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Novel Alphaproteobacteria transcribe genes for nitric oxide 
transformation at high levels in a marine oxygen-deficient zone
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ABSTRACT Marine oxygen-deficient zones (ODZs) are portions of the ocean where 
intense nitrogen loss occurs primarily via denitrification and anammox. Despite many 
decades of study, the identity of the microbes that catalyze nitrogen loss in ODZs is still 
being elucidated. Intriguingly, high transcription of genes in the same family as the nitric 
oxide dismutase (nod) gene from Methylomirabilota has been reported in the anoxic 
core of ODZs. Here, we show that the most abundantly transcribed nod genes in the 
Eastern Tropical North Pacific ODZ belong to a new order (UBA11136) of Alphaproteo­
bacteria, rather than Methylomirabilota as previously assumed. Gammaproteobacteria 
and Planctomycetia also transcribe nod, but at lower relative abundance than UBA11136 
in the upper ODZ. The nod-transcribing Alphaproteobacteria likely use formaldehyde 
and formate as a source of electrons for aerobic respiration, with additional electrons 
possibly from sulfide oxidation. They also transcribe multiheme cytochrome (here named 
ptd) genes for a putative porin-cytochrome protein complex of unknown function, 
potentially involved in extracellular electron transfer. Molecular oxygen for aerobic 
respiration may originate from nitric oxide dismutation via cryptic oxygen cycling. Our 
results implicate Alphaproteobacteria order UBA11136 as a significant player in marine 
nitrogen loss and highlight their potential in one-carbon, nitrogen, and sulfur metabo­
lism in ODZs.

IMPORTANCE In marine oxygen-deficient zones (ODZs), microbes transform bioavaila­
ble nitrogen to gaseous nitrogen, with nitric oxide as a key intermediate. The Eastern 
Tropical North Pacific contains the world’s largest ODZ, but the identity of the microbes 
transforming nitric oxide remains unknown. Here, we show that highly transcribed 
nitric oxide dismutase (nod) genes belong to Alphaproteobacteria of the novel order 
UBA11136, which lacks cultivated isolates. These Alphaproteobacteria show evidence for 
aerobic respiration, using oxygen potentially sourced from nitric oxide dismutase, and 
possess a novel porin-cytochrome protein complex with unknown function. Gammap­
roteobacteria and Planctomycetia transcribe nod at lower levels. Our results pinpoint 
the microbes mediating a key step in marine nitrogen loss and reveal an unexpected 
predicted metabolism for marine Alphaproteobacteria.

KEYWORDS nitric oxide, Alphaproteobacteria, marine, oxygen-deficient zone, 
nitrogen, oxygen, denitrification

M arine oxygen-deficient zones (ODZs) contribute up to half of the ocean’s nitrogen 
loss (1) and are a major source of marine emissions of the potent greenhouse gas 

nitrous oxide (N2O) (2). The primary source of the N2O at the oxic–anoxic interface and in 
anoxic waters in ODZs is denitrification (3, 4). The microbial enzyme responsible for N2O 
production during denitrification is nitric oxide reductase (Nor), which uses electrons 
from cytochrome c (cNor) or quinol (qNor), to reduce nitric oxide (NO) to N2O (5–7). 
In the qNor family, there are bona fide qNor enzymes and NO dismutase (Nod). Nod 
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proteins lack the quinol-binding site, seemingly preventing the enzyme from taking 
up external electrons; instead, Nod is theorized to disproportionate NO into 
dinitrogen and O2 in methane-oxidizing Methylomirabilota bacteria (8, 9) and in the 
alkane-oxidizing Gammaproteobacterium HdN1 (10).

The Eastern Tropical North and South Pacific (ETNP and ETSP) ODZs are the world’s 
largest and second largest ODZs, and the subjects of extensive microbial ecology studies. 
Abundant NO reductase-like genes and transcripts in the ETNP and ETSP ODZ cluster in 
the same enzyme subfamily as Nod (11–14). Due to the similarity of ODZ Nod proteins to 
those of Methylomirabilota (NC10), it was initially presumed that ODZ bacteria also used 
Nod proteins to disproportionate NO into N2 and O2 for use in intra-aerobic methane 
oxidation (11, 13, 15). However, Fuchsman et al. (12) found that the peak of nod gene 
abundance in the ETNP ODZ correlates with a peak of modeled N2O production (4) 
and does not correlate with abundance of methane monooxygenase genes, suggesting 
that Nod proteins in the ETNP ODZ are potentially an important source of N2O and 
are unlikely to be involved in methane oxidation. The plausibility that Nod proteins can 
reduce NO to N2O is supported by a study of a novel eukaryotic denitrification pathway 
in foraminifera (Globobulimina spp.) that produce N2O while expressing Nod (16). Yet, the 
phylogenetic identity and metabolic context of marine Nod proteins, which are a key 
biological source of either N2O or O2+N2 in marine ODZs, remain unresolved.

In this study, we sought to determine the identity, predicted metabolism, and 
environmental niche of the ODZ organism responsible for the highly transcribed nod 
genes first discovered by Padilla et al. (11). We found that the most abundantly 
transcribed nod genes in the ETNP ODZ belong to Alphaproteobacteria in the novel 
order UBA11136. Significant transcription of nod genes was limited to waters with <1 µM 
O2. These nod-transcribing Alphaproteobacteria also transcribe genes involved in 
aerobic respiration, which was unexpected given that they inhabit anoxic waters, as 
well as genes involved in oxidation of formaldehyde, likely indicating methylotrophy. 
Genes encoding multiheme cytochrome proteins potentially implicated in nitrogen or 
iron cycling were also transcribed.

RESULTS

Transcribed nod sequences in the ETNP ODZ belong to Alphaproteobacteria, 
Gammaproteobacteria, and Planctomycetia

Our reanalysis of highly transcribed nod genes in the ETNP ODZ (11) shows that 
these genes belong to Alphaproteobacteria rather than a member of Methylomirabi­
lota as previously assumed. Querying the Nod amino acid sequences from Padilla 
et al. (11) against ETNP ODZ metagenomes in the JGI IMG/MER database returned 
multiple 100% identity matches, including a nod gene (Ga0066848_100037855) on a 
scaffold with hypothetical genes with 100% identity to Alphaproteobacteria metage­
nome-assembled genomes (MAGs) from the ETNP ODZ (17) (Table S1). We binned 
previously sequenced ETNP ODZ metagenomes Ga0066848 (ETNP201310SV72) and 
Ga0066829 (ETNP201306SV43) (18) into MAGs. Contigs with the most highly transcribed 
nod genes were present in two Alphaproteobacteria MAGs (GTDB taxonomy: UBA11136 
sp002686135; species representative: Rhodospirillaceae bacterium isolate ARS27) with 
97% average nucleotide identity. Querying the Nod amino acid sequences from Padilla et 
al. (11) against NCBI’s nonredundant protein database returned matches to other MAGs 
assigned to Alphaproteobacteria order UBA11136 from low-oxygen marine settings 
(ETNP, Saanich Inlet, and the Black Sea; 78%–80% identity), the marine magnetotactic 
alphaproteobacterium Magnetovibrio blakemorei MV-1 (75% identity), Gammaproteobac­
terium HdN1 (66% identity), and Methylomirabilis spp. (66% identity; Table S2).

To glean additional insights into evolutionary relationships, we updated a previous 
Nod phylogeny (19) with additional amino acid sequences from marine MAGs (20–22) 
and ETNP ODZ metagenomes (18), subdivided into cells that are free-living (FL; 0.2–1.6 
μm) and from the particle fraction (PF; >1.6 μm; Fig. 1A; Table S3). The Nod topology 
was generally consistent with a previous phylogeny from Fuchsman et al. (12), with 
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FIG 1 Marine Nod clades, gene neighborhoods, and depth profiles of transcription. (A) A maximum likelihood phylogeny of nitric oxide dismutase (Nod) amino 

acid sequences in marine (blue) and select terrestrial (brown) taxa, primarily from marine MAGs (20–22) and ETNP ODZ metagenomes (18). Branch support was 

evaluated using 1,000 rapid bootstrap replicates, with bootstrap values shown for deep branches. The tree is drawn to scale, with branch lengths in number of
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additional taxonomic data from MAGs in the Tara Oceans data set further constraining 
Nod placement (22). As expected based on the binning and BLAST results, the Nod 
sequence from Padilla et al. (11) (Ga0066848_100037855) clustered phylogenetically 
with marine Alphaproteobacteria (OTU III in Fuchsman et al. [12], hereafter “Alpha-type 
Nod”); this clade contained three unique sequences, all of which were present in multiple 
metagenomes and all from the free-living fraction, and one of which was identical to that 
of Rhodospirillaceae NP1106 (GenBank: MBV28360). Four unique ODZ Nod sequences 
clustered with marine Gammaproteobacteria (OTU II in Fuchsman et al. [12], hereafter 
“Gamma-type Nod”); these sequences were monophyletic with a cluster of Gammap­
roteobacteria Nod cluster sequences from sewage sludge, including Gammaproteobac­
terium HdN1 (23) and other wastewater Gammaproteobacteria. Multiple ETNP ODZ 
metagenomes contained Gamma-type Nod sequences identical to those of Gammap­
roteobacteria NP964 (GenBank: MBP20251). Gamma-type Nod had ~70% identity to 
Alpha-type Nod. Several ODZ Nod sequences, all from the particle fraction, clustered 
with marine Deltaproteobacteria in a clade of monophyletic nod genes from groundwa­
ter Methylomirabilota, Deltaproteobacteria, and Acidobacteria MAGs (~65% identity to 
Alpha-type Nod). Six unique Nod ODZ protein sequences (two of which were present 
in multiple metagenomes) clustered with Planctomycetia (OTU I in Fuchsman et al. 
[12], hereafter “Planctomycetia-type Nod”), were primarily found in free-living cells, and 
had ~40% identity to Alpha-type Nod. Intriguingly, two ODZ sequences clustered in the 
eukaryotic Globobulimina clade (~50% identity to Alpha-type Nod). Viral Nod sequences 
from Saanich Inlet (~55% identity to Alpha-type Nod) clustered with the viral Nod 
sequence previously reported by Gazitúa et al. (24) from the ETSP ODZ (St16 OMZ 
317E-viral).

We investigated gene neighborhoods surrounding ODZ nod genes in the three main 
phylogenetic clusters of ODZ sequences: Planctomycetia-type Nod, Gamma-type Nod, 
and Alpha-type Nod. Although “unknown Nor-related” marine Bacteroidota sequences 
were located on an operon with other nor genes, there was no consistent gene 
neighborhood for nod sequences (Fig. 1B). Planctomycetia-type nod genes were not 
located in the vicinity of any genes with recognizable related function. Gamma-type nod 
gene neighborhoods contained ferredoxins and cytochrome b561 genes for electron 
transport. Upstream of the Alpha-type nod in Rhodospirillaceae NP1106 is a clus­
ter of formylmethanofuran dehydrogenase genes (fmd/fwd) used in C1 metabolism 
via tetrahydromethanopterin/methanofuran-linked reactions. Immediately upstream or 
downstream of nod genes, helix–turn–helix transcriptional regulators were common (Fig. 
1B). Neighboring Gamma-type and Methylomirabilis nod genes, LuxR-type regulators 
were common; these regulators have diverse functions and their potential connection 
to Nod remains unclear. Neighboring Alpha-type and Bacteroidota (e.g., Cecembia 
calidifontis) nod genes, Rrf2-type regulators were present. The protein NsrR in the Rrf2 
family regulates global cellular response to NO toxification by directly sensing NO with 
an iron-sulfur cluster (26, 27). The presence of this NsrR-like regulator suggests that Nod 
in marine Alphaproteobacteria and Bacteroidota may be involved in nitrosative stress 
response and NO detoxification.

FIG 1 (Continued)

substitutions per site. Bold sequences represent those present in multiple ETNP ODZ metagenomes (see Table S3 for duplicate accession numbers). “PF” indicates 

genes from the particle fraction (>1.6 μm fraction) of filters. “FL” indicates genes from the free-living fraction (0.2–1.6 μm) collected on Sterivex filters. The most 

highly transcribed ETNP ODZ sequence is indicated with an asterisk. The qNor sequence Geobacillus stearothermophilus was used as the outgroup. (B) Gene 

neighborhoods surrounding nod genes in select taxa. GenBank contigs: Cecembia calidifontis SGXG01000001, Scalindua japonica BAOS01000045, Gammaproteo­

bacteria NP964 PBRC01000062, Gammaproteobacterium HdN1 FP929140, Deltaproteobacteria NZCL01000067, Candidatus Methylomirabilis oxyfera FP565575, 

and Rhodospirillaceae NP1106 PCBZ01000014. Unlabeled gray genes are hypothetical. (C, D) Oxygen concentrations (gray lines), nitrite concentrations (black 

circles), and nod transcripts (squares, as reads per kilobase per million mapped reads [RPKM]) with depth in ETNP ODZ P1 (onshore) and P2 (offshore) sites (25).
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Alphaproteobacterial nod is highly transcribed in anoxic waters

We assessed transcription of Alpha-, Gamma-, and Planctomycetia-type nod genes from 
the oxycline to upper ODZ (secondary nitrite maximum) using ETNP ODZ metatranscrip­
tomes from an onshore station with a shallower oxycline (P1; Fig. 1C) and an offshore 
station with a deeper oxycline (P2; Fig. 1D) (25). In both oxyclines, transcription was low 
(4–10 reads per kilobase per million mapped reads [RPKM], n = 8) for all three nod types 
(Fig. 1C and D). Below the oxyclines, nod transcripts began to rise and were highest at the 
secondary nitrite maxima, with Alpha-type (184–274 RPKM, n = 4) > Gamma-type (55–95 
RPKM, n = 4) > Planctomycetia-type (13–19 RPKM, n = 4; Table S4).

MAGs with highly transcribed nod gene represent a new order of Alphapro­
teobacteria

In order to assess the phylogeny of the nod-containing Alphaproteobacteria MAGs, 
we constructed an alphaproteobacterial phylogeny using the conserved protein 
NADH ubiquinone oxidoreductase subunit L (NuoL) as in Cevallos and Degli 
Esposti (28), with additional representation of order UBA11136 including our MAG 
ETNP2013_S10_300m_22 (Fig. 2). MAG ETNP2013_S06_300m_15 was not included in 
the phylogeny because its nuoL gene was truncated. The phylogeny confirmed that 
nod-containing Alphaproteobacteria belong to the order UBA11136 and showed that 
UBA11136 is situated near other Alphaproteobacteria orders found in ODZs.
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FIG 2 Alphaproteobacteria phylogeny with order UBA11136 expanded and nod-containing MAGs bolded. The phylogeny was 

constructed using the alphaproteobacterial phylogenetic marker NADH ubiquinone oxidoreductase subunit L as in Cevallos 

and Degli Esposti (28). Taxonomic names are from Cevallos and Degli Esposti (28) and GTDB Release 08-RS214. The scale bar 

represents amino acid substitutions per site. The full phylogeny is shown in Fig. S1.
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Alphaproteobacteria transcribe genes for formate metabolism, aerobic 
respiration, and a multiheme cytochrome complex

To glean insight into potential roles for Nod in a cellular context, we sought to 
reconstruct the electron transport chain of the Alphaproteobacteria with the most 
highly transcribed nod genes (Alphaproteobacterium MAG ETNP2013_S10_300m_22 
and Alphaproteobacterium MAG ETNP2013_S06_300m_15, 73% and 69% estima­
ted completeness, respectively) at the secondary nitrite maximum. Of total met­
agenomic reads, 0.38% map to ETNP2013_S10_300m_22 and 0.39% map to 
ETNP2013_S06_300m_15. In both MAGs, nod was in the top three most transcribed 
genes in the ETNP ODZ (~44,000 FPKM; Table S5), after a bacterial nucleoid DNA-bind­
ing protein and a potassium-gated channel protein. In addition to nod, we found that 
genes for formaldehyde oxidation via tetrahydromethanopterin/methanofuran-linked 
reactions, including formylmethanofuran dehydrogenase (fwd/fmd) and formylmetha­
nofuran–tetrahydromethanopterin N-formyltransferase (ftr), were transcribed in both 
MAGs (Table S5). Both MAGs also transcribed NAD-dependent formate dehydrogenase 
(Table S5). Thus, the alphaproteobacterium appears to be capable of conversion of 
formaldehyde to formate and use of formate as a source of electrons for NADH:ubiqui­
none oxidoreductase (Complex I; Fig. 3). The source of formaldehyde is likely methanol 
oxidation, as pyrroloquinoline quinone (PQQ)-dependent ethanol/methanol dehydro­
genases were found in Alphaproteobacteria MAGs from low-oxygen marine settings 
(Table S6). Methane monooxygenase genes were not found in the partial Alphaproteo­
bacteria MAGs, precluding our ability to rule out the possibility of these genes in the 
missing portions of the genomes. The Alphaproteobacteria PQQ-dependent dehydro­
genase genes contained the motif DYDG (Table S6), which is characteristic of the 
lanthanide-containing form of the enzymes rather than the calcium form (29).

A full aerobic electron transport chain (Complex I, II, III, and IV) and F0F1-type ATP 
synthase were transcribed in both bins (Fig. 3; Table S5). Complex IV (cytochrome 
c oxidase) was type A1 according to the Sousa et al. (30) classification, and the 
cox operon in the GTDB species representative Rhodospirallaceae ARS27 was subtype 
b (COX2-COX1-CtaB-CtaG_Cox11-COX3-DUF983-SURF1-CtaA1-M32-Tsy-M16B) according 
to the Geiger et al. (31) classification. Sulfur oxidation genes, including flavocytochrome c 
sulfide dehydrogenase (FccAB), sulfane hydrogenase (SoxCD), and carrier protein SoxYZ, 
were also transcribed, as were numerous transposes (Fig. 3; Table S5).

Genes for a multiheme cytochrome complex were transcribed in both bins. To our 
knowledge, this putative operon has not been previously described. Hereafter, we 
designate it the ptdABCDEFG operon for its sequence of penta/tetra/deca-heme proteins, 
interspersed with other conserved proteins. ptdAB genes are highly transcribed in our 
Alphaproteobacteria MAGs, but it is unclear if the rest of the operon is also highly 
transcribed, because it was truncated in our MAGs’ scaffolds. The ptd gene cluster 
consists of a penta-heme protein with a C-terminal beta-sandwich (PtdA), a porin (PtdB), 
a FAD/NAD(P)-binding oxidoreductase (PtdC), a periplasmic tetra-heme protein (PtdD), 
a cyclic nucleotide-binding domain protein with two 4Fe–4S clusters (PtdE), a cytoplas­
mic transmembrane ferric reductase-like protein (PtdF), and a periplasmic deca-heme 
protein (PtdG; Fig. 3; Table S7 and S8). The function of this complex is unknown, but 
the presence of genes encoding a porin and multiple multiheme proteins resembles 
porin-cytochrome protein complexes involved in extracellular reduction electron transfer 
during Fe(III) and Mn(IV) reduction (32, 33). PtdA has a homolog to a penta-heme 
cytochrome c552 protein of unknown function in a thermophilic purple sulfur gam­
maproteobacterium (34) and is in the same COG family (COG3303) as formate-depend­
ent nitrite reductase, NrfA. ptdABCDEFG genes were prevalent in Alphaproteobacteria, 
Gammaproteobacteria, Nitrospirales, and Planctomycetes MAGs from marine or high 
salinity environments (Fig. 4; Table S7).

Full-Length Text Applied and Environmental Microbiology

April 2024  Volume 90  Issue 4 10.1128/aem.02099-23 6

https://doi.org/10.1128/aem.02099-23


DISCUSSION

This study predicts the previously ambiguous identity of the microorganisms that make 
the dominant nitric oxide-transforming protein (Nod) in the world’s largest ODZ, the 
Eastern Tropical North Pacific. Extensive horizontal gene transfer of nod genes between 
microbial genomes is evident from the lack of conservation of gene neighborhood 
and patchy phylogeny (12), which may be mediated by viral infection (24). We found 
that the most transcriptionally active nod genes in the ETNP upper ODZ belong to 
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the novel Alphaproteobacteria order UBA11136. Alpha-type nod transcript abundances 
(~200 RPKM) are similar to those of dissimilatory nitrate reductase (narG) in the ODZ (35). 
The nod-transcribing Alphaproteobacteria are also transcribing genes for formaldehyde 
oxidation, likely as a source of electrons to the respiratory chain via NAD reduction by 
formate dehydrogenase. Sulfide may be used as a supplemental electron donor and/or 
may be concomitantly oxidized for detoxification (36, 37).

Our discovery of a putative porin–cytochrome complex (ptd operon) in marine 
bacteria was unexpected. Porin–cytochrome complexes have been best studied for their 
role in extracellular electron transport, particularly for respiratory metal reduction and 
oxidation (32, 33). It is conceivable that the Ptd complex is involved in iron reduction in 
ODZs; there is iron reduction at the secondary nitrite maximum and it is hypothesized to 
be bacterially mediated, but the microbes involved have yet to be determined (38, 39). 
Alternatively, the presence of ptdABCDEFG genes in numerous nitrite-oxidizing bacteria 
(Nitrospirales) could imply the involvement of these genes in nitrogen cycling; PtdA was 
in the same COG family as formate-dependent nitrite reductase (40), and PtdC is similar 
to a flavohemoprotein with predicted nitric oxide dioxygenase activity, also annotated as 
hydroxylamine oxidoreductase-linked cytochrome. The function of PtdABCDEFG remains 
completely unknown and requires future biochemical characterization.

On the other end of the electron transport chain, high transcription of a heme/copper 
terminal oxidase suggests that O2 is being used as the terminal electron acceptor 
in nod-transcribing Alphaproteobacteria MAGs. The transcribed heme/copper oxidase 
is A1-type (low O2 affinity), also present in mitochondria, and adapted for high O2 
concentrations. Low O2 affinity A1-type heme/copper oxidases are transcribed in other 
anoxic environments (41). Because ODZs have extremely low concentrations of O2 below 
the oxycline, O2 for aerobic respiration may be generated in situ and rapidly consumed. 
Given that the function of Nod is proposed to be dismutation of two NO molecules into 
N2 and O2 (8), it is possible that the O2 source for aerobic respiration in the UBA11136 
MAGs is NO dismutation, although other sources of O2 (e.g., in situ photosynthesis, 
mixing) in anoxic waters are also conceivable (42). The physiological uses of Gamma-type 
and Planctomycetia-type Nod may be different from Alpha-type Nod, although this 
remains to be investigated.

The source of NO, the presumed substrate for Nod, may be generated in the same 
organism using Nod or generated by a different organism (or chemical pathway). Nitric 
oxide was positively correlated with nitrite in the ETSP ODZ and was only detectable 
when O2 was <1–2 µM (43). In the ETNP ODZ, NO concentration and turnover rates were 
elevated at O2 < 100 µM (44). Both studies suggest that the NO in ODZs likely originates 
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from nitrification or nitrifier denitrification, while genomic analyses indicate that the 
copper-containing nitrite reductase (nirK) in SAR11 bacteria (presumably performing 
denitrification) may be a key source of NO (12). Because most ODZ denitrifiers specialize 
in only one of the three steps (NO2

− reduction, NO reduction, and N2O reduction) (45) 
and known nitrite reductases were not identified in our MAGs, existing data indicate 
that the NO that is used as a substrate for alphaproteobacterial Nod is not generated 
in vivo. (Only 4 out of 32 nod-containing MAGs contained a nitrite reductase gene: 
two Gammaproteobacteria MAGs contained nirK, one Myxococcota MAG contained nirS, 
and one Scalindua MAG contained nirS). It is also possible that another uncharacterized 
enzyme produces NO.

This study suggests that marine Alphaproteobacteria from order UBA11136 are 
actively reducing NO under anoxia, as implied by their abundant transcription of nod 
genes. Although there is strong evidence that the substrate for Nod in ODZs is NO 
based on its abundance, the products of this enzyme (N2O vs N2+O2) remain uncertain. 
Nod is theorized to disproportionate NO into N2 and O2 in methane-oxidizing Meth­
ylomirabilota bacteria (8, 9), but no biochemical characterizations of Nod have been 
published to date, and foraminifera expressing Nod produce N2O (16). The apparent lack 
of other denitrification genes in nod-transcribing Alphaproteobacteria is consistent with 
the observation that denitrification in ODZs is largely divided into distinct microbial taxa 
(12, 13, 45). For example, although nitrate reductase (narG) genes are widely distributed 
amongst ODZ microbes (45), SAR11 bacteria appear to dominate in narG transcriptional 
activity (35). Our finding that the transcription of nod is catalyzed primarily by marine 
Alphaproteobacteria implies that this taxon contributes significantly to marine nitrogen 
loss.

MATERIALS AND METHODS

Nod phylogeny and gene neighborhood

Amino acid sequences of highly transcribed nod genes “ETNP 2014 Stn10 150m” and 
“ETNP 2013 Stn6 300m” were acquired from the authors of Padilla et al. (11) (see Table S2 
for sequences). These sequences were used for BLASTP searches of ODZ metagenomes in 
the JGI IMG/MER database and the NCBI nonredundant protein (nr) database. Sequences 
(n = 53, 731 gap-free sites) were aligned using the MAFFT online server with the L-INS-i 
method (46). A phylogeny was generated with 1,000 bootstraps using model LG+I+G4 
with W-IQ-Tree (47). The phylogeny was visualized using FigTree v.1.4.4, and the fasta 
file (Nod_alignment) is available as a supplemental data set. Gene neighborhoods were 
generated using the EFI Gene Neighborhood Tool (48) with single sequence BLAST of 
the UniProt database using the amino acid sequence Ga0066848_100037855 (JGI IMG/
MER) as the Nod query with an e-value cutoff of 10−5 and with 10 genes upstream and 
downstream the gene of interest.

Transcription of nod genes in ETNP ODZ depth profiles

Magic Basic Local Alignment Search Tool (49) was used to search ETNP ODZ met­
atranscriptomes (PRJNA727903; Mattes et al. [25]) using representative nucleotide 
sequences for Planctomycetia-like (Ga0066826_100064333 [JGI IMG/MER]), Gamma-like 
(PBRC01000062.1:19833–22205 [NCBI]), and Alpha-like (Ga0066848_100037855 [JGI IMG/
MER]) nod genes. Default parameters were used except for the score threshold (18). Read 
hits were normalized to reads per kilobase million (RPKM).

Metagenomic binning

Binning of metagenome-assembled genomes (MAGs) was performed using the KBase 
platform (50). ETNP ODZ metagenomes were collected in 2013 and sequenced 
by Joint Genome Institute (JGI) using an Illumina HiSeq 2500 as described in 
Ruiz-Perez et al. (18). Assemblies for the ETNP ODZ metagenomes (18) containing 
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Alpha-type nod genes (ETNP201310SV72 [GOLD Analysis Project ID Ga0066848; stn10 
300m] and ETNP201306SV43 [GOLD Analysis Project ID Ga0066829; stn6 300m]) 
were imported from JGI IMG/MER into KBase. Metagenomic assemblies were binned 
into MAGs using MaxBin2 v2.2.4 (51). The two MAGs containing nod genes (MAG 
ETNP2013_S10_300m_22 from ETNP201310SV72, and ETNP2013_S06_300m_15 from 
ETNP201306SV43) were selected for further analysis. Average nucleotide identity was 
calculated using FastANI (52). MAG taxonomy and genome quality were evaluated by 
GTDB-Tk v2.3.2 (53). MAGs were annotated with RASTtk v1.073 (54). Metagenomic reads 
were mapped to MAGs using Bowtie2 (55).

Alphaproteobacterial NuoL phylogeny

Alphaproteobacterial NADH ubiquinone oxidoreductase subunit L (NuoL) and mitochon­
drial ND5 marker proteins (n = 320) were aligned as in Cevallos and Degli Esposti (28), 
with additional representation of order UBA11136. A maximum likelihood phylogeny 
with 1000 bootstraps was constructed in IQ-tree (56) using the LG+F model with ultrafast 
bootstrap (57). Taxonomic names and clades are from Cevallos and Degli Esposti (28) and 
GTDB Release 08-RS214. The fasta file (NuoL_alignment) is available as a supplemental 
data set. Alphaproteobacteria MAGs containing nod genes (Table S2) were classified as 
belonging to order UBA11136 using GTDB-Tk v2.3.2 (53).

Mapping transcripts to metagenomic bins

Metatranscriptomic mapping to MAGs was performed using the KBase platform (50). 
RNA-seq data (25) were imported from the depth with the highest nod transcription, the 
secondary nitrite maximum (126 m, NCBI run SRR14460584), and aligned to MAGs using 
the Bowtie2 (55) app in KBase. The Cufflinks v.2.2.1 (58) app in KBase was then used to 
assemble the aligned RNA-seq data into a set of transcripts and to calculate the relative 
abundances of the transcripts expressed in fragments per kilobase per million fragments 
mapped (FPKM).

Cellular localization and heme numbers

Cellular locations of Ptd proteins were predicted using PSORTb v.3.0.3 analysis (59). 
Numbers of heme-binding motifs per protein were identified by counting CXXCH 
sequences. Ptd gene neighborhoods were generated using the EFI Gene Neighborhood 
Tool (48) with single sequence BLAST of the UniProt database using the amino acid 
sequence Ga0066848_100031354 (JGI IMG/MER) as the PtdA query with an e-value 
cutoff of 10−5 and with 10 genes upstream and downstream the gene of interest.
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