be the matrix obtained by 

swapping the i-th observation of Xj with the corresponding Xj if and only if V ij = 1. Prior 

importance measures T prior (resp. T prior) are computed for all variables (resp. knockoffs) as 

the absolute values of the regression coefficients estimated by fitting a sparse generalized 

linear model to predict Y  given X, X swap V , using the data from all environments and tuning 

the regularization parameter by cross-validation. The results are combined symmetrically 

into an empirical prior weight πj for each j, e.g., πj = ζ T j
prior + T j

prior
 for some positive 

and decreasing function ζ, such as ζ t = 1/ 0.05 + t . Finally, we compute the importance 

measures T e and T e based on the unperturbed data in the e-th environment with an approach 

similar to the separate analysis of Section 4.2. The difference is that now the regularization 

is feature-specific and depends on two scalar hyper-parameters, λe > 0 and γe ∈ 0,1 , both 

tuned by cross-validation, as well as on the prior weights, which are fixed. In particular, the 

regularization parameter for Xj, Xj is λj
e = λe 1 − γe + γeπj. This recovers the separate analysis 

statistics if γe = 0, but a larger γe may improve power by making it less likely to select 

spurious variables. If γe = 1, the data from the target environment are ignored when deciding 

which variables to include in the sparse model; this may be reasonable if the data from other 

environments are overwhelmingly more informative, perhaps due to larger sample sizes. As 

it is unclear how informative the prior may be in general, the value of γe is determined 

adaptively via cross-validation. To avoid a two-dimensional search, in practice we first tune 

λe and then γe.
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PROPOSITION 4. The statistics W  obtained by applying W j
e = T j

e − T j
e
 to the empirical cross-

prior importance measures described above satisfy Definition 1.

The random data perturbation may dilute some of the potentially useful information from 

other environments, decreasing power compared to pooling, but it is necessary to guarantee 

false discovery rate control; see the proof of Proposition 4 and the example of Figure S3. 

Fortunately, random swapping does not prevent the empirical prior from learning which 

pairs Xj, Xj  may be important, although it makes approximately half of the samples 

uninformative. In any case, the role of the prior is modulated by γe, which is adaptively 

tuned via cross-validation. Thus, we expect at worst to select γe ≈ 0 and thus approximately 

recover the separate analysis solution from Section 4.2, meaning that this joint analysis 

typically is at least as powerful as the latter.

4.4. The multi-environment knockoff filter

The rows of a matrix of multi-environment knockoff statistics W  can be combined to obtain 

one-bit conservative p-values for testing ℋj
cst in (2). Precisely, for each j ∈ p , we compute

pj
cst  = 1/2,  if min sign W j

e
e = 1
E = + 1,

1,  otherwise.

(7)

The order in which these hypotheses will be tested depends on the absolute values of 

W , which we combine column-wise with some symmetric function w‾  to obtain invariant 

statistics W j
cst  = w‾ W j

1 , …, W j
E . Concretely, we will adopt w‾ W j

1 , …, W j
E = ∏e = 1

E W j
e . In 

general, the one-bit p-values in (7) are valid for ℋj
cst  (2) even conditional on W j

cst .

PROPOSITION 5. If W  satisfies Definition 1, the p-values pj
cst in (7) for true ℋj

cst (2) are 

stochastically larger than uniform conditional on W cst = W 1
cst , …, W p

cst , and “almost 

independent”; that is, pr pj
cst ≤ α W cst ∣ , p−j

cst ≤ α, for all α ∈ 0,1  if ℋj
cst is true.

Proposition 5 suggests sequential testing, e.g., selective SeqStep+. However, this is not 

obviously valid because the null pj
cst are not independent as required by Barber & Candès 

(2015). In fact, each of them is also affected by the signs of W  corresponding to non-null 

environments; ℋj
cst only says there is a null in the j-th column, but pj

cst also counts the other 

signs. Fortunately, our p-values are at worst conservative, provably retaining false discovery 

rate control.

THEOREM 1. Selective SeqStep+ applied to pj
cst (7) ordered by W j

cst  controls the false 

discovery rate if pr pj
cst  ≤ α W cst  ∣ , p−j

cst  ≤ α for any α ∈ 0,1 .

In addition to being useful here to test consistency, the above results indicates broader 

applicability of selective SeqStep+ than previously known, and suggests possible interesting 

connections to Fithian & Lei (2020), where false discovery rate control under known 
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dependency is studied for the Benjamini-Hochberg procedure (Benjamini & Hochberg, 

1995).

4.5. Testing partially consistent conditional associations

Fix any r ∈ E . For each j ∈ p , let nj
− count the negative signs in the j-th column of the 

multi-environment statistics W , and let nj
0 be the number of zeros. Then, compute

pj
pcst, r = Ψ nj

− − 1, E − r + 1 − nj
0, 1/2 + Uj ⋅ ψ nj

−, E − r + 1 − nj
0, 1/2 ,

(8)

where Ψ x, m, π  is the binomial cumulative distribution function at x and ψ x, m, π  is the 

corresponding probability mass (m is truncated at 0 if negative), while Uj is uniform on [0,1], 

independently of all else. Intuitively, pj
pcst, r is a randomized binomial p-value based on the 

observed number of negative signs among the non-zero statistics, which we can compute 

because we know there must be at least E − r + 1 null environments under ℋj
pcst, r (3). As in 

Section 4.4, we will filter these p-values in decreasing order of W j
pcst, r = w‾ W j

1 , …, W j
E , for 

a symmetric function w‾ . For example, w‾ W j
1 , …, W j

E = ∏e = 1
r W j

E − e + 1 , where W j
e

are the order statistics for the absolute values in the j-th column of W . The next result 

states these ordered p-values are conservative for ℋj
pcst, r (3), and “almost independent” as in 

Proposition 5. Combined with Theorem 1, this guarantees false discovery rate control with 

selective SeqStep+.

PROPOSITION 6. If W  satisfies Definition 1 , for any fixed r ∈ E , the pj
cst  (8) corresponding to 

true ℋj
pcst, r (3) satisfy pr pj

pcst, r ≤ α W pcst, r ∣ , p−j
pcst, r ≤ α, for all α ∈ 0,1 .

Note that, if r = E, the pj
pcst,r (8) is not identical to pj

cst (7) since the latter is always 1 when 

nj
0 > 0. This discrepancy is practically irrelevant because it would not make sense to reject 

ℋj
cst 2  if nj

0 > 0. While randomization here allows us to deal powerfully with the case in 

which nj
0 > 0, it would have not helped earlier as the pj

cst in (7) have one bit of information, 

and selective SeqStep+ only looks at whether they are above 1/2. Note also that a pooled 

analysis generally tests ℋj
pcst,1 (3), possibly more powerfully compared to our method because 

it allows additional flexibility in the statistics. Thus, our method should only be applied with 

r > 1.

A limitation of selective SeqStep+ applied to the p-values pj
pcst,r (8), which have more than 

one bit of information, is that it involves a parameter c, the baseline rejection threshold 

(Barber & Candès, 2015), whose choice can affect power. This problem did not arise in 

Section 4.4 because c=1/2 is the only option for one-bit p-values such as pj
cst (7). To avoid 

having to guess a good value of c, we also consider filtering pj
pcst, r (8) with the accumulation 

test of Li & Barber (2017). If the p-values are independent, this test controls a modified false 

discovery rate, mFDRq = E ∣ j:ℋj
ci, e is rejected ∩ j:ℋj

ci, e is true ∣ / ∣ j: ℋj
ci, e is rejected 

∣ + q , for some constant q specified below. If q is small and the discoveries are numerous, 
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the above is close to the false discovery rate. Although the pj
pcst, r (8) are dependent, this 

method remains valid in our context if we randomize the p-values slightly, as explained next.

Starting from multi-environment statistics W , randomly assign imaginary positive or 

negative signs to any zero entry by flipping independent coins. Then, define nj
− as the 

number of negative entries in the j-th column of the resulting tie-breaking W , and compute, 

with the notation of (8),

pj
pcst, r = Ψ nj

− − 1, E − r + 1,1/2 + Uj ⋅ ψ nj
−, E − r + 1,1/2 .

(9)

THEOREM 2. The accumulation test with increasing accumulation function (e.g., HingeExp 
with parameter C = 2) applied to the p-values in (9) controls the mFDRq defined above (e.g., 

with q = C/α). That is, Theorem 1 of Li & Barber (2017) holds for the p-values in (9).

Note that Theorem 1 accommodates the p-values in (9), but Theorem 2 would not hold with 

those in (8) because nj
0 may vary across j, breaking the symmetry needed by our martingale 

proof. Nonetheless, simulations suggest this may not be a problem in practice; see Figure 

S7.

5. Consistent genome-wide associations across diverse ancestries

5.1. Missing variants and knockoffs in genome-wide association studies

Genome-wide association studies search for variants with biological effects on a phenotype. 

These studies are exploratory, aiming to prioritize genetic loci for follow-up investigations, 

and nowadays largely concentrate on polygenic phenotypes using large samples, resulting 

in numerous associations and making it desirable to control the false discovery rate (Storey 

& Tibshirani, 2003). As the DNA is fixed prior to any phenotypes, it is relatively easy to 

deduce causal relations. It is also reasonable that all humans share the same biology: modulo 

some genetic diversity across populations, we can imagine a common causal mechanism and 

attempt to uncover which variants are involved in it by testing ℋj
cst (2) or ℋj

pcst,, r (3).

In practice, only a few hundred thousands variants across the genome are measured 

(genotyped), as sequencing is expensive. Such relatively few markers can capture most 

genetic variation because nearby alleles are in linkage disequilibrium (Slatkin, 1994): they 

have strong dependencies and can be accurately inferred from one another. This facilitates 

the localization of broad regions, loci, containing associations with the phenotype, but it 

complicates the attribution of distinct signals to specific variants. Indeed, many genotypes 

can be marginally associated with the phenotype simply because they are in linkage 

disequilibrium with the same causal variant; conditional testing alleviates this issue but 

does not fully account for missing variants.

The traditional analysis imputes the missing variants using linkage disequilibrium models 

fitted on fully-sequenced reference samples (Marchini & Howie, 2010). The imputed 

variants are analyzed alongside the typed ones, through either genome-wide marginal tests 
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or multivariate linear models within narrow regions (Schaid et al., 2018). However, this is 

not fully satisfactory because imputation is not as informative as a direct measurement; in 

fact, imputed variants carry no information in addition to that contained in the typed ones, as 

they are a function of the latter, conditionally independent of the phenotype. This may pass 

unnoticed if one fully trusts a multivariate linear model for the outcome—imputed variants 

may be significant within such models because their dependence with the measured variants 

is nonlinear—but it makes it impossible to find evidence that a missing variant is causal 

within our model-X perspective (Sesia et al., 2020). Therefore, we will leverage consistency 

to gather indirect evidence of causal associations. First though, we must briefly recall some 

details of the existing methodology.

The current knockoff analysis partitions the genome into contiguous segments and tests 

whether any of these contain conditional associations (Sesia et al., 2020). Letting G ⊂ p
index the genotypes in one segment, knockoffs can test a slightly generalized version of ℋj

ci, e

(1) :

ℋG
ci, e:Y e ⫫ XG

e ∣ X−G
e ,

(10)

where XG = Xj: j ∈ G , X−G = Xj: j ∉ G . Under ℋG
ci, e  (10), the variants in G are independent 

of the phenotype conditional on all other genotypes. This analysis can be performed at 

different resolutions, separately controlling the false discovery rate for increasingly refined 

genomic partitions to balance between power and the value of each discovery (Sesia et al., 

2020). Hypotheses involving smaller groups (higher resolution) are harder to reject because 

the variables have strong local dependencies, making it difficult to distinguish the signal of 

one variant from those of its neighbors. Higher-resolution hypotheses are more specific and 

informative. Although ℋG
ci, e (10) is not asking whether a genetic segment contains causal 

variants, it is a reasonable proxy. Intuitively, we will verify that low-resolution hypotheses 

are more robust to missing variants. The robustness of ℋG
ci, e (10) is less clear at high 

resolution because there each tested segment contains few measured genotypes; this is where 

consistency will be most useful.

5.2. Linkage disequilibrium in populations with different ancestries

Linkage disequilibrium is explained by the inheritance of long and randomly cut genetic 

segments from parents to offspring, with occasional mutations. Generation after generation, 

the genotypes thus come to resemble an imperfect mosaic of ancestral motifs, which can be 

encoded as a hidden Markov model (Li & Stephens, 2003); this is at the heart of imputation 

(Marchini & Howie, 2010) and knockoff generation (Sesia et al., 2018). The block-like 

patterns of linkage disequilibrium vary across populations because these share different 

recent ancestors, and so their mosaics involve different patterns, and possibly different 

transition (recombination) rates (Laan & Pääbo, 1997). In other words, different populations 

differ by covariate shift. This heterogeneity has already been factored into the generation 

of knockoffs for pooled analyses (Sesia et al., 2021), and it will be leveraged here to help 

highlight causal variants.
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Figure 4 visualizes why covariate shift helps localize causal variants within an example 

involving two populations, four observed and five missing variables, one of which is causal. 

This toy genome is partitioned into segments containing one or two typed variants each; 

three segments are highlighted. Linkage disequilibrium is described by hidden Markov 

models yielding genetic blocks separated by high-recombination spots (Wall & Pritchard, 

2003). If the alleles across these spots are independent, the only consistent association is 

that of the segment containing the causal variant. Of course, in reality linkage disequilibrium 

is not perfectly organized into blocks, although this is a common simplification (Berisa 

& Pickrell, 2016). Further, we can only study a limited number of populations, so not 

all spurious associations may be removed. Nonetheless, consistency enables a useful step 

forward in a challenging problem.

6. Numerical experiments

6.1. Setup

Our method is applied with the separate and joint analysis statistics describe above. 

Intersection and pooling are taken as benchmarks. All statistics are computed with the R 

package glmnet (Friedman et al., 2010), or bigstatsr (Privé et al., 2019) for genetic data. 

Our computer code is available from https://github.com/Isn235711/MEKF_code. Several 

additional experiments are in Section S5 due to lack of space.

6.2. Testing for full consistency with synthetic data

In each environment, p variables X are generated from an autoregressive model of order 

one with correlation 0.2 . We leverage the known PX to construct semi-definite Gaussian 

knockoffs (Candès et al., 2018). The distribution of Y e ∣ Xe in the e-th environment is given 

by a logistic model with logit pr Y e = 1 ∣ Xe = Xeβe, where βe ∈ ℝp are environment-specific 

effects. We consider two settings corresponding to different E, p, and βe.

In setting one, E = 4, p = 500, and there are n = 1000 observations per environment. First, 

100 effects are randomly chosen to be non-zero in all environments; then, for each e, 10 of 

the remaining ones are non-zero in all but the e-th environment, and these 40 associations 

are thus not consistent. See Figure S8 (a) for a sketch of this setup. The absolute values 

of the 100 consistent effects are a/ n, where a is a signal amplitude parameter which we 

will vary; the remaining non-zero values are 0.5a/ n. The effect signs are independent coin 

flips. In setting two, E = 3, p = 200, and n = 2000, while βe is determined as follows. First, 

50 effects are randomly chosen to be non-zero in all environments; then, for each e,  50 of 

the remaining ones are non-zero in all but the e-th environment; see Figure S8 (b). The 100 

consistent effects are a/ n in absolute value, and the remaining ones are 0.5a/ n. All effect 

signs are independent coin flips.

Our goal is to discover the subset of consistent effects, controlling the false discovery rate 

below 10%. Figure 1, previewed earlier, compares our method to the benchmarks, averaging 

over 100 experiments. Here, our p-values (7) are filtered with selective SeqStep+, using 

c = 1/2. The results confirm our method controls the false discovery rate, as predicted by 
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the theory. The joint analysis statistics are more powerful than the separate analysis ones 

in the first setting, in which most associations are consistent, and equivalent to the latter 

in the second setting, where most associations are not consistent. Pooling yields too many 

false discoveries because it reports all associations regardless of whether they are consistent, 

while the intersection heuristic may lead to either low power (first setting) or high false 

discovery rate (second setting).

6.3. Causal inference in a simulated genome-wide association study

We analyze simulated yet realistic genetic data involving different populations, based on 

the haplotypes in the 1000 Genomes Project (Consortium et al., 2015). This resource 

contains phased haplotypes from five populations: African (AFR), Admixed American 

(AMR), East Asian (EAS), European (EUR), and South Asian (SAS). We utilize these 

haplotypes to simulate genetic data from a hidden Markov model for 50,000 individuals 

(10,000 per population); see Section S6. This approach ensures the genotype distribution 

is known exactly, allowing us to concentrate on missing variants, as we can simply apply 

the algorithm from Sesia et al. (2020) to generate knockoffs separately for each population. 

We construct knockoffs for testing ℋG
ci, e  (10) at two resolutions, with genetic segments of 

median lengths 233 kb or 15 kb. In the interest of time, we only analyze 359,811 biallelic 

single-nucleotide polymorphisms on chromosome 22.

Conditional on the genotypes, we simulate a continuous trait for all 50,000 individuals 

from a constant linear model with independent Gaussian errors and 50 causal variants. 

The causal variables are randomly chosen such that each population has at least 10 with 

minor allele frequency above 0.1 . The effect signs are independent coin flips, and their 

sizes are inversely proportional to the standard deviation of the allele count, so that rarer 

variants have larger effects. The total heritability of the trait is varied. All causal variants are 

unmeasured, so that their exact identification is impossible; however, we can localize genetic 

segments likely to contain them. The proportion of typed variants is varied between 1% and 

10%. Knockoffs are constructed only for the measured variants. This setup is particularly 

challenging because our genotyping is random, while real studies often preferentially type 

potentially interesting variants (Bycroft et al., 2018). Thus, confounding may be a less 

severe problem in practice.

We carry out conditional independence tests at the 10% false discovery rate level but 

measure performance in stricter terms, based on the causal false discovery rate and power: 

a discovery is counted as true if and only if it reports a genetic segment containing a 

causal variant. The power is defined as the average proportion of segments containing causal 

variants that are discovered. All results are averaged over 100 experiments with independent 

traits. In theory, the genotypes should also be resampled to ensure false discovery rate 

control because the knockoffs treat them as random; however, that would be computationally 

expensive with such large data.

Figure 5 (a) summarizes the results of separate population-specific analyses with 1% 

genotyping density. These analyses correctly test conditional association but do not yield 

valid causal inferences, demonstrating the need for consistency, especially at high resolution. 

Our method is applied with r = 3, and with separate analysis statistics due to the large size 
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of the data. Statistical significance is determined with the accumulation test or with selective 

SeqStep+, using c = 1/2 for the latter. Our method controls the causal false discovery rate 

and, when applied with the accumulation test, is only slightly less powerful than pooling 

at low resolution. The selective SeqStep+ tends to yield lower power, plausibly because 

it extracts less information from the p-values. At higher resolution, our method is not as 

powerful as pooling while the causal false discovery rate inflation of the latter becomes 

more severe. Unsurprisingly, all methods are less powerful at high resolution. The causal 

false discovery rate violation for the intersection is smaller but noticeable.

Figure S10 shows confounding decreases as the genotyping density increases, 

unsurprisingly. As the density increases, our method becomes very conservative compared to 

pooling; this may seem unavoidable but Figure 1 suggests our method may perform better 

with the cross-prior statistics. Figure S11 shows similar results corresponding to analyses 

at the 20% false discovery rate level, emphasizing the causal type-I error inflation incurred 

by the heuristics. Figure S12 shows our method performs similarly regardless of whether 

the accumulation test is applied to the p-values computed with random tie breaking (9) or 

without it (8).

7. Analysis of UK Biobank genome-wide association data

7.1. Data pre-processing

We study four continuous traits (body mass index, height, platelet count, and systolic 

blood pressure) and four diseases (cardiovascular disease, diabetes, hypothyroidism, and 

respiratory disease) using the UK Biobank (Bycroft et al., 2018) data; see Table S1 for 

more details. This analysis is based on the same pre-processing and knockoffs for 486,975 

genotyped and phased subjects in the UK Biobank (application 27837) as in Sesia et al. 

(2021). The knockoffs preserve the population structure, including familial relatedness; this 

accounts for most possible confounders except missing variants. Our goal is to address this 

remaining limitation. As in Sesia et al. (2021), we only analyze 591,513 biallelic single 

nucleotide polymorphisms with minor allele frequency above 0.1% and in Hardy-Weinberg 

equilibrium (10−6 ) among the subset of 350,119 unrelated British individuals previously 

studied by Sesia et al. (2020). The genome is partitioned at 7 levels of resolution, ranging 

from that of single polymorphisms to that of 425 kb-wide groups. The resolution of each 

partition is defined as its median segment width.

The UK Biobank subjects are divided into five populations based on their self-reported 

ancestry (African: 7,635; Asian: 3,284; British: 429,934; Non-British European: 28,994; and 

Indian: 7,628 ). We exclude subjects with unreported ancestry, as well as those outside these 

five categories; this leaves us with a total of 477,475 individuals; see Table S2 for more 

details.

7.2. Searching for consistent associations

We apply our method to search for associations consistent in at least r environments, with 

r = 2,3, 4,5. Significance is computed by applying the accumulation test to the p-values in 

(8) because this test without the random tie breaking (9) tends to be more powerful than 
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selective SeqStep+ (Section 6), and tie breaking seems practically unnecessary; see Figure 

S7. The analysis is performed at the 10% false discovery rate level, separately for each 

resolution (Sesia et al., 2020). We apply separate analysis statistics because the data set is 

very large. The intersection heuristic and the pooled analysis from Sesia et al. (2021) will 

serve as benchmarks.

All tests are repeated for 100 independent realizations of Uj 8 ; this allows some 

understanding and a reduction of the variability of any findings, as our method is 

randomized. Alternatively, one may repeat the entire analysis starting from the knockoff 

generation (Ren et al., 2021); however, that would be impractical for such large data. In 

comparison, resampling Uj is computationally negligible. Table S3 reports the numbers of 

discoveries for height and platelet count obtained in at least 51% of the randomizations. 

The results for other phenotypes are in Table S4. Unfortunately, there are fewer consistent 

associations for the other phenotypes, consistently with previous observations that height 

and platelet count display the strongest signals (Sesia et al., 2020 , 2021). This reporting 

rule is not guaranteed to control the false discovery rate, but the simulations in Figure 

S13 empirically confirm it to be conservative. The variability of the findings over different 

p-value randomizations is summarized in Figure S14.

Several consistent associations are discovered, although these are relatively few compared 

to those obtained by pooling because our power is limited by the paucity of non-British 

samples. Fortunately, the awareness that genetic studies should increase the representation of 

different ancestries (Duncan et al., 2019) suggests promising future opportunities, especially 

as some large diverse studies already exist (Gaziano et al., 2016). Some of our discoveries 

for platelet count are visualized in Figure 6 through a Chicago plot (Sesia et al., 2020). It 

is not guaranteed that all discoveries corresponding to a fixed r are also found with r′ < r, 
although this occurs often; see Figure S15. The findings obtained with selective SeqStep+ 

instead of the accumulation test, as well those obtained with the intersection heuristic, are 

summarized in Table S5.

7.3. Validation of genetic findings

Table S6 demonstrates almost all of our consistent discoveries for height and platelet count 

are confirmed by the NHGRI-EBI GWAS Catalog (Buniello et al., 2019) (accessed on 

April 15, 2021). We say that a discovered genetic segment is confirmed if it spans a 

region containing reported associations for the same phenotype. Relatively fewer discoveries 

obtained by pooling are thus confirmed. Of course, this is not fully conclusive because 

the GWAS Catalog may include spurious associations and is likely to miss many causal 

ones, although it is a standard reference. Table S6 also summarizes the numbers of findings 

obtained with the intersection heuristic, as well as the proportions of those which are 

confirmed by the GWAS Catalog. This shows the intersection heuristic yields either fewer 

discoveries, or a (slightly) lower validation rate. This is consistent with our simulations 

suggesting the intersection heuristic is often either underpowered or excessively liberal. 

Analogous information for the other phenotypes is in Table S7. Table S8 reports the names 

and associated genes of the genetic variants identified by our method at the single-nucleotide 

resolution. These results indicate all but two of our high-resolution consistent discoveries 
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correspond to variants with known biological consequences, which are located on genes 

previously reported to be associated with the phenotypes of interest. The full list of 

discoveries is available online at https://msesia.github.io/knockoffgwas/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Performance of the multi-environment knockoff filter (MEKF), implemented with two 

alternative statistics, and two heuristics for consistent conditional testing on simulated data 

from many environments. The nominal false discovery rate is 0.1. (a) Data in which most 

conditional associations are consistent. (b) Data in which most conditional associations are 

not consistent.
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Fig. 2: 
Consistency improves robustness to missing variables. (a) Causal model for Y ∣ X, C. (b, 

c) Conditional associations in two environments. Shaded nodes: outcome or observed 

variables. White nodes: unobserved variables. Dotted arrows: causal links. The dashed 

segments represent PZ
e , which differs across environments: C1 is associated with X2 in the 

first one, and with X3 in the second one, while X1 and X2 are conditionally independent of 

C1, X3 and of each other. Solid arrows: observable conditional associations with Y  (thick if 

causal, thin if spurious).
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Fig. 3: 
Schematics for a multi-environment knockoff analysis. In this example, there are 3 variables, 

3 environments, and 2 observations per environment. The solid arrows represent separate 

environment-by-environment analyses before combining the resulting knockoff statistics. 

The dashed arrows represent the additional steps corresponding to a joint analysis based 

on empirical cross-prior statistics. The darker blocks indicate data, while the lighter ones 

indicate knockoffs.
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Fig. 4: 
Consistency in genome-wide association data from two populations. The unobserved causal 

variant (star-shaped node) induces different spurious associations depending on the patterns 

of linkage disequilibrium, described by population-specific hidden Markov models. Shaded 

nodes: measured variables. Squares: variables that are not conditionally independent of the 

causal one. The broken segments symbolize the boundaries of linkage disequilibrium blocks.
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Fig. 5: 
Analysis of a simulated multi-population genome-wide association study with missing 

causal variants. Top: low-resolution analysis (233 kb); bottom: high-resolution analysis (15 

kb). The empirical performance is evaluated in a strict causal sense. Our method seeks 

associations supported by the data from at least 3 populations. The nominal false discovery 

rate is 10%.
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Fig. 6: 
Some discoveries for platelet count based on UK Biobank data from five populations 

(environments). Each block represents a genetic segment containing distinct associations; 

the colors indicate the numbers of environments across which they are consistent. The 

vertical position denotes the resolution of the discovery measured in millions of base pairs 

(Mb).
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