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ABSTRACT The thermal bleaching percentage of coral holobionts shows interspecific 
differences under heat-stress conditions, which are closely related to the coral-associated 
microbiome. However, the ecological effects of community dynamics and interactions 
between Symbiodiniaceae and fungi on coral thermal bleaching susceptibility remain 
unclear. In this study, we analyzed the diversity, community structure, functions, and 
potential interaction of Symbiodiniaceae and fungi among 18 coral species from a 
high thermal bleaching risk atoll using next-generation sequencing. The results showed 
that heat-tolerant C3u sub-clade and Durusdinium dominated the Symbiodiniaceae 
community of corals and that there were no core amplicon sequence variants in the 
coral-associated fungal community. Fungal richness and the abundance of confirmed 
functional animal-plant pathogens were significantly positively correlated with the coral 
thermal bleaching percentage. Fungal indicators, including Didymellaceae, Chaetomia
ceae, Schizophyllum, and Colletotrichum, were identified in corals. Each coral species 
had a complex Symbiodiniaceae–fungi interaction network (SFIN), which was driven 
by the dominant Symbiodiniaceae sub-clades. The SFINs of coral holobionts with 
low thermal bleaching susceptibility exhibited low complexity and high betweenness 
centrality. These results indicate that the extra heat tolerance of coral in Huangyan 
Island may be linked to the high abundance of heat-tolerant Symbiodiniaceae. Fungal 
communities have high interspecific flexibility, and the increase of fungal diversity and 
pathogen abundance was correlated with higher thermal bleaching susceptibility of 
corals. Moreover, fungal indicators were associated with the degrees of coral thermal 
bleaching susceptibility, including both high and intermediate levels. The topological 
properties of SFINs suggest that heat-tolerant coral have limited fungal parasitism and 
strong microbial network resilience.

IMPORTANCE Global warming and enhanced marine heatwaves have led to a rapid 
decline in coral reef ecosystems worldwide. Several studies have focused on the 
impact of coral-associated microbiomes on thermal bleaching susceptibility in corals; 
however, the ecological functions and interactions between Symbiodiniaceae and fungi 
remain unclear. We investigated the microbiome dynamics and potential interactions 
of Symbiodiniaceae and fungi among 18 coral species in Huangyan Island. Our study 
found that the Symbiodiniaceae community of corals was mainly composed of heat-
tolerant C3u sub-clade and Durusdinium. The increase in fungal diversity and pathogen 
abundance has close associations with higher coral thermal bleaching susceptibility. 
We first constructed an interaction network between Symbiodiniaceae and fungi in 
corals, which indicated that restricting fungal parasitism and strong interaction network 
resilience would promote heat acclimatization of corals. Accordingly, this study provides 
insights into the role of microorganisms and their interaction as drivers of interspecific 
differences in coral thermal bleaching.
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C oral reefs are biodiversity hotspots with the most diverse symbioses in the ocean 
and provide habitats for more than 30% of the marine multicellular organisms 

(1–3). However, global warming and its amplified marine heatwaves have led to a 
serious degradation of coral reef ecosystems worldwide (4–6), and global coral cover has 
dramatically declined by approximately 50%–80% since the 1970s (7). The exceptional 
marine heatwaves induced by El Niño between 2015 and 2017 directly led to 91.1% 
of reefs along the Great Barrier Reef (GBR) experiencing thermal bleaching (8), and 
coral species with staghorn and tabular shapes almost died out (9, 10). This unprece
dented long-term tropical marine heatwave has caused an 89% loss of reef-building 
coral cover in the reefs of Kiritimati in the equatorial Pacific, which has also resulted 
in large-scale bleaching and high mortality of coral (6, 11). The global climate model 
predicts that the frequency and scale of coral thermal bleaching events will increase 
(12, 13) and that annual bleaching events will occur globally in coral reefs from the 
mid-21st century (14). Intensifying global warming and climate change have led to the 
collapse of the structure and ecological functions of coral reef ecosystems, resulting 
in irreversible regime shifts (4, 11). Interestingly, corals showed significant interspecific 
differences in bleaching severity and heat tolerance during heatwave events. Some coral 
species occurred bleached at a colony scale in low-temperature conditions (<10% of all 
coral bleaching), whereas colonies of other species experienced bleaching in extremely 
high-temperature conditions (>80% of all coral bleaching; e.g., Pocillopora, Acanthastrea, 
Galaxea, and Fungiidae), which have been found in the Red Sea and GBR (4, 15). 
However, the reasons for the distinct survival rates of different coral species at extremely 
high temperatures remain unclear.

Corals are holobionts composed of animal hosts, endosymbiotic Symbiodiniaceae, 
bacteria, archaea, fungi, and viruses (3, 16, 17). The difference in phenotype, genetic 
characteristics, transcription, and metabolism of host were closely associated with the 
environmental adaptability of coral species (18–21); however, coral-associated micro
biome also played a crucial role in regulating the environmental tolerance of coral 
holobiont. Thus, the environmental adaptability of corals is regulated by both the host 
and its associated microbiome (3, 22, 23), which explains the interspecific differences in 
heat tolerance and bleaching susceptibility (24–28). The endosymbiotic Symbiodiniaceae 
are the primary photosymbionts of coral species that play an important role in the 
health and thermal adaptive potential of coral holobionts (29). Resilient and heat-tol
erant Symbiodiniaceae (e.g., Durusdinium) can provide additional thermal tolerance 
to coral holobionts (30, 31). It has been found that Platygyra ryukyuensis and Favites 
pentagona initially changed the heat-sensitive dominant Symbiodiniaceae to heat-toler
ant Durusdinium during long-term marine heatwave events in the El Niño core zone and 
improved the thermal bleaching resistance of coral holobionts (6). The biogeographic 
patterns and diversity of Symbiodiniaceae have been widely reported in coral reefs and 
communities in subtropical and tropical zones (31–36). However, studies on the potential 
interactions between Symbiodiniaceae and other microbes are rare, and the effects 
of these interactions on the thermal bleaching susceptibility of distinct coral species 
have not been accurately assessed. Few studies have focused on the rare symbiont 
biosphere and interactions between Symbiodiniaceae members. This suggests that rare 
symbionts will enhance the stability and resistance of coral–Symbiodiniaceae symbioses, 
allowing them to better respond to external disturbances (37). It has also been found 
that parasitic symbionts (C7 sub-clade) are inhibited by the dominant Durusdinium 
trenchii in the symbiont interaction of corals in the South China Sea (SCS) (38). In 
addition, fungi have diverse functions and play key roles in bioerosion, pathogens, 
biogeochemical cycles, and microbiome structuring in coral reef ecosystems and have 
the ability to exhibit numerous functions in pelagic and benthic communities (39). 
Although fungi are important eukaryotic microbes in the coral-associated microbiome 
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and are involved in phosphorus metabolism in holobionts, their diversity, ecology, 
evolution, and function are not well understood (3, 40, 41). Previous studies have found 
that fungal communities are extremely heterogeneous and phylogenetically diverse, 
and no biogeographical or host-specific patterns of coral-associated fungal communities 
have been accurately described (28, 42, 43). However, coral holobionts show greater 
diversity and dissimilarity in fungal communities when they exhibit tissue lesions or 
live in thermal environments (44, 45). The relative abundances of Saccharomycetes and 
Malasseziomycetes increased in thermally bleached or heat-stressed Porites, Acropora, 
and Platygyra in tropical coral reefs (28). Thus, it has been speculated that the health and 
adaptability of coral holobionts are affected by the fungal community and its parasitism 
or infection. A prime example was that of Aspergillus leading to Aspergillus aspergillosis 
disease and high mortality of sea fans in West India, which satisfied Koch’s rule (46). 
Nevertheless, the link between coral-associated fungi and interspecific differences in 
coral heat tolerance remains unclear, and there is little information on the potential 
interactions between coral-associated fungi and other microbes (47, 48), especially the 
endosymbiotic Symbiodiniaceae, which is crucial for assessing the adaptability of coral 
holobionts to global warming and intensifying marine heatwaves.

Huangyan Island (HYI; 15°13′48″–15°05′24″ N, 117°40′12″–117°52′00″ E; Fig. 1a and 
b) is located in the eastern section of the SCS. It is an isolated atoll and one of the 
major components of the Zhongsha Islands. A recent study found that the highest 
probability of coral thermal bleaching occurred at 15–20 latitudes north and south of the 
Equator, based on synthesizing coral bleaching events at 3,351 sites from 81 countries 
(1998–2017) (49). Thus, the coral reefs of HYI will probably experience enhanced thermal 
bleaching and stress in the future. The result of monthly average sea surface temperature 
(SST; 2012–2022) analysis showed that the SST of HYI (29.3°C ± 1.3°C) was higher than 
those of other coral reefs at the same latitude (e.g., Xisha Island; 28.1°C ± 1.9°C), which 
was similar to those of coral reefs at low-latitude regions (e.g., Nansha Islands; 29.4°C 
± 1.1°C; Fig. 1c). The average Symbiodiniaceae density of corals (3.12 ± 0.11 × 106 

cells·cm−2) (50, 51), coral recruitment (15.7 ± 2.2 ind·m−2), and crustose coralline algae 
cover (42%) (52) in HYI was higher than those in other tropical coral reefs in the SCS. 
In addition, HYI is a submerged atoll and has strong water exchange between the 
outer reef slope and the lagoon (51, 53), which contributes to the overall environmental 

FIG 1 Study area and sampling sites. (a) Distribution of coral reefs or communities in the SCS. The red star denotes HYI; (b) physiognomy of HYI, an isolated atoll 

in the eastern SCS. The yellow points represent sampling sites; (c) monthly sea surface temperatures (2012–2022). Xinyi Reef (XY; 9°20′−9°21′ N, 115°54′−115°58′ 
E) and Sanjiao Reef (SJ; 10°10′−10°13′ N, 115°16′−115°19′ E) are located in the Nansha Islands in the low-latitude region of the SCS. Langhua Reef (LH; 16°0′−16°5′ 
N, 112°26′−112°35′ E), Yuzhuo Reef (YZ; 16°18′−16°21′ N, 111°57′−112°5′ E), and Beijiao (BJ; 17°06′−17°07′ N, 111°28′−111°31′ E) are distributed in the Xisha 

Islands in the intermediate-latitude region of the SCS. The fringe reefs of Luhuitou (LHT; 18°12′−18°13′ N, 109°28′−109°29′ E) and Weizhou Island (WZ; 21°00′
−21°04′ N, 109°04′−109°08′ E) are located in the biogeographical transition zone and subtropical climate zone, respectively, both belonging to the northern part 

of the SCS. Different colors indicate the results of the Dunn test post-hoc analysis.
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stability of HYI among the geomorphological belts. Thus, coral reefs of HYI have a 
thermal environment and robust ecological status, which provide a natural laboratory for 
exploring the effects of microbiome dynamics and interactions between Symbiodinia
ceae and fungi on the heat tolerance of coral holobionts in intermediate-latitude regions 
with high coral thermal bleaching risk.

This study aimed to analyze the diversity and community structure of Symbiodinia
ceae and fungi among 18 coral species in HYI and to evaluate the interspecific differen-
ces in microbial community flexibility. We constructed links between ecological indices 
(α-diversity and potential fungal pathogens abundance) of these microbial communities 
and coral thermal bleaching percentage in the 15–20°N regions of the SCS during the 
2020 coral bleaching event (Table 1), which will assist us in explaining how distinct 
community dynamics of Symbiodiniaceae and fungal and pathogen abundance are 
linked to thermal susceptibility. Indicators of fungi and Symbiodiniaceae were also 
characterized in this study. Moreover, the molecular ecological network was used to 
explore potential interactions between dominant Symbiodiniaceae and fungi, which 
assisted in identifying key microbial drivers and establishing associations between the 
topological properties of the Symbiodiniaceae–fungi interaction network (SFIN) and 
coral thermal bleaching susceptibility. The results of this study will expand our knowl
edge of the effects of microbiome dynamics and interactions between Symbiodiniaceae 
and fungi on interspecific differences in coral heat tolerance in the context of global 
warming.

RESULTS

The coral thermal bleaching percentage and environmental characteristics

Eighteen coral species exhibited varying degrees of thermal bleaching in the 15–20°N 
regions of the SCS during the coral bleaching event of 2020. The thermal bleach
ing prevalence has weak associations with coral skeletal morphology and polyps. 
Goniastrea retiformis populations experienced the most serious thermal bleaching, 
the average bleaching prevalence was 94.12% (Table 1). The Acropora nana (87.50%), 
Favites halicora (72.73%), Acropora anthocercis (70.00%), Isopora palifera (65.00%), Isopora 
cuneata (65.00%), Goniastrea pectinata (61.54%), Acropora gemmifera (60.61%), and 
Coelastrea aspera (60.00%) also showed severe thermal bleaching (Table 1). Additionally, 

TABLE 1 The coral sample information in HYI and the thermal bleaching percentage of coral species in the 
15–20°N regions of the SCS during the coral bleaching event of 2020

Coral family Genus Species Number of 
samples

Thermal bleaching 
percentage

Merulinidae Goniastrea Goniastrea retiformis 3 94.12%
Acroporidae Acropora Acropora nana 4 87.50%
Merulinidae Favites Favites halicora 6 72.73%
Acroporidae Acropora Acropora anthocercis 5 70.00%
Acroporidae Isopora Isopora palifera 6 65.00%
Acroporidae Isopora Isopora cuneata 3 65.00%
Merulinidae Goniastrea Goniastrea pectinata 5 61.54%
Acroporidae Acropora Acropora gemmifera 5 60.61%
Merulinidae Coelastrea Coelastrea aspera 3 60.00%
Agariciidae Leptoria Leptoria phrygia 6 59.09%
Poritidae Porites Porites lutea 6 54.73%
Merulinidae Merulina Merulina ampliata 6 50.00%
Pocilloporidae Pocillopora Pocillopora woodjonesi 3 47.62%
Plesiastreidae Plesiastrea Plesiastrea versipora 4 43.75%
Merulinidae Dipsastraea Dipsastraea speciosa 3 33.33%
Pocilloporidae Pocillopora Pocillopora verrucosa 5 17.84%
Merulinidae Hydnophora Hydnophora exesa 5 5.00%
Fungiidae Fungia Lobactis scutaria 3 2.00%
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Leptoria phrygia (59.09%), Porites lutea (54.73%), Merulina ampliata (50.00%), Pocillopora 
woodjonesi (47.62%), Plesiastrea versipora (43.75%), and Dipsastraea speciosa (33.33%) 
suffered intermediated thermal bleaching during the coral bleaching event of 2020. 
Nevertheless, Pocillopora verrucosa (17.84%), Hydnophora exesa (5.00%), and Lobactis 
scutaria (2.00%) exhibited lower thermal bleaching susceptibility than other coral 
species, with thermal bleaching percentages below 20% (Table 1).

Statistical analysis of the environmental parameters revealed that no significant 
differences were observed in the temperature (°C), salinity (PSU), DO (mg/L), pH, and 
turbidity (FNU) between the outer reef slope and the lagoon in HYI (Fig. 2; Table. S1). 
Although the concentration of SiO3

2−, PO4
3−, NH4

+, and NO3− of seawater in the lagoon 
was lower than that in the outer reef slope in HYI, there was also no significant difference 
of nutrients across the geomorphological belts. This phenomenon can be attributed to 
the close association of HYI with submerged atoll and strong water exchange.

The diversity of Symbiodiniaceae and fungi

After blasting and filtering the reads, 5,251,966 Symbiodiniaceae ITS2 reads were 
obtained. Cladocopium, Durusdinium, and Gerakladium were identified in the 18 HYI coral 
species based on ITS2 sequence analysis after quality control (retaining ITS2 variants 
present with at least 1% abundance in at least one sample). At the sub-clade taxonomic 
level, 45 Symbiodiniaceae sub-clades were identified, of which the three genera were 
Cladocopium (n = 39), Durusdinium (n = 5), and Gerakladium (n = 1). In addition, 
1,217 Symbiodiniaceae ASVs were identified after filtering and subsampling, which were 
used for Chao1 richness index statistics and to reduce the distraction of intragenomic 
variation. For the fungal community, the 2,142,129 sequences were aligned to fungi and 

FIG 2 The statistical result of environmental factors between outer reef slope and lagoon in of coral reef in Huangyan Island.
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clustered as ASVs after quality control and data set subsampling; there were 6 phyla, 
26 classes, 55 orders, 119 families, 178 genera, 236 species, and 1,881 ASVs identified 
in 18 HYI coral species. In addition, there were significant differences in the Chao1 
richness index of Symbiodiniaceae (Kruskal–Wallis test, P = 0.0154 < .05; Fig. 3a) and 
fungi (Kruskal–Wallis test, P < 0.0001; Fig. 3b) among HYI coral holobionts. The simple 
linear regression (SLR) analysis revealed that the coral thermal bleaching percentage was 
significantly and positively associated with the richness of Symbiodiniaceae (Pearson, F = 
7.414, R2 = 0.3167, P = 0.015 < .05; Fig. 3c). Nevertheless, there was a significantly positive 
correlation between Chao1 richness index of fungi and thermal bleaching percentage of 
coral holobiont (Pearson, F = 5.935, R2 = 0.2835, P = 0.0278 < .05; Fig. 3d).

The community structure of Symbiodiniaceae

The Symbiodiniaceae community of coral in HYI was mainly dominated by Cladocopium 
(91.5% ± 17.1%) and Durusdinium (5.3% ± 16.8%). There were 21 dominant Symbiodi
niaceae sub-clades (the relative abundance was >5% in at least one sample; Fig. 4a). 
The C3u sub-clade dominated the Symbiodiniaceae community of corals in HYI (42.7% 
± 32.8%; Fig. 4b), which had a high relative abundance in 13 of the 18 coral species. 
However, the Symbiodiniaceae community of G. retiformis was dominated by C1# (70.3% 
± 12.7%), C1 (8.2% ± 13.1%), and D1 (4.7% ± 6.0%), and the relative abundance of 

FIG 3 The α-diversity of Symbiodiniaceae and fungi of 18 coral species in HYI. The Chao1 richness index of (a) Symbiodiniaceae and (b) fungi of 18 species of 

corals in HYI; the correlation between the Chao1 richness index of (c) Symbiodiniaceae/ (d) fungi and the degree of coral susceptibility. The asterisk denotes 

abnormally high value of Chao1 richness index in P. verispora.
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C3u was 3.2% ± 2.1%. In addition, D. speciosa had diverse dominant Symbiodiniaceae 
sub-clades: C33.1 (33.1% ± 1.0%), Cspc (27.8% ± 0.6%), C3v (17.8% ± 2.0%), and C1 
(9.8% ± 1.0%) contributed high relative abundance to the symbiont community. It 
is worth noting that the relative abundance of Durusdinium was higher than that of 
Cladocopium in Pocillopora verrucosa, D1 (49.3% ± 18.0%) and D6 (15.6% ± 10.3%) were 
dominant in the Symbiodiniaceae community, but C1# (10.8% ± 18.1%) had the highest 
relative abundance in Cladocopium. Moreover, the C27 (68.8% ± 9.7%) and C15 (82.4% ± 
5.5%) were predominant in the Symbiodiniaceae communities of L. scutaria and P. lutea, 
respectively.

The results of PCoA showed that there were significant differences in Symbiodi
niaceae community structure among coral species in HYI (permutational multivariate 
analysis of variance; PERMANOVA, F = 10.178, R2 = 0.7331, P = 0.0001 < .05), and the 
51.3% total variation in the Symbiodiniaceae community was explained by interspecific 
differences (Fig. 4c). The Venn diagram visualization revealed that the core symbiont 
microbiome had only one Symbiodiniaceae ASV (ASV 506), which aligned with the 
variant of the C3u sub-clade and lived in all HYI coral species (Fig. 4d). Moreover, the 
IndicSpecies test-based ASV data set analyses identified 45 indicators of the Symbiodi
niaceae sub-clade among 18 coral species (Fig. 4e). The heat-sensitive C1 sub-clade 
and heat-tolerant Cspc, C3u, C91, C15, and C116 sub-clades were ubiquitous among 
coral species that have distinct thermal bleaching susceptibilities. It is worth noting 
that Durusdinium spp. do not show enrichment characteristics in all strong heat-tolerant 
coral species (e.g., P. woodjonesi, H. exesa, and L. scutaria) except P. verrucosa; these coral 
holobionts preferred to have symbioses with potential thermal-sensitive (e.g., C1 and L. 
scutaria) or tolerant Cladocopium (e.g., C115, C3u, Cspc, C119, C91, and L. scutaria; C115, 
C3u, and P. woodjonesi).

FIG 4 The community structure of Symbiodiniaceae among eighteen18 coral species in HYI in the SCS. (a) Relative abundance of genus and sub-clade of 

Symbiodiniaceae in 18 coral species in HYI; (b) community composition of Symbiodiniaceae of corals in HYI; (c) principal co-ordinates analysis (PCoA) of 

Bray–Curtis distances of Symbiodiniaceae ASV compositions associated with 18 coral species. Ellipses denote significant differences among 18 coral species 

[permutational multivariate analysis of variance (PERMANOVA)]; (d) the Venn diagram visualization for ubiquitous and specific Symbiodiniaceae ASV of 18 coral 

species; (e) abundance and enrichment characteristics of Symbiodiniaceae bio-indicator of 18 coral species in HYI based on ASV data set analyses. The blues and 

green rectangles denote thermally sensitive and tolerant Symbiodiniaceae sub-clades of Cladocopium, respectively, based on the results of phylogenetic analysis. 

The red rectangle represents heat-tolerant Symbiodiniaceae sub-clades of Durusdinium.
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The community structure of fungi

At the phylum level, the fungal community composition of coral holobionts in HYI 
was dominated by Ascomycota (10.4% ± 14.7%) and Basidiomycota (2.6% ± 7.5%), and 
a high abundance of unclassified fungi was identified in 18 coral species (87.0% ± 
16.8%; Fig. 5a). Thus, corals in HYI have a stable community composition of fungi at 
the phylum level. In addition, the corals in HYI were mainly colonized by Cladosporium 
(0.9% ± 1.0%), Candida (0.7% ± 2.6%), Aspergillus (0.4% ± 0.7%), Yarrowia (0.4% ± 0.7%), 
Kodamaea (0.2% ± 0.6%), Malassezia (0.1% ± 0.4%), Peniophora (0.1% ± 0.3%), and 
Nigrospora (0.1% ± 0.3%) at the genus level, and the relative abundance of these fungal 
genera was >1% in at last one coral species. The mycobiome of coral also had abundant 
unclassified fungal taxa at the genus level, such as unclassified fungi (86.9% ± 16.8%), 
Ascomycota (6.7% ± 11.3%), Agaricomycetes (1.7% ± 6.8%), and Basidiomycota (0.1% 
± 0.4%; Fig. 5a). However, the PCoA identified that the community structure of fungi 
was highly flexible among the distinct coral species (Fig. 5b). The results of the PERMA
NOVA test showed that there were significant differences in the fungal community 
structure among distinct coral species in HYI (PERMANOVA, F = 5.299, R2 = 0.5885, P 
= 0.0001 < .05). In addition, the Venn diagram visualization showed that there was no 
core fungal ASV present in all coral species and >80% of the samples. This suggests 
that the fungal community of corals in HYI has high variation and flexibility (Fig. 5c). 
Moreover, the IndicSpecies test found that Didymellaceae (indicator test, P = 0.043 < 
.05), Schizophyllum (indicator test, P = 0.035 < .05), Colletotrichum (indicator test, P = 
0.040 < .05), and Chaetomiaceae (indicator test, P = 0.017 < .05) were indicators of 
distinct coral species in HYI. It is worth noting that Didymellaceae (0%–60.3%) and 
Schizophyllum (0%–47.1%) exhibited a higher relative abundance in coral species with 
high thermal bleaching susceptibility and Colletotrichum (relative abundance: >90%) 

FIG 5 The community structure of fungi among 18 coral species in HYI in the SCS. (a) Fungal community composition for phylum, genus, and ASV levels of 

18 coral species in HYI; (b) PCoA of Bray–Curtis distances of fungal compositions associated with 18 coral species. Ellipses denote significant differences among 

distinct coral species (PERMANOVA); (c) Venn diagram visualization for ubiquitous and specific fungal ASV of 18 coral species; (d) Abundance and enrichment 

characteristics of fungal bio-indicator of 18 coral species in HYI.
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and Chaetomiaceae (relative abundance: >90%) displayed relatively higher levels in 
F. halicora and L. phrygia, which demonstrate intermediate heat tolerance (Fig. 5d; 
Table.S2). However, the abundance of these four fungal indicators did not show any 
associations with coral species with stronger thermal adaptability.

The functional traits of the fungal community

The results of the FUNGuild analysis showed that the ecological functions of 96% of 
fungi in the corals in HYI were unknown (Fig. 6a), which was consistent with the 
result of fungal community composition. The predictable ecological functional fungal 
community (4%) of corals in HYI was mainly colonized by undefined saprotrophs 
(US; 36.7% ± 22.1%) and animal pathogen–endophyte–lichen parasite–plant patho
gen–wood saprotroph (AELPW; 25.1% ± 27.6%) fungi, which were distributed in almost 
all coral species, except for heat-tolerant L. scutaria and H. exesa (Fig. 6a). The known 
functional fungal community of L. scutaria was dominated by animal pathogen–endo
phyte–epiphyte–plant pathogen-undefined saprotroph (AEEPS; 99.4% ± 2.3%) fungi, 
and animal pathogen–plant pathogen-undefined saprotroph fungi (AEEPS; 72.1% ± 
5.7%) had the highest relative abundance in the fungal community of H. exesa (Fig. 
6a). In addition, the predictable functional fungal communities of HYI corals were also 
colonized by plant pathogen (PP; 4.8% ± 7.2%), animal pathogen-undefined saprotroph 
(AS; 2.4% ± 4.1%), animal pathogen-plant pathogen-undefined saprotroph (APS; 5.6% ± 
17.0%), wood saprotroph (WS; 3.0% ± 4.4%), plant pathogen-wood saprotroph (PW; 1.2% 

FIG 6 The relationship between the relative abundance of fungal pathogen function traits and coral thermal bleaching susceptibility. (a) Composition of fungi 

function group among coral species in HYI. The relative abundance of US, AELPW, PP, AS, AEEPS, APS, WS, PW, and AP was more than 1%; (b) There was a 

significantly positive correlation between the abundance of animal pathogen of fungi and coral thermal bleaching percentage (%). (c) There was a significantly 

positive association between the coral thermal bleaching percentage (%) and the abundance of fungal plant pathogen.

Full-Length Text Applied and Environmental Microbiology

April 2024  Volume 90  Issue 4 10.1128/aem.01939-23 9

https://doi.org/10.1128/aem.01939-23


± 2.8%), and animal pathogen (AW; 1.5% ± 2.5%) fungi, and the relative abundance of 
these functional groups was >1% (Fig. 6a). Notably, fungal parasite-associated fungi were 
rare in the corals in HYI, and the total relative abundance of this functional fungal group 
was only 1.2%.

The results of SLR showed that the abundance of functional traits of animal patho
gens in the fungal community had a significantly positive correlation with coral thermal 
bleaching percentage (Pearson, F = 6.204, R2 = 0.2794, P = 0.0241 < .05; Fig. 6b). In 
addition, the heat adaptability and acclimatization of coral holobionts also related with 
the reduction of plant-pathogenic fungi, because the thermal bleaching percentage of 
coral holobionts had a significantly positive association with the abundance of functional 
profiles of plant pathogens in the fungal community (Pearson, F = 6.312, R2 = 0.2829, P 
= 0.0231 < .05; Fig. 6c). Thus, an increase in the abundance of both animal- and plant-
pathogenic fungi has closed associations with the increases of the thermal bleaching 
susceptibility of coral holobionts.

FIG 7 The correlation between the topological features of SFIN and coral bleaching susceptibility in HYI. (a) Molecular ecological interaction network of 

Symbiodiniaceae and fungi for 18 coral species in HYI, with co-occurrence relationships marked by edges of the network. Potential interactions of Symbiodinia

ceae are denoted by red, the relationships among fungi in blue, and the co-occurrence association between Symbiodiniaceae and fungi in brown. (b) Percentage 

of network node for Symbiodiniaceae and fungi. (c) Correlation between complexity of SFIN and coral thermal bleaching percentage (%). (d) Relationship 

between betweenness centrality of SFIN and coral thermal bleaching percentage (%).
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The interaction and complexity of the microbiota of Symbiodiniaceae and 
fungi

The results of molecular ecological network analysis (MENA) showed that there was 
a complexed potential interaction between dominant Symbiodiniaceae sub-clades 
(relative abundance > 5%) and fungi among distinct coral species (Fig. 7a). The average 
percentage of network node of Symbiodiniaceae was 60.2% ± 13.0% (ranging from 
28.3% to 75.0%), which was significantly higher than those of fungi (39.8% ± 13.1%, 
ranging from 21.1% to 71.6%) in the SFIN of coral holobiont in HYI (Welch t-test, P = 
0.0001 < .05; Fig. 7b). Symbiodiniaceae had the highest relative abundance of nodes in 
the SFIN of G. retiformis, whereas the highest percentage of fungal nodes was found in 
the SFIN of F. halicora. Therefore, the dominant Symbiodiniaceae sub-clades contributed 
more than fungi to the SFIN construction of the coral holobionts in HYI.

The SFIN patterns varied greatly among different coral species, as indicated by the 
multiple topological feature indices of the 18 networks. The total number of nodes 
ranged from 20 to 67, and the total number of links ranged from 25 to 320 (Table 2). 
In addition, there were differences in the average degree, network diameter, network 
centralization, average path length, clustering coefficient, and modularity of SFIN among 
the 18 coral species in HYI. The SFIN of C. aspera and L. phrygia had the weakest and 
strongest relationships among nodes, respectively. The average degree of SFIN of C. 
aspera was 0.144, whereas that of L. phrygia was 6.169 (Table 2), and the thermal 
bleaching susceptibilities of these two coral species were similar. In addition, coral 
species with distinct thermal bleaching tolerances had large scales of SFINs (ranging 
from 3 to 7; Table 2), and the SFIN diameter of L. scutaria with strong heat tolerance 
was equal to that of A. gemmifera with high thermal bleaching susceptibility. Regarding 
centralization and average path length, the SFIN of coral species with intermediate 
thermal bleaching susceptibility had the maximum and minimum of these topology 
parameters (e.g., Coelastrea aspera, Favites halicora, and D. speciosa). The modularity of 
the SFIN for coral species ranged from 0.342 to 0.800 in HYI, and the heat-sensitive 
A. anthocercis had the highest modularity (Table 2). Notably, SFIN complexity was 
significantly and positively correlated with coral thermal bleaching percentage (Pearson, 
F = 4.046, R2 = 0.2018, P = 0.0414 < .05; Fig. 7c). Nevertheless, there was a significantly 
negative association between the betweenness centrality of SFIN and coral thermal 
bleaching percentage (Pearson, F = 14.04, R2 = 0.4673, P = 0.0018 < .05; Fig. 7d). Thus, the 
coral thermal bleaching susceptibility is closely related to the complexity and between
ness centrality of SFIN.

DISCUSSION

The heat-tolerant C3u sub-clade and Durusdinium may provide extra thermal 
acclimation to coral holobionts

The endosymbiotic Symbiodiniaceae communities of coral holobionts in the HYI are 
dominated by Cladocopium and Durusdinium. This is consistent with the symbiont 
composition of corals in the Indo-Pacific regions (29, 34, 35, 54, 55). Although HYI has 
an approximate latitude with the Xisha Islands in the intermediate latitudes of the SCS, 
the average monthly SST of HYI is not significantly different from those of low-latitude 
regions with serious heat stress (Fig. 1c) (35, 50, 51). It is worth noting that heat-tolerant 
C3u contributed the highest relative abundance to Cladocopium in the Symbiodiniaceae 
communities of HYI and was consistently sustained as a core symbiont in 18 coral 
species (Fig. 4a), suggesting that the high abundance and stable presence of C3u may 
associate with lower thermal bleaching susceptibility of coral holobiont in HYI. Previous 
studies have found that the Symbiodiniaceae communities of Acropora, Fungia, Platygyra, 
Symphyllia, Favites, Goniastrea, and Pavona were dominated by C3u and D. trenchii (D1–4 
sub-clades) in hot coral reefs in the Andaman Sea in the northeastern Indian Ocean, 
which is a part of a massive warm water zone encompassing Southeast Asia, Indonesia, 
and northern Australia. The abundance of C3u was higher than that of D. trenchii in 
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offshore reefs with increasing seawater transparency (31, 56). In addition, the C3u also 
contributed high relative abundance (29.4% ± 21.2%) in the Symbiodiniaceae commun
ity composition of corals in the southern SCS that was controlled by long-term thermal 
stress (35, 57, 58), and about 2/3 of coral species was colonized by C3u across outer reef 
slopes and lagoons in these regions (50, 59). Phylogenetic and ecological studies have 
found that the C3u sub-clade was derived from C3 after the Late Miocene or Early 
Pliocene based on ITS2 gene marker (Fig. 4e), making it a potential recent heat-tolerant 
ancestor of Cladocopium (35, 60). The relative abundance of C3u sub-clade in coral 
holobionts has significantly positive associations with SST and photosynthetically active 
radiation across 19 latitudes of the SCS (PAR) (35).

Interestingly, heat-tolerant C3u and Durusdinium (D1 and D6) have the ability to 
dominate the Symbiodiniaceae community of the same coral samples or species in HYI 
and other low-latitude coral reefs (Fig. 4a), for example, Echinopora, Pocillopora, and 
Diploastrea have symbioses with C3u and D1 in the Perhentian Islands and Redang 
Islands in Malaysia (61). This symbiotic characteristic has also been identified in corals 
from the Gulf of Thailand (e.g., Platygyra daedalea) and the Philippine Archipelago (62, 
63), suggesting that corals prefer to establish symbioses with heat-tolerant C3u and 
Durusdinium at the same time in long-term and stable thermal stress environment. 
It has been generally recognized that Durusdinium is a heat-tolerant Symbiodiniaceae 
that can provide 1.0°C–2.0°C of additional thermal tolerance to the coral holobiont 
(3, 29, 56, 64). A recent study found that coral holobionts shifted the dominant sym
biont of the Symbiodiniaceae community from Cladocopium to Durusdinium in the 
central equatorial Pacific Ocean during the 2015–2016 El Niño event. This enhanced 
the survival and resilience of corals during long-term marine heatwaves (6). However, 
calcification and photosynthetic efficiency in coral hosts harboring Durusdinium are 
greatly reduced compared with those of corals harboring native Cladocopium (56, 65). 
Thus, the coral has symbioses with heat-tolerant C3u and Durusdinium, which may 
assist the coral to improve heat resistance potential and avoid the negative impact 
of symbioses on the growth and health of the holobiont. It has been found that P. 
verrucosa, G. retiformis, and A. nana had higher live coral cover (9.16%, 3.69%, and 
0.89%, respectively) and dominance (0.086, 0.032, and 0.032, respectively) than other 
coral species in thermal HYI (53, 66), which simultaneously established symbioses with 
heat-tolerant C3u and Durusdinium. Nevertheless, corals also have the ability to establish 
symbioses with diverse sub-clades of Cladocopium or have specific symbioses with only 
one Cladocopium taxon (Fig. 4a). This leads to significant interspecific differences in 
Symbiodiniaceae community structure among coral species in HYI. It was worth noting 
that these Symbiodiniaceae sub-clades were mostly derived from C3 (Cspc, C27, and 
C91) or C15 (C116 and C115) (31, 35, 60), which may have inherited thermal adaptability 
from a potential heat-tolerant ancestor. It has been widely reported that C27- L. scutaria 
and C15- P. lutea symbioses have a low thermal bleaching susceptibility (4, 9, 67–69). 
Accordingly, the Symbiodiniaceae community of coral in HYI was primarily characterized 
by the prevalence of heat-tolerant sub-clades of Cladocopium and Durusdinium, which 
may potentially equip the corals in HYI with increased thermal tolerance, enabling them 
to respond to heat stress condition akin to those experienced in low-latitude regions.

The increase of fungal diversity and pathogen abundance was associated 
with higher thermal bleaching susceptibility of corals

This study found that the fungal alpha diversity and the richness of unique fungal ASVs 
have a significantly positive correlation with thermal bleaching percentage of corals in 
HYI, which suggests that an increase in fungal diversity and richness was associated with 
the higher coral thermal bleaching susceptibility. Fungal diversity is closely associated 
with environmental stress levels, such as SST, depth, nutrient concentration, and disease 
(39, 70, 71). For example, the fungal diversity of Acropora loripes increased with water 
depth and available nutrients in the Gulf of Aqaba, and the fungal diversity of lesioned 
coral colonies was higher than that of healthy coral colonies (45). In addition, Amend 
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et al. (44) showed that the fungal community of Acropora hyacinthus in warmer habitats 
contained more phylogenetic diversity than that of A. hyacinthus in colder habitats 
of Ofu Island in American Samoa (44). Notably, metagenomic analyses have revealed 
fungal proliferation and increased zoosporic members under thermal or environmental 
stress (71–73). Thus, this study suggests that the diversity and abundance of potentially 
opportunistic or pathogenic fungi have closed associations with interspecific difference 
of thermal bleaching susceptibility in coral. Additionally, the activity of pathogenic 
fungi has a negative ecological impact on corals, Symbiodiniaceae, and endolithic algae 
in heat-stressed environments. The results of the FUNGuild analysis showed that an 
increase in the abundance of animal and plant pathogenic fungi was related with higher 
coral thermal bleaching susceptibility, and heat-tolerant coral species (e.g., L. scutaria, H. 
exesa, and P. woodjonesi) have a low functional abundance and diversity of pathogenic 
fungi (Fig. 6b and c). Nevertheless, a substantial proportion of fungi taxa in corals of HYI 
remained unclassified (87.0% ± 16.8%), and only 4% of fungal ecological functions has 
been identified. Hence, the potentially positive or negative impact of these unidentified 
mycobiome on heath state and thermal tolerance susceptibility of coral holobiont need 
to be further studied.

Notably, there were no core fungal ASVs among the 18 coral species in HYI, sug
gesting that the fungal communities of corals have high flexibility and interspecific 
heterogeneity. Coral holobionts share the same fungal taxa at phylum and class levels 
globally, for example, ascomycetes have been identified in almost all ecological and 
microbiological studies on coral–associated fungi (28, 39, 43, 45, 73–75), and Sordariomy
cetes, Dothideomycetes, Eurotiomycetes, and Saccharomycetes are widely distributed 
across coral reefs worldwide (42, 71, 76). However, the core fungal taxa were rare at the 
species, operational taxonomic units (OTUs), and ASV levels, even for one coral species 
in the same region. Only 11 core fungal OTUs from four classes have been identified in 
90% of A. hyacinthus colonies (n = 36) based on 454 DNA amplicon sequences in the Red 
Sea (44). The numbers of core fungal ASVs or OTUs of corals were much less than those 
of bacteria and Symbiodiniaceae (Fig. 5d) (77–79), which suggests that phylogenetic 
association and coevolution between corals and fungi was limited, and the flexibility of 
the fungal community might be higher than that of the bacterial community in coral 
holobionts. However, the intragenomic polymorphism of eukaryotic cell may also play a 
role in the variability and flexibility of fungal community. Interestingly, changes in fungal 
diversity were similar to those of bacterial diversity; they all had positive associations 
with global or local environmental stress level of coral. Thermal or other stress factors 
(e.g., low pH, human interference, and algal contact) tend to increase bacterial alpha 
diversity (80–85), because the coral holobiont is an open microbial system (17, 86), and 
microbial invasion and heat stress disrupt the microbiome function and increase the 
number of microbes not typically resident in corals (85, 87). Additionally, it has been 
found that the fungi skewed toward having a negative impact on the heath state of 
coral holobionts under the environment stress influence (39), and the invasive, parasitic, 
opportunistic, or pathogenic fungi had close associations with coral disease (e.g., dark 
spot syndrome and aspergillosis) (88, 89). Thus, corals with high susceptibility to thermal 
bleaching may have weaker resistance to the increase and invasion of opportunistic 
or pathogenic fungi in heat-stressed environments. Moreover, there were significant 
differences in the fungal community structure among distinct coral species in HYI (Fig. 
4b); however, there was no significant association between fungal community dissimilar
ity and coral thermal bleaching susceptibility (Pearson, R2 = 0.0014, P = 0.735 > .05; Fig. 
S1a). Thus, changes in the beta diversity of fungal communities differ from those of 
bacteria (23, 82, 86, 90). However, fungal alpha diversity has a negative association with 
fungal beta diversity within the coral holobiont (Pearson, R2 = 0.0489, P = 0.047 < .05; 
Fig. S1b), which was mainly contributed by pathogenic fungi and may have been closely 
associated with the process of fungal mycoparasitism or hyperparasitism (the functional 
profile abundance of fungal pathogen was 1.2% in HYI; Fig. 6a) (91).
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The fungal indicators of coral thermal bleaching susceptibility and their 
potentially ecological function

The four fungal indictors Didymellaceae, Schizophyllum, Colletotrichum, and Chaetomia
ceae were identified in corals of HYI in this study and were used to classify the interspe
cific differences in the fungal community and thermal bleaching susceptibility (Fig. 5e). 
Although these fungal indicators have rarely been explored or researched in marine 
ecosystems (91), it is interesting that the vast majority of fungi sampled from marine 
surfaces or deep-sea environments branch close to or within clades of known terrestrial 
fungi, suggesting that some core or key ecological function traits may be shared among 
fungi with adjacent divergence, and many fungi have the ability to easily transition to 
distinct marine ecosystems (39, 92). The ecological function of fungal indicators in coral 
holobionts has been speculated by comparing them with fungal communities in distinct 
creatures or ecosystems. Notably, the fungal indicator Didymellaceae showed high 
relative abundance in heat-sensitive coral species; this may be closely associated with 
coral thermal bleaching. Didymellaceae are able to live in the ocean (93) and have also 
been isolated from sponges (e.g., Callyspongia sp.) in coral reefs (94). Many primary plant 
pathogens have been found in Didymellaceae, such as Phoma, Ascochy, and Didymella, 
which can lead to serious diseases in Cruciferae and oilseed rape (95, 96). Thus, an 
increase in the abundance of Didymellaceae may be associated with a reduced stability 
of coral–Symbiodiniaceae symbioses under thermal stress. Interestingly, Colletotrichum 
was enriched in the fungal community of coral species with intermediate thermal 
bleaching susceptibility levels (e.g., F. halicora), which may be a specific opportunistic 
plant pathogen that mediates coral bleaching by parasitizing Symbiodiniaceae under 
heat stress. Colletotrichum is recognized as one of the top 10 fungal plant pathogens 
that can cause anthracnose spots and blights in aerial plants and food crops (97–100). 
It is worth noting that the Colletotrichum has a unique intracellular hemibiotrophic 
lifestyle, enabling it to establish infection through a brief biotrophic phase, and some 
species can live in subcuticular tissues (98). This physiological characteristic may provide 
a basis for the invasion of symbiosomal cells (Symbiodiniaceae microhabitats) into coral 
gastrodermis (17). Owing to latent infections (101), the destructive and necrotrophic 
phases of Colletotrichum may be activated by heat stress. This induces the necrosis of 
Symbiodiniaceae cells by producing narrower secondary hyphae, which may lead to 
coral thermal bleaching (102, 103). This study also found a complex interaction between 
fungi and Symbiodiniaceae and that the complexity of the SFIN had a significantly 
negative association with coral thermal tolerance (Fig. 7c).

However, Chaetomiaceae may be beneficial for coral holobionts, which have been 
identified in aquatic ecosystems and are closely associated with marine invertebrates 
(e.g., Cladiella sp. and Apostichopus japonicas) (104–106). Many members of Chaeto
miaceae can produce chaetoglobosins, which have strong antibacterial activity (107), 
and diverse chaetoglobosins have been isolated from Pocillopora damicornis-associated 
Chaetomiaceae (e.g., Chaetomium globosum C2F17) in the SCS (106). It has been found 
that the pathogenic bacteria have the ability to mediate coral thermal bleaching. For 
example, pathogenic Vibrio (Vibrio shiloi, Vibrio coralliilyticus, and Vibrio AK-1), Acidobac
teria, and Flavobacteriales are closely associated with coral thermal bleaching (23, 86, 
108, 109), and Escherichia coli is sustained in the core bacterial microbiota of P. verrucosa 
in thermal tropical coral reefs (85). Thus, heat-sensitive coral species may acclimate to 
thermal stress by enriching beneficial Chaetomiaceae species with antimicrobial activity 
against coral pathogens. In addition, it was verified that the fermentation broth extracts 
of Chaetomiaceae have antioxidant activity and that the antioxidant capacity of the 
extracts was comparable to that of Vitamin C (110), which may assist coral holobionts 
in responding to oxidative stress induced by high temperatures. Transcriptomic studies 
have found that heat stress leads to strong expression of photoprotective coral host 
pigments (20), and genes involved in cellular and oxidative stress responses of coral 
hosts are upregulated under heat stress conditions (21, 111–113). Thus, coral species 
with an intermediate thermal bleaching susceptibility (e.g., L. phrygia) may respond 
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to seawater warming by increasing the abundance of Chaetomiaceae. The fungal 
indicator Schizophyllum might be a beneficial fungus, which is distributed in coral species 
with intermediate and high susceptibility to thermal bleaching. Furthermore, marine 
Schizophyllum may be derived from terrestrial ecosystems and plays an important role 
in carbon cycling in the ocean (114). Moreover, it was recently isolated from corals 
in the tropical coral reefs surrounding Hainan Island (115). Notably, marine Schizophyl
lum has strong anti-Vibrio activities, and some nontoxic strains of Schizophyllum (e.g., 
Schizophyllum commune MCCCZ16) have efficacy against vibrio vulnificus during infection 
of white shrimp (116). Therefore, Schizophyllum may assist heat-sensitive coral holobionts 
in resisting thermal bleaching mediated by Vibrio (23, 109).

Accordingly, Didymellaceae, Schizophyllum, Colletotrichum, and Chaetomiaceae are 
potential fungal indicators of coral thermal bleaching susceptibility levels. Pathogenic or 
opportunistic fungal indicators may be associated with a decrease of the heat tolerance 
of coral–Symbiodiniaceae symbioses. However, heat-sensitive coral species may enrich 
potentially beneficial fungi (Chaetomiaceae and Schizophyllum) to respond to heat stress 
and pathogen activity.

The interaction of Symbiodiniaceae and fungi will affect the thermal adaptive 
potential of coral holobionts

There was a complex interaction between Symbiodiniaceae and fungi in the coral 
holobionts of HYI (Fig. 7a). Although, the interaction direction between Symbiodinia
ceae and fungi in SFIN was not clear, the number of Symbiodiniaceae nodes was 
significantly higher than that of the fungal nodes in the SFIN (Fig. 7b), implying that 
the dominant Symbiodiniaceae sub-clade (relative abundance >5%) was the driver 
in the SFIN. Some dominant members of Durusdinium have been found to improve 
environmental adaptability by inhibiting parasitic symbionts (e.g., Durusdinium trenchii 
and C7) (117, 118). In addition, MENA studies found that dominant Symbiodiniaceae 
establish many co-occurrence relationships with rare symbiont biospheres and can 
regulate the Symbiodiniaceae–bacteria interaction network (SBIN) in coral holobionts 
(37, 38, 85, 117). For instance, Cladocopium dominated in the Symbiodiniaceae com
munities of endemic coral species in tropical and subtropical coral reefs in the SCS 
(35, 69, 85, 119), which was a driver of SBIN and controlled and regulated microbial 
networks by cooperating with α- and γ-proteobacteria (85). In addition, coral Symbiodi
niaceae communities are assembled by 2–5 to dominant and diverse rare symbionts 
(64, 120, 121), and dominant Symbiodiniaceae establish the most stable symbioses 
with coral hosts owing to long-term acclimatization and coevolution (28, 122, 123). 
These symbioses were found to be optimal for coral growth and development (3), and 
the dominant Symbiodiniaceae taxa may maintain or improve the health of corals by 
regulating the SFIN. Topological feature analysis showed that the diameter, centraliza
tion, average degree, average path length, and clustering coefficient of the SFIN were 
characterized by interspecific heterogeneity (Table 2), suggesting that the heat tolerance 
of the coral holobiont was not affected by the scale, structural robustness, efficiency of 
information, or energy transport of SFINs (124–127). Moreover, niche specialization of the 
microbial community of coral holobionts can be reflected by modularity (127, 128), but 
there was a weak association between the modularity of SFIN and coral heat tolerance in 
this study. Although heat-sensitive A. anthocercis had the highest modularity, which may 
imply a high degree of niche differentiation of the microbial community constructed by 
Symbiodiniaceae, fungi might reduce the thermal adaptive potential of coral holobionts, 
niche specialization of the microbial community, and other topological properties of 
SFINs, which were mainly shaped by interspecific differences among coral species.

It is worth noting that the complexity and betweenness centrality of the SFIN had 
negative and positive correlations with coral thermal bleaching tolerance, respectively 
(Fig. 7c and d). These results indicate that the coexistence pattern and interaction 
of Symbiodiniaceae and fungi affect the heat tolerance of coral holobionts, and that 
the decrease in complexity and increase in the betweenness centrality of SFIN may 
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improve the heat tolerance of coral holobionts. In previous studies, the high complexity 
of microbial networks indicated stronger stability and stress resistance of microbial 
communities in terrestrial ecosystems and animal guts (127, 129–131). However, coral 
holobionts that survive from stressful environments tend to have lower microbial 
interaction complexity (85, 132). Healthy coral holobionts showed low microbial network 
complexity under organic pollution, high temperature, low salinity, and acidification 
conditions, which have been reported in coral reefs in the SCS and western Atlantic at 
distinct spatial scales (e.g., latitudinal gradient, upwelling zone, and nitrogen content 
gradient) (85, 133, 134). Interestingly, a large-scale investigation of the coral microbiome 
showed that an increase in microbial network complexity may reduce the environmental 
adaptability of coral holobionts, because pathogenic or opportunistic microorganisms 
are drivers of these increase mechanisms. This indicates the destabilized microbiome and 
dysbiosis of coral (23, 82). Although these conclusions were suggested by the coral-asso
ciated bacterial community, the change in the alpha diversity of fungi was similar to 
that of bacteria in coral holobionts (28, 44, 86, 87), and the richness index of the fungal 
community was negatively correlated with coral heat tolerance (Fig. 3b). Therefore, 
the decrease in network complexity of the SFIN may be attributed to the decline in 
the parasitism activity of fungi on Symbiodiniaceae. This is closely associated with the 
regulation and immunity of coral–Symbiodiniaceae symbioses and increases the heat 
tolerance of coral holobionts (23). In addition, coral-associated microbial interaction 
networks characterized by high values of betweenness centrality may have stronger 
resilience because the removal of nodes does not greatly shape the connectivity of 
others (132, 135). Pseudodiploria strigose colonies were able to acclimate to temperature 
fluctuation in the inner reefs of Bermuda (annual temperature ranged from 13°C to 15°C), 
and the microbial network betweenness centrality of the surface mucus layer of this 
species in the inner reef was higher than that in the outer reefs (annual temperature 
fluctuation was 10°C) (132). Thus, an increase in betweenness centrality potentially 
confers more resilience to the microbial community composed of Symbiodiniaceae and 
fungi, which improves the adaptive potential of coral holobionts to heat stress.

Accordingly, the dominant Symbiodiniaceae taxa were drivers of the SFIN, which may 
affect the health of coral holobionts by regulating the coexistence pattern between 
Symbiodiniaceae and fungi. The thermal bleaching susceptibility of coral holobionts is 
closely associated with potential interactions between Symbiodiniaceae and fungi, and 
the low complexity and high resilience of SFINs may contribute to the stronger heat 
tolerance of coral holobionts.

Conclusion

This study found that the Symbiodiniaceae community of corals in HYI was dominated 
by heat-tolerant Cladocopium (C3u sub-clade) and Durusdinium (D1 and D6 sub-clades), 
which may provide extra heat-adaptive potential to coral holobionts and assist corals 
to acclimate to long-term thermal stress. There were no core fungal ASVs in the coral 
holobiont, suggesting that the fungal community had high interspecific heterogene
ity and flexibility. However, fungal diversity and the abundance of pathogens have 
significantly positive correlations with coral thermal bleaching percentage. Thus, the 
increase in fungal diversity and pathogen abundance was closely linked to higher 
thermal bleaching susceptibility in coral holobionts. Notably, there were four distinc
tive fungal indicators associated with coral species in HYI. These indicators consist 
of potentially pathogenic Didymellaceae and Chaetomiaceae, as well as speculatively 
beneficial Schizophyllum and Colletotrichum, although their function requires further 
validation. These four fungal indicators exhibit associations with thermal bleaching 
susceptibility of coral holobionts, varying from high to intermediate levels. Moreover, 
there were complex interactions between Symbiodiniaceae and fungi in coral holo
bionts, and the dominant Symbiodiniaceae was the main constructor and driver of SFINs. 
This may affect the coral heath state by regulating the coexistent pattern of Symbiodi
niaceae and fungi. Coral thermal bleaching susceptibility is closely associated with the 
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topological properties of the SFIN. Low complexity and high betweenness centrality may 
indicate limitations in fungal parasitism activity and strong microbial network resilience, 
which will improve the heat tolerance of coral holobionts. Our study highlights the 
ecological effects of microbiome dynamics and interactions between Symbiodiniaceae 
and fungi on coral thermal bleaching susceptibility, providing insights into the role 
of microorganisms and their interaction as drivers of interspecific differences in coral 
thermal bleaching.

MATERIALS AND METHODS

Coral thermal bleaching percentage and environmental parameter measure
ments

The information of coral thermal bleaching percentage was obtained and reanalyzed 
from coral reef survey in the 15–20°N regions (Hainan Island, Xisha Island, and Zhongsha 
Islands) of SCS in the coral thermal bleaching event of 2020 (136–138). The data set of 
coral reef surveys of 2020 was constructed by line intercept transect techniques (atoll: 5–
15 m; fringing reef: 2–6 m) and Point Intercept Transect video re-sampling (66, 139, 140) 
according to our benthic surveys and previous studies (137, 140, 141). Coral species were 
identified following taxonomic criteria (142, 143). The three levels were used to score 
the degree of thermal bleaching severity: Level 1, minor thermal bleaching and healthy 
(0%–20% bleached); Level 2, medium thermal bleaching (20%–60% bleached); and Level 
3, severe thermal bleaching and dead (60%–100% bleached) (144). The percentage of 
coral thermal bleaching was determined as the thermal bleaching cover (all three level) 
of coral species relative to the total cover of this coral species, which can indicate coral 
thermal bleaching susceptibility (Table 1).

A total of 30 seawater samples (5 L/sample) were collected in six study sites from 
the outer reef slope and lagoon in HYI. The temperature (°C), salinity (PSU), DO (mg/L), 
pH, and turbidity (FNU) were measured by ProDSS Multiparameter Digital Water Quality 
Mater (YSI, USA) at the same time as that of water sample collection. Consequently, 
the seawater was stored at −80°C for nutrient tests, and NO3− (μmol/L), NO2

− (μmol/L), 
NH4

+ (μmol/L), SiO3
2− (μmol/L), and PO4

3− (μmol/L) were determined using an QuAAtro 
auto-continuous flow analyzer (SEAL, Germany). In addition, the difference of environ
mental factors between the outer reef slope and the lagoon in HYI was tested by Welch’s 
t-test, and the statistical significance of difference between two groups was examined by 
the two-tailed Mann–Whitney test using IBM SPSS.v19.

Sample collection and total holobiont DNA extraction

A total of 81 coral samples were collected from seven families, 12 genus, and 18 species 
with distinct thermal bleaching tolerance in the outer reef slope and lagoon of HYI; 
these coral species include G. retiformis, A. nana, F. halicora, A. anthocercis, I. palifera, I. 
cuneata, G. pectinata, A. gemmifera, C. aspera, Leptoria phrygia, P. lutea, M. ampliata, P. 
woodjonesi, P. versipora, D. speciosa, P. verrucosa, Hydnophora exesa, and L. scutaria (Table 
1). At each coral habitat, we collected morphologically distinct colonies along linear 
transects of at least 10 m apart at depths ranging from 2 to 15 m at each one of the three 
sites, which were separated by as much as 4 km. Only adult coral colonies have been 
collected to control for the effect of age on microbial composition (23). Coral fragments 
(~2–3 cm2) were obtained by chisel and hammer from a depth range of 2–15 m via 
SCUBA diving. The coral samples were cleaned by artificial sterile seawater (salinity: 
35‰) to ensure they were not disturbed with free-living Symbiodiniaceae and fungi. All 
fragments were transferred directly in preloaded 2-mL cryotubes containing 95% ethanol 
or 20% dimethyl sulfoxide buffer (145) and stored at −20°C until DNA extraction. The 
total holobiont DNA of 18 coral species have been extracted using the DNeasy Plant 
Mini Kit (Qiagen, Hilden, Germany) and DNeasy Blood and Tissue Kit (Qiagen, Hilden, 
Germany) and extraction processes according to the manufacturer’s instructions.
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PCR amplification, next-generation sequencing, and microbiome identifica
tion

The Symbiodiniaceae rDNA ITS2 region was amplified with the primer pair ITSintfor2 
(5′-GATTGCAGAACTCCGTG-3′) (144) and ITS2-reverse (5′-GGGATCCATATGCTTAAGTTCAG
CGGGT-3′) (146). The fungal ITS region was amplified with the primer pair ITS3F (5′-GC
ATCGATGAAGAACGCAGC-3′) and ITS4R (5′-TCCTCCGCTTATTGATATGC-3′) (147). PCR was 
performed with ~10 ng of DNA, 1.6 µL (5 µm) primer, 0.4 µL Trans Start Fastplu DNA 
Polymerase, 0.2 µL BSA, 4 µL 5 × FastPfu Buffer, 2 µL of 2.5 mM dNTPs, and ddH2O to 
a total volume of 20 µL. PCR amplification was conducted on an ABI GeneAmp 9700 
thermocycle controller with the following program: 3 min at 95°C, followed by 35 cycles 
of 95°C for 30 s, 55°C for 30 s, 72°C for 45 s, and a final extension at 72°C for 10 min. 
The PCR products were purified using the QIAquick Gel Extraction Kit (Qiagen, Hilden, 
Germany), which were pair-end sequenced on an Illumina Miseq platform (Majorbio, 
Shanghai, China) using 2 × 300 bp mode based on standard protocols after entry quality 
control and adapter ligation.

Microbiome sequence data processing and ecological indices analysis

Microbiome sequence processing was performed by Quantitative Insights Into Microbial 
Ecology 2 (QIIME 2) framework (148). Following the removal of primers, the forward 
and reverse reads were independently truncated to their appropriate lengths, then 
paired, dereplicated, subjected to quality control, cleaned, and finally clustered into ASV 
using the denoise-paired method within the DADA2 algorithm (149). For Symbiodinia
ceae, the quality-filtered reads were aligned to the ITS2 database using local BLASTN, 
and the parameters were following the pipeline detailed by Chen et al. (85, 117). To 
avoid disturbance of multicopy marker and intragenomic variation of the Symbiodinia
ceae ITS2 region (150, 151), we used sequence-based ITS2 (sequences were present 
at a minimum cut-off of >5% for at least 1 of the 81 samples) analysis to identify 
dominant Symbiodiniaceae sub-clades (69, 85, 117), which were recognized as biologi
cally relevant entities of Symbiodiniaceae (121, 152). The identification of dominant 
Symbiodiniaceae sub-clades were used to analyze the Symbiodiniaceae community 
composition. In addition, the ASVs were employed for the analysis of ecological indices, 
including measures of alpha and beta diversity, within the Symbiodiniaceae community. 
However, the interpretation of individual base pair differences may introduce ambigu
ity to the ASVs clustered based on Symbiodiniaceae ITS sequences (153). Therefore, 
the ASVs of ITS2 were aligned to a non-redundant ITS2 database using local BLASTN, 
and non-Symbiodiniaceae ASVs were removed (85). The Symbiodiniaceae reads were 
uniformly rarefied to a consistent sequencing depth of 26,602 reads per sample. For 
ASVs of fungi, the Naïve–Bayes classifier was trained on the Unite 8.0/ITS fungi database 
for taxonomic assignment (154), and sequences assigned to chloroplast, mitochondria, 
eukaryote, and unknown at the phylum level were removed. The fungal reads were 
rarefied to 26,446 sequences per samples, using 1,000 iterations of random subsampling 
without replacement. This approach was employed to ensure that the results of fungal 
community ecological indices (e.g., alpha and beta diversity) can be effectively compared 
among samples and groups. The alpha (Chao1 richness index) and beta diversity (Bray–
Curits dissimilarity) of Symbiodiniaceae and fungi communities among distinct coral 
species was analyzed by the Vegan package in R (155). The core ASVs of Symbiodiniaceae 
and fungi were identified by QIIME 2 and Venn diagram visualization (148), and ASVs 
consistently present in all coral species and >80% of the samples were selected as 
representative taxa of the core microbiome (17). The IndicSpecies was employed to 
identify the indicators of coral-associated Symbiodiniaceae (dominant sub-clades) and 
fungi (fungal ASV) using the following parameters: minimum specificity and minimum 
sensitivity set to 70%, P value < 0.05 and 1,000 permutations (156, 157). The relative 
abundance of indicators of Symbiodiniaceae and fungi was drawn as heat map. The 
phylogenetic tree was constructed by sequences of indicators of dominant Symbiodinia
ceae sub-clades and potential ancestor of Cladocopium (C1 and C3 sub-clades) using 
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maximum likelihood methods (60), which was aimed to speculate on the potential 
thermal tolerance of Symbiodiniaceae (31, 35, 69). The robustness of the tree was 
assessed with 1,000 bootstrap replicates. The FUNGuild tool was used to perform the 
prediction of fungal ecological function groups (158), and the percentages of fungal 
functional groups were falling into the categories of “unknown” and “known,” in addition 
to those known functional groups with relative abundance exceeding 1% of the known 
functional groups which were visualized by the ggplot2 package in R.

Molecular ecological network constructed and topological property analysis

To explore the potential and complexed interactions between Symbiodiniaceae and 
fungi in coral holobiont, the SFIN was inferred by CoNet plugin in Cytoscape 3.9.1 
(159, 160). Briefly, the dominant Symbiodiniaceae sub-clades and fungal ASVs were 
used to construct the data set, and the screening threshold has been set as taxa 
present in at least two samples and has more than 50 reads. The pairwise correla
tions among microbial taxa in different coral species were estimated by two meas
ures of correlations (Pearson and Spearman correlations), one measure of similarities 
(mutual information), and two measures of dissimilarity (Bary–Curtis and Kullback–Lei
bler dissimilarity). Primarily, 1,000 positive and 1,000 negative edges were retrieved as 
thresholds for five measures, and 1,000 normalized permutations and 1,000 bootstrap 
scores were generated to mitigate the combinatorial bias. Brown’s method was used to 
calculate and merge the measure-specific P value (161), and the multiple comparisons 
was corrected by the Benjamini–Hochberg procedure (162). Moreover, only statistically 
significant correlations (P values < 0.05) were accepted for SFIN analysis. Subsequently, 
the visualization of SFIN was conducted with Gephi 0.9.7 and Cytoscape 3.9.1, and only 
co-occurrence correlations were drawn in figure.

The topological properties of SFIN were calculated using the igraph package in R, 
which include the average degree, network diameter, network centralization, average 
path length, clustering coefficient, modularity, and betweenness centrality. In general, 
the network diameter is defined as the indicator of the network scale (127). The average 
degree describes the average number of interactions per node, which can indicate the 
intensity of interaction among microbial taxa (125, 126). The shortest network distance 
between all pairs of microbial taxa was measured by average path length, which has 
close association with the efficiency of energy or information transmission within the 
network (124, 134, 163). The clustering coefficient was known as a measure of degree 
to which nodes in a network tend to cluster together, which suggest stability and 
robustness of the microbial interaction network structure (126, 127). The modularity of 
microbial networks was able to reflect the degree to which a network is divided into 
individual compartments, and nodes have strong connections with other nodes within 
the same module and have weak association with nodes in other modules (127, 164). 
Thus, the modularity was used to estimate the niche differentiation and specialization 
of microbial community. In addition, betweenness centrality calculates the shortest path 
through a microbial network and keeps record of how many times a node in a network is 
traversed (165), which can reflect the resilience and connectivity of microbial community 
(132, 135). The complexity of SFIN was determined as linkage density (links per node) 
among distinct coral species (130). To identify the key driver of SFIN, the percentage of 
the network node for Symbiodiniaceae and fungi was calculated.

Statistical analyses

The interspecific differences of the Chao1 richness index of Symbiodiniaceae and fungal 
community were assessed by the Kruskal–Wallis test by performing in GraphPad Prism 
8, and the Dunn test was used for post hoc multiple comparisons of significant Krus
kal–Wallis test results. PERMANOVA was used to test the significance of interspecific 
differences of Symbiodiniaceae and fungal community structure with 9,999 permuta
tion-based Bray–Curtis dissimilarity matrix. The results of PERMANOVA were visualized 
by the PCoA generated by the Bray–Curtis distance in the Vegan package in R (155). 
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The SLR was used to construct the correlations between ecological indices (e.g., Chao1 
richness index, abundance of pathogenic fungi, and topological parameter of SFIN) and 
coral thermal bleaching percentage. Pearson’s correlation was employed to calculate the 
coefficient of determination (R2) using GraphPad Prism 8, and the statistical significance 
was considered at P < 0.05. In addition, the difference of the percentage of network 
node between Symbiodiniaceae and fungi in SFIN was tested by Welch t-test, and the 
two-tailed Mann–Whitney test was conducted to examine the statistical significance of 
the difference between two groups using IBM SPSS.v19.
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