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ABSTRACT Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated synthetic 
organic compounds that have been used extensively in various industries owing to their 
unique properties. The PFAS family encompasses diverse classes, with only a fraction 
being commercially relevant. These substances are found in the environment, including 
in water sources, soil, and wildlife, leading to human exposure and fueling concerns 
about potential human health impacts. Although PFAS degradation is challenging, 
biodegradation offers a promising, eco-friendly solution. Biodegradation has been 
effective for a variety of organic contaminants but is yet to be successful for PFAS due 
to a paucity of identified microbial species capable of transforming these compounds. 
Recent studies have investigated PFAS biotransformation and fluoride release; however, 
the number of specific microorganisms and enzymes with demonstrable activity with 
PFAS remains limited. This review discusses enzymes that could be used in PFAS 
metabolism, including haloacid dehalogenases, reductive dehalogenases, cytochromes 
P450, alkane and butane monooxygenases, peroxidases, laccases, desulfonases, and the 
mechanisms of microbial resistance to intracellular fluoride. Finally, we emphasize the 
potential of enzyme and microbial engineering to advance PFAS degradation strategies 
and provide insights for future research in this field.
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P er- and polyfluoroalkyl substances (PFAS) are anthropogenic, aliphatic organic 
substances with at least one fully (per-) or partly (poly-) fluorinated carbon chain 

(1). PFAS have been widely employed in numerous industrial and consumer applica
tions since the 1950s due to their exceptional physicochemical properties, including 
hydrophobicity, lipophobicity, and thermal stability (2–4). The proliferation of PFAS and 
their diverse applications has exhibited significant growth over time.

The PFAS family represents a broad and diverse chemical family. However, of the 4,730 
PFAS with CAS registry numbers, only 256 are considered commercially relevant (5, 6). 
Buck et al. (2) divided PFAS into two primary classes: non-polymers and polymers. Within 
the non-polymer PFAS class, two major subclasses have been identified: perfluor
oalkyl substances and polyfluoroalkyl substances, which comprise numerous groups 
and subgroups of chemicals. The perfluoroalkyl substances, specifically perfluoroalkyl 
acids, can be further divided into two major subgroups: perfluoroalkyl carboxylic 
acids (PFCAs) [e.g., perfluorooctanoic acid (PFOA)] and perfluoroalkyl sulfonic acids 
(PFSAs) [e.g., perfluorooctane sulfonic acid (PFOS), perfluorobutane sulfonic acid (PFBS), 
and perfluorohexane sulfonic acid (PFHxS)]. Additionally, within the polyfluoroalkyl 
substances, the fluorotelomer substances include subgroups: n:2 fluorotelomer alcohols 
(FTOHs) (e.g., 8:2 FTOH and 6:2 FTOH), n:2 fluorotelomer sulfonic acids (FTSAs) (e.g., 6:2 
FTSA), and n:2 fluorotelomer carboxylic acids (FTCAs) (e.g., 6:2 FTCA) (Fig. 1).

Due to the extensive use and consequent discharge, PFAS have been identified in a 
range of environmental contexts, such as drinking water (7, 8), surface and groundwater 
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(9, 10), soils (11, 12), wastewater (13, 14), landfills (15), remote areas (far from any local 
point sources, e.g., Arctic environment) (16, 17), and agricultural plants (18). Conse
quently, both wildlife and humans are subject to exposure to PFAS contamination (19–
24). Numerous epidemiological and mechanistic investigations have implied a connec
tion between exposure to PFAS and a wide range of diseases, such as altered immune 
function, adverse reproductive effects, liver and kidney damage, obesity, and cancers 
(25–31).

The numerous physical and chemical treatment options for PFAS that have been 
developed are often accompanied by limitations, including high costs, high energy 
use, generation of hazardous transformation byproducts, and the need for additional 
post-processing (32). In contrast, biodegradation provides a potentially favorable 
alternative approach for achieving complete PFAS degradation via a low-cost, environ
mentally friendly technology. Biodegradation using microbes or cell-free enzymes has 
been demonstrated to be technically effective for a range of contaminants, includ
ing herbicides (33), insecticides (34, 35), fungicides (36–38), and industrial solvents 
(39, 40). The biodegradation of naturally occurring and synthetic organochlorides has 
been investigated and documented extensively (41, 42). However, for organofluorides, 
particularly PFAS, biodegradation has been rarely demonstrated in natural environments.

The paucity of PFAS defluorination in nature can be attributed to the following 
factors. First, the carbonfluoride (C-F) bond is exceptionally strong compared to other 
carbon-halide bonds (43). Second, polyfluorinated products are not known in nature, and 
only a few naturally occurring monofluorinated compounds have been observed (44, 45). 
This suggests that until the recent introduction of anthropogenic organofluorides, there 
was no strong selection pressure for the catabolism of these compounds, the exception 

FIG 1 Classification of PFAS compounds. Abbreviations and structures of PFAS subclasses are mentioned in this review. This figure was created with BioRen

der.com.

Minireview Applied and Environmental Microbiology

April 2024  Volume 90  Issue 4 10.1128/aem.00157-24 2

https://doi.org/10.1128/aem.00157-24


being for highly toxic natural organofluorides such as fluoroacetate. Third, sustained 
biodegradation of PFAS is likely dependent on the presence of multiple systems, 
including low-potential redox transfer proteins, defluorinases, transport mechanisms 
for substrate uptake, fluoride export proteins, and enzymes with inherent resistance 
to fluoride inhibition (46, 47). Recently, numerous studies have been conducted and 
reported on the biotransformation and biodegradation of PFAS, focusing on the release 
of fluoride and the identification of reaction products. However, the identification of 
specific microorganisms or enzymes that catalyze the defluorination of PFAS remains 
limited (1, 48–50).

Here, we provide a thorough overview of the enzymes that have been suggested to 
be responsible for the catabolism of PFAS thus far. The enzymes under consideration 
include haloacid dehalogenases, reductive dehalogenases, cytochromes P450, alkane 
and butane monooxygenases, peroxidases, laccases, and desulfonases. The PFAS-related 
reactions catalyzed by these enzymes are summarized in Table 1. Drawing from the 
enzymes displaying activity against PFAS, a perspective is presented on the advance
ment of enzyme and microbial engineering strategies for the catabolism of PFAS, 
offering insights into potential future directions for research in this field.

ENZYMES INVOLVED IN PFAS DEFLUORINATION

Haloacid dehalogenases

Haloacid dehalogenases are a class of hydrolases that specialize in hydrolytic cleavage 
of carbon-halide bonds (51). Bacterial 2-haloacid dehalogenases can be categorized 
into three groups according to their substrate specificities: L-2-haloacid dehaloge
nase, D-2-haloacid dehalogenase, and DL-2-haloacid dehalogenase. The L-2-haloacid 
dehalogenases exhibit the ability to catalyze the hydrolytic dehalogenation of L-2-hal
oalkanoic acids, resulting in the formation of the corresponding D-2-hydroxyalkanoic 
acid. Since the 1980s, L-2-haloacid dehalogenases have been identified, isolated, and 
extensively characterized in detail (52, 53).

2-Fluoroacid dehalogenases (often referred to as fluoroacetate dehalogenases) 
exhibit enzymatic defluorinase activity and often possess activity against other 
haloalkanoic acids, such as chloroacetate, albeit often with lower efficacy than with 
fluoroacetate (54–56). Throughout this review, the term “fluoroacetate dehalogenases” 
was consistently employed for haloacid dehalogenases annotated as such to remain 
consistent with published literature and database entries.

Fluoroacetate is a natural organofluoride compound that is toxic to mammals and 
produced by actinomycetes, such as Streptomyces cattleya (57), and acts as a defense 
molecule in some plants (58, 59). Fluoroacetate dehalogenase catalyzes the hydrolytic 
cleavage of carbon fluoride in fluoroacetate, yielding glycolate and fluoride. These 
enzymes have been isolated in phylogenetically diverse bacteria, such as Pseudomo
nas (60–63), Delftia acidovorans (formerly Moraxella) (64, 65), Burkholderia (56), and 
Rhodopseudomonas (66). Some fluoroacetate dehalogenases, e.g., Fac-DEX H-1 (H-1), 
Fac-DEX FA1 (FA1), and RPA1163, have undergone comprehensive characterization. Their 
basic properties are listed in Table 2. The FA1 shared a sequence identity of 61% with H-1 

TABLE 1 Enzyme-induced reactions for biotransformation of PFAS (med and med− are the oxidized and reduced forms of small molecule mediators used in 
peroxidase- and laccase-mediated reactions)

Enzymes Reactions

Haloacid dehalogenases F-CH2-COOH + H2O → OH-R-CH2-COOH + H+ + F−

Reductive dehalogenasesa F-R-CH2-COOH + 2e− + H+ → H-R-CH2-COOH + F−

Cytochromes P450,
monooxygenasesa

F-C-R + O2 + 2e− + 2H+ + NAD(P)H → OH-C-R + NAD(P)+ + H2O + H+ + F−

Peroxidasesa 2 F-C-R + med + H2O2 → F-C-R + 2med− + 2H2O → 2med-C-R + 2F− +2H2O
Laccasesa 4 F-C-R + 4e− + 4med + O2 → F-C-R + 4med− + 2H2O → 4med-C-R + 4F− + 2H2O
Desulfonasesa F-R-CH2-SO3H + FMN + NAD(P)H + H+ → F-R-CHO + FMN + NAD(P)+ + H+ +SO3

2−

aReactions mediated by these enzymes are proposed only; the strength of the evidence for each is described in the text.
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(56) and 42% with RPA1163 (67). Furthermore, the crystallographic findings reveal that 
both FA1 and RPA1163 are homodimer proteins, belonging to α/β hydrolase superfamily 
(67, 68).

There are also haloacid dehalogenases that possess the capacity to catalyze the 
hydrolytic dehalogenation reactions on a range of haloacetates that do not include 
fluoroacetate. For example, haloacid dehalogenase H-2 (H-2) (Uniprot ID: Q01399), 
isolated and purified from D. acidovorans B (formerly Moraxella sp. B), can dehalogen
ate chloroacetate, bromoacetate, and iodoacetate, and has some catalytic activity on 
2,2-dichloroacetate and 2-chloropropionate (54, 65). Despite being present on the 
plasmid pUO1 in D. acidovorans B, the genes dehH1 and dehH2, which, respectively, 
encode enzymes H-1 and H-2, exhibit no sequence homology (75, 76). This lack of 
homology suggests that enzymes H-1 and H-2 do not share a common evolutionary 
origin (76).

Some novel L-2-haloacid dehalogenases with defluorination activity were found 
through sequence- and activity-based screening of microbial genomes, including 
POL0530 (from Polaromonas sp. strain JS666) and RJO0230 (from Rhodococcus jostii strain 
RHA1) (strain RHA1), DAR3835 (from Dechloromonas aromatica), NOS0089 (from Nostoc 
sp.), and POL4478 (from Polaromonas sp.) (66) (Table 2).

The catalytic mechanism for hydrolysis of fluoroacetate by haloacid dehalogenases is 
an SN

2 displacement reaction involving two steps, namely, the formation of an enzyme-
ester intermediate followed by the subsequent hydrolysis of the ester intermediate via 
an activated water molecule (71, 77) (Fig. 2). A catalytic mechanism was suggested 
based on studies conducted on the fluoroacetate dehalogenase H-1 (71). Site-directed 
mutagenesis and molecular simulations demonstrated the essential role of aspartate 
(Asp-105; H-1 numbering) and histidine (His-272; H-1 numbering) in the catalytic process. 
Asp-105 serves as a nucleophile to attack the α-carbon of fluoroacetate, leading to the 
release of a fluoride anion and the formation of an enzyme-ester intermediate. The latter 
was subsequently hydrolyzed by a water molecule activated by His-272 (71).

The suggested mechanism was supported by structural, quantum mechanical/molec
ular mechanical (QM/MM), and site-directed mutagenesis studies with the fluoroacetate 
dehalogenase FA1 (68, 78, 79). The catalytic mechanism of FA1 depends on a catalytic 
triad, Asp104-His271-Asp128 (FA1 numbering), where Asp104 acts as a nucleophile, 
facilitating the removal of the fluoride anion from fluoroacetate (68). Meanwhile, QM/MM 
calculations indicated that Asp128 stabilizes the transition state for the transfer of a 
proton from a water molecule to His271 and the subsequently formed tetrahedral 
intermediate (78). Additionally, the use of QM/MM calculations provides insights into 
the potential contributions of various amino acids within the active site of FA1. 
Water molecules and the surrounding amino acid residues (Arg105, Arg108, His149, 

TABLE 2 Representative haloacid dehalogenases responsible for defluorinationa

Protein name RPA1163 FAc-DEX H-1 POL0530 RJO0230 DAR3835 NOS0089

Protein length 302 aa 304 aa 294 aa 229 aa 254 aa 303 aa 291 aa

Gene name RPA1163 fac-dex dehH1 Bpro0530 RHA1_ro00230 Daro3835 Alr0039

Uniprot ID Q6NAM1 Q1JU72 Q01398 Q12G50 Q0SK70 Q479B8 Q8Z0Q1

PDB code 3R3U 1Y37 Not reported 3UM9 3UMG 8SDC 3QYJ

Microorganisms Rhodopseudomonas palustris 

CGA009

Burkholderia sp. FA1 Delftia acidovorans B 

(formerly Moraxella 

sp. B)

Polaromonas sp. Rhodococcus jostii 

strain RHA1

Dechloromonas aromatica Nostoc sp.

Substrates Fluoroacetate, difluoroace

tate, chloroacetate,

2fluoropropionic acid,

2,3,3,3tetrafluoropropionic 

acids

Fluoroacetate, 

chloroacetate, 

bromoacetate

Fluoroacetate, 

chloroacetate, 

bromoacetate, 

iodoacetate

Fluoroacetate Fluoroacetate, 6:2 

FTOH, 6:2 FTSA

Fluoroacetate, 

difluoroacetate, 

2,2difluoropropionic 

acid, 5,5,5trifluoropenta

noic acid

Fluoroacetate, 

difluoroacetate, 

2,2difluoropropionic acid, 

5,5,5trifluoropentanoic 

acid

References (66, 67, 69, 70) (56, 68) (55, 64, 65, 71) (66, 72) (66, 72, 73) (66, 74) (66, 74)

aaa, amino acids.
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Trp150, and Tyr212) form a hydrogen-bonding network that positions fluoroacetate for 
hydrolysis. His149, Trp150, and Tyr212 play a significant role in stabilizing the leaving 
fluoride atom (78, 79). In particular, Trp150 plays a crucial role specifically in the 
defluorination of fluoroacetate, while its involvement is not necessary for the dechlorina
tion of chloroacetate. This distinction highlights the importance of a hydrogen-bond 
interaction between Trp150 and the fluorine atom of fluoroacetate, as it is shown to be 
an absolute requirement for effectively reducing the activation energy associated with 
the cleavage of the strong C-F bond (68, 78).

Similarly, the crystal structure of fluoroacetate dehalogenase RPA1163 revealed the 
presence of a catalytic triad (Asp110-His280-Asp134; RPA1163 numbering) and an active 
site composition that is identical to that of FA1 and confirming the functional roles of 
His155, Trp156, and Tyr219 residues in stabilization of the leaving fluoride (67). Tyr219 
functions as a charge acceptor along the SN2 reaction axis, thereby mitigating electronic 
repulsion during the nuclophilic substition (80). Yue et al. (70) conducted QM/MM 
calculations to propose a comprehensive mechanism for the catalytic degradation of 
fluoroacetate by RPA1163, followed the same mechanism as the other fluoroacetate 
defluorinases, and identified that the rate-determining step for fluoroacetate degrada
tion is the nucleophilic attack.

The recent determination of the crystal structure of haloacid dehalogenases POL0530 
and RJO0230 has unveiled a remarkable similarity in their overall structure and active site 
composition (Fig. 2). Furthermore, molecular dynamics calculations indicate that these 
defluorinating enzymes adopt more compact conformations than their nondefluorinat
ing counterparts, facilitating enhanced interactions with the fluorine atom and thus 
increasing their efficiency (72).

Multiple theoretical investigations have suggested that it may be possible to use 
RPA1163 for the defluorination of fluorinated compounds in addition to the pre
sumed physiological substrate, fluoroacetate. To validate the theoretical outcomes, in 
vivo experiments were subsequently conducted, providing empirical evidence for the 
substrate promiscuity in RPA1163. For example, Wang et al. (81) demonstrated that 
RPA1163 effectively defluorinates bulky substrates such as 2fluoro2phenyl acetic 
acid and 2fluoro2benzyl acetic acid. In addition to 2fluoropropionic acid, Li et al. 
(69) also observed the degradation of 2,3,3,3tetrafluoropropionic acid by RPA1163, as 
evidenced by the detection of defluorination product 2hydroxyl3,3,3trifluoropropionic 
acid using MS/MS analysis. Furthermore, Yue et al. (70) showed that RPA1163 facilitated 
the defluorination of difluoroacetate to glyoxylate, leading to a change in the rate-deter
mining step for difluoroacetate degradation to C-F bond activation.

Pseudomonas fluorescens DSM 8341, which possesses fluoroacetate dehalogenase 
activity, has also been reported to degrade 6:2 FTOH and 6:2 polyfluoroalkyl phosphates 
(6:2 PAPs) into a range of short-chain PFASs. This finding is consistent with the involve
ment of fluoroacetate dehalogenase in the defluorination process of 6:2 FTOH and 6:2 
PAPs. However, further investigations are needed to elucidate the molecular basis for 
these activities (82–84).

In a recent study conducted by Khusnutdinova et al. (74), apart from fluoroacetate, 
haloacid dehalogenases DAR3835, NOS0089, and POL4478 exhibited defluorination 
activity toward difluoroacetate, 2,2difluoropropionic acid, and 5,5,5trifluoropentanoic 
acid. The crystal structures of DAR3835 and NOS0089 resemble that of RPA1163, 
featuring conserved catalytic triads (Asp-His-Asp) and substrate-binding residues 
engaged in coordinating both the substrate fluorine and carboxylate groups. The 
defluorination product of difluoroacetate was identified as glyoxylate. Moreover, 
computational analysis of the structural characteristics of DAR3835 and NOS0089 
suggested a mechanistic model wherein the enzymatic defluorination of difluoroacetate 
occurs through a series of two consecutive defluorination reactions. Meanwhile, the 
results of ligand docking analyses imply a shared catalytic mechanism for the enzymatic 
defluorination of both fluoroacetate and difluoroacetate (74).
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The involvement of RJO0230 in the defluorination of 6:2 FTSA was implied by the 
observation that its expression is up-regulated in strain RHA1 grown on ethanol as 
a carbon source and 6:2 FTSA as a sole sulfur source (73). Additionally, its role in 
the defluorination of 6:2 FTOH by RJO0230 was further supported through enzyme 
inhibition tests and heterogeneous expression of the enzyme. Specifically, the strain 
RHA1, cultivated with 6:2 FTOH in the absence of CuSO4 (which inhibits L-2-haloacid 
dehalogenases), exhibited a substantially higher fluoride release compared to samples 
containing the inhibitor, consistent with the involvement of an L-2-haloacid dehalo
genase. Subsequently, the gene (rha1_ro00230) encoding RJO0230 was successfully 
cloned and expressed in Rhodococcus opacus PD631 (strain PD631), which then gained 

FIG 2 Hydrolytic defluorinases. Cartoon representation of the dimeric structures of the fluoroacetate dehalogenase (A) and defluorinating haloacid dehalo

genase (B) from Rhodopseudomonas palustris (PDB 3R3W) (67) and Polaromonas sp. JS666 (PDB 3UM9) (PDB DOI: https://doi.org/10.2210/pdb3um9/pdb), 

respectively. The homodimers are shown with the two identical chains shown in green and cyan. A more detailed view of the active sites is shown (C and D) with 

the nucleophilic aspartate residue shown (Asp*, this is an Asn residue in the Asp110Asn variant of fluoroacetate dehalogenase shown). The substrate is bound 

in fluoroacetate dehalogenase (FA, orange), and the residues that stabilize the charge developed on the fluoride (halide pocket, purple) are also shown. The 

reaction mechanism is shown (E; an SN
2 nucleophilic attack, followed by the formation of a tetrahedral intermediate and regeneration of the nucleophile via 

attack by water). This figure was created with BioRender.com.
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defluorination activity against 6:2 FTOH as evidenced by the detection of elevated 
fluoride levels (73).

One gene encoding haloacid dehalogenase (PZP66635.1) from Delftia acidovorans 
was genetically modified and introduced into a pSB1C3 plasmid to enable expression 
in Escherichia coli. The transformed E. coli cells were subsequently cultured and exposed 
to 100 mg/L PFOA. During a 4-hour incubation period, the release of fluoride ions 
was observed in the cultures of transformed E. coli containing the engineered plasmid 
(85). Despite the absence of a statistically significant difference in fluoride ion release 
between the transformed E. coli and control samples as determined by a t-test, this 
finding has been taken as evidence of the enzyme’s potential for enzymatic defluorina
tion.

Reductive dehalogenases

Reductive dehalogenation also has the potential for defluorination of highly fluorinated 
organic contaminants. There are two classes of reductive dehalogenase: respiratory and 
catabolic. The oxygen-sensitive respiratory reductive dehalogenases use these substrates 
as terminal electron acceptors and are exported into the periplasm via a twin-arginine 
transport signal, where they form a complex with a membrane anchor protein (86–88). 
The catabolic reductive dehalogenases are cytoplasmic and more oxygen tolerant than 
their respiratory counterparts (86, 89–91). As with the hydrolytic dehalogenases, the 
catabolic reductive dehalogenases are thought to dehalogenate compounds that are 
then channeled into central carbon metabolism. Structures for both respiratory and 
catabolic reductive dehalogenases have been obtained, which share several similarities, 
including the presence of cobalamin and two [4Fe-4S] clusters in the active site (Fig. 3) 
(92). The reaction mechanism has not yet been fully elucidated; however, the currently 
favored model involves direct cobalt-halide interaction with the iron-sulfur clusters, 
shuttling electrons to the reaction center from a suitable electron donor.

Reductive dehalogenation of organochlorides, bromides, and iodides has been 
demonstrated in biochemical and microbiological studies (86). However, there is no 
direct evidence for reductive defluorination and relatively few reports in which this 
enzymatic activity has been inferred from indirect evidence; as such, the feasibility of 
this defluorination mechanism remains unproven and contested. One line of evidence 
against the feasibility of reductive defluorination of PFAS is that the redox midpoint 
potential of organofluorides may be too low to yield energy when used as terminal 
electron acceptors for biologically relevant electron donors (46). However, at least one 
detailed thermodynamic study suggests that reductive defluorination will yield sufficient 
energy to support microbial growth (93). Moreover, several studies have now demonstra
ted abiotic reductive defluorination of branched and unsaturated PFAS (e.g., br-PFOS and 
br-PFHxS) in vitamin B12-Ti(III) citrate catalytic system (94, 95) and vitamin B12-nanoscale 
zerovalent zinc system (96), suggesting that cobalamin-dependent respiratory reductive 
dehalogenases could have a role in the defluorination of organofluorides. However, it 
should be noted that the redox midpoint potential for Ti(III) citrate is lower than −800 mV 
(97), which is considerably lower than physiologically relevant electron donors, and so 
while this demonstrates that the corrinoid cofactor may be able to catalyze the reduction 
of organofluorides, there is still doubt that sufficiently low potential biological electron 
donors are available for this catalysis to be physiologically relevant.

Notwithstanding the unresolved question about the feasibility of biotic reductive 
defluorination of PFAS, several studies have presented evidence that has led to the 
inference of this enzymatic activity in microbial cultures. The first published study 
to have claimed biological reductive defluorination occurred on trifluoroacetate, with 
the evidence showing the generation of difluoroacetate and fluoroacetate during the 
biodegradation in methanogenic (anoxic) conditions (98). Similarly, Kim et al. (99) 
observed stepwise reductive defluorination of TFA in a long-term (90 weeks) operated 
anaerobic reactor. However, these results proved difficult to reproduce in methanogenic 
samples from different environments (100), and the microorganisms and enzymes 
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responsible for reductive defluorination were not identified in the original studies. After 
over a decade, an anaerobic strain [named MFA1, formally Cloacibacillus porcorum strain 
MFA1 (101)] belonging to Synergistetes phylum was shown to defluorinate MFA but 
not TFA (102). MFA was stoichiometrically defluorinated to acetate with the release 
of fluoride. Furthermore, no fluorinated intermediates were detected in the 19F NMR 
spectrum during fluoroacetate biodegradation, yet no known fluoroacetate dehalogena
ses were detected in strain MFA1 (102).

Recently, Huang and Jaffé (103) reported the defluorination of PFOS and PFOA (up 
to 60%) by Acidimicrobium sp. strain A6 (belonging to the Acidimicrobiaceae family) 
using ammonium or hydrogen as the electron donor and iron (III) as the electron 
acceptor. The defluorination was evidenced by the production of fluoride ions and 
shorter-chain fluorinated compounds (e.g., HFBA, PFPeA, PFHxA, PFBS, and PFHpA) 
in the mixed culture containing Acidimicrobium sp. strain A6. Metagenomic analysis 
identified a gene encoding reductive dehalogenase subunit A (GenBank accession 
number: MK358462) in the genome of strain A6, which was hypothesized to be the 
key enzyme responsible for the defluorination of PFOA/PFOS (104), although there is 
no direct evidence that supports this hypothesis. Additionally, the sequence of the 
gene was incomplete, with a missing C-terminus of over 100 amino acids compared 
to other known reductive dehalogenases. However, in subsequent sequence mining 
using the incomplete Acidimicrobium sp. strain A6 gene (referred to as A6RdhA), Guo 
et al. (105) found a full-length gene encoding a protein named T7RdhA from the 
Acidimicrobium strain TMED77 in a metagenomic assembly of marine microorganisms 
that shares 97.67% sequence identity with the partial A6RdhA protein. T7RdhA was 
identified as a corrinoid iron-sulfur protein that employs a norpseudo-B12 cofactor and 
two Fe4S4 iron-sulfur clusters for catalytic activity (106), through AlphaFold2 modeling 
and experiments. Moreover, results from docking and molecular dynamics simulations 
implied that T7RdhA could potentially use PFOA as a substrate (105). As with A6RdhA, 
there is no empirical evidence that supports a role for this protein in PFAS defluorination.

In 2020, Yu et al. (107) inferred the reductive defluorination of two C6 unsaturated 
and branched fluorinated compounds by a Dehalococcoides-containing trichloroethene-
dechlorinating consortium (KB1). Specifically, in addition to lactate as the electron donor 
and the fluorinated compounds as the sole electron acceptor, vitamin B12 (100 µg/L) 
was supplemented to KB1 as the essential cofactor for dechlorinating members. The 
detection of released fluoride ions and corresponding products was attributed to 

FIG 3 Reductive dehalogenase. Cartoon representation of the structure of the reductive dehalogenase, PCE, from Sulfurospirillum multivorans (PDB 5MA1) (92). 

The dimer is shown on the left, with the two identical chains shown in green and blue. A more detailed view of the active site is given on the right, showing the 

iron and sulfur of the two [4Fe-4S] clusters as red and yellow spheres, respectively. Cobalamin is shown as green sticks, and the substrate (2,4,6-tribromophenol) 

is shown in pink. This figure was created with BioRender.com.
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reductive defluorination. Moreover, Yu et al. (108) demonstrated the generation of 
fluoride in the presence of two (C5 and C8) unsaturated fluorinated compounds by 
KB1 under the same culture conditions. Regarding reductive defluorinases, no gene 
transcription of reductive dehalogenases in KB-1 was observed during the defluorination 
of fluorinated compounds (107). To date, the identities of the enzymes responsible for 
defluorination are still unknown.

Cytochromes P450

Cytochromes P450 (P450s or CYPs) are a widely distributed superfamily of enzymes 
found in all three domains of life (Archaea, Eubacteria, and Eukaryotes). They are 
heme-thiolate proteins characterized by the linkage of the heme prosthetic group to 
the apoprotein through a conserved axial cysteine residue. In the presence of molecular 
oxygen and the reduced cofactor NAD(P)H, the majority of P450s exhibit catalytic activity 
in monooxygenation reactions. The classical catalytic cycle of P450 involves a series of 
sequential steps, encompassing the reductive activation of molecular oxygen through 
sequential single-electron transfers to the iron-active site, its heterolytic cleavage, and 
the subsequent formation of the hydroxylated product (109–111).

Organic pollutants are among the wide range of organic compounds known to be 
substrates for naturally occurring and engineered P450s [reviewed by Lin et al. (112)]. 
In particular, some P450s can perform oxidative and reductive dehalogenations. For 
instance, P450 from livers of Wistar rats catalyzed the oxidative defluorination at the para 
position of pentafluorophenol or 4fluoroaniline, releasing fluoride ion and generat
ing tetrafluorobenzoquinone or 4-hydroxyaniline (113–115). P450 2E1 from human 
livers exhibited oxidative defluorination activity on fluorinated inhalation anesthetics 
(e.g., sevoflurane, isoflurane, and methoxyflurane), resulting in the generation of toxic 
metabolic intermediates (116, 117). Furthermore, P450BM3-F87G, a mutant form of 
P450BM3 from Bacillus megaterium, catalyzed the oxidative defluorination of 4fluorophe
nol to benzoquinone that was further reduced to hydroquinone through the NADPH 
P450-reductase (118) (Fig. 4). Dehalogenation by P450s relies on the availability of 
reducing equivalents, the reduction of the heme iron, and the dynamic interplay of the 
active site, which ensures the appropriate positioning of the substrate in close proximity 
to the reduced heme (119). Li and Wackett (120) conducted in vitro assays using P450CAM 
from Pseudomonas putida in the presence of titanium (III) citrate as electron donor and 
organohalides as electron acceptors. Specifically, 1,1,1trichlorotrifluoroethane (Cl3CCF3) 
was reductively dehalogenated to a mixture comprising 1,1dichlorodifluoroethylene 
(Cl2C═CF2) and 1,1dichloro2,2,2trifluoroethane (HCl2C-CF3) in nearly equal propor
tions. In contrast, the reductive dehalogenation product of trichlorofluoromethane 
(FCCl3) was identified as carbon monoxide (CO). This reaction was proposed to occur 
through intermediates of dichlorofluoromethyl (FCCl2) and chlorofluorocarbene (FCCl) 
radicals, with the chlorofluorocarbene radical subsequently reduced to CO by water 
(120).

In terms of PFAS defluorination, P450 from strain RHA1 was implicated in the 
defluorination of 6:2 FTOH (73); it exhibited a significantly higher rate of release of 
fluoride when cultivated with 6:2 FTOH in the absence of P450 inhibitors (1-aminoben
zotriazole and allylthiourea) than when those inhibitors were present. Subsequently, 
the gene responsible for encoding the responsible P450 was successfully cloned and 
expressed in strain PD631, which then gained defluorination activity on 6:2 FTOH. 
Moreover, the gene encoding this P450 also exhibited statistically significant expression 
during the defluorination process of 6:2 FTSA when strain RHA1 was supplied with 
ethanol and 6:2 FTSA as carbon and sulfur sources (73).

P450s from fungi (such as Cunninghamella elegans and Phanerochaete chrysosporium) 
have also been reported to participate in the biotransformation of 6:2 FTOH (121–123). 
Khan and Murphy (121) observed that C. elegans failed to transform 6:2 FTOH in the 
presence of the P450 inhibitor (1-aminobenzotriazole and allylthiourea), supporting a 
role for P450s in this biotransformation process. Moreover, they found the inhibition 
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of P450 activity by 5:3 FTCA, the primary metabolite accumulated during the biotransfor
mation of 6:2 FTOH (121). Merino et al. (122) quantified NADPH-P450 reductase (CPR) 
activity to indirectly assess the whole P450 catalytic system during the biotransformation 
of 6:2 FTOH by P. chrysosporium. They noted that CPR activity significantly increased in 
the presence of 6:2 FTOH compared to its absence, suggesting the engagement of P450s 
in the biotransformation of 6:2 FTOH. However, the specific function of P450s in fungal 
6:2 FTOH biotransformation remains unclear. Khan and Murphy (123) demonstrated that 
heterologously expressed CYP5208A3 and CYP reductase B (CYP5208A3/CPR_B) from C. 
elegans exhibited the capability to convert 6:2 FTOH to 6:2 FTCA in whole-cell assay using 
yeast Pichia pastoris X-33.

FIG 4 Overview of the cytochrome P450-mediated defluorination of 4fluorophenol. 4-Fluorophenol binds to complex I, which displaces fluoride via attack of 

the oxygen of complex I on the fluorinated carbon to form a semiquinone, which is then reduced to form 4-hydroxyphenol.
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Alkane and butane monooxygenases

Several monooxygenases can catalyze the oxidation of alkanes, with soluble butane 
monooxygenase and alkane monooxygenase being among the enzymes that have 
been characterized (124, 125). One extensively investigated example of a soluble 
butane monooxygenase is the three-component diiron monooxygenase complex from 
Pseudomonas butanovora. This complex comprises a hydroxylase in an α2β2γ2 configura
tion, a reductase that transfers electrons from NADH to the active site in the hydroxylase 
α-subunit, and a regulatory protein (126). Butane monooxygenase has been found to 
confer cometabolic dechlorination activity in the aerobic cultures grown on alkanes 
(127–129), in addition to its physiological function to oxidize alkanes (C2–C9) and 
alcohols (C2–C4) (130). As an integral membrane-bound diiron ω-hydroxylase, alkane 
monooxygenase from Pseudomonas putida Gpo1 (formerly known as Pseudomonas 
oleovorans) can selectively introduce O2 into the unreactive terminal methyl group of 
C5–C12 linear alkanes, generating primary alcohols (131, 132).

Based on the structural similarity shared between n-alkanes and FTOHs, it was 
postulated that alkane-degrading enzymes, particularly butane and alkane monooxyge
nases, may possess the ability to degrade FTOHs as well (133). Two strains that possess 
butane and alkane monooxygenases have been shown to catalyze the defluorination 
of FTOHs (i.e., 4:2, 6:2, and 8:2 FTOHs) and 6:2 polyfluoroalkyl phosphates (6:2 PAPs) by 
eliminating multiple –CF2– groups, ultimately resulting in the formation of shorter-chain 
PFCAs (82–84, 133). While butane monooxygenase has been suggested to play a role 
in the defluorination of FTOHs, further investigations are essential to clarify its precise 
involvement (84). In contrast, there is evidence to support the participation of alkane 
monooxygenase in the defluorination of both FTOHs and 6:2 PAPs (82, 83). High gene 
copy numbers of alkB, the gene encoding alkane monooxygenase, have been positively 
correlated with high levels of fluoride released from the biodegradation of both FTOHs 
and 6:2 PAPs (82, 83).

Similarly, Yang et al. (73) confirmed the involvement of alkane monooxygenase in 
strain RHA1 in the defluorination of 6:2 FTOH through inhibition tests and heteroge
neous expression. Specifically, the 6:2 FTOH-grown strain RHA1 devoid of acetylene 
and allylthiourea (inhibitors of alkane monooxygenase) exhibited significantly greater 
quantities of fluoride released compared to those samples containing enzyme inhibitors. 
The gene responsible for encoding alkane monooxygenase was cloned and expressed in 
strain PD631. This genetically engineered strain PD631 exhibited defluorination activity 
on 6:2 FTOH, as evidenced by the detection of high levels of fluoride released. Fur
thermore, this gene encoding alkane monooxygenase also demonstrated a statistically 
significant expression in the defluorination of 6:2 FTSA when strain RHA1 was fed with 
ethanol as a carbon source and 6:2 FTSA as the sole sulfur source (73).

Peroxidases

Peroxidases, heme-containing enzymes, are ubiquitously distributed across fungi, 
bacteria, plants, and animals. By employing hydrogen peroxide (H2O2) or organic 
hydroperoxides as co-substrates, these enzymes facilitate oxidative reactions involving 
numerous inorganic and organic substrates (134, 135). Many peroxidases are excreted 
into the environment to catalyze the decomposition of complex organic polymers, such 
as cellulose and lignin, by saprotrophic organisms (136).

Although these enzymes exhibit varying specificity toward oxidizable substrates, they 
follow a shared catalytic cycle. Upon interaction with an H2O2 molecule, enzymatic 
reactions proceed via a sequence of three successive redox steps. First, the enzyme 
undergoes oxidation, forming a cation radical (compound I) and concurrently reduc
ing H2O2 to water. Subsequently, compound I is reduced, facilitating the oxidation 
of an organic substrate and the formation of compound II and an organic radical. 
Finally, compound II undergoes reduction to return to its resting state, accompanied 
by the oxidation of a second substrate molecule and generation of another organic 
radical (135). The generation of free radicals during this process is accountable for the 
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degradation of pollutants into smaller biodegradable products with minimal toxicity 
(134). Consequently, peroxidases play a crucial role in catalyzing the biodegradation of 
diverse contaminants, including pesticides, phenolic pollutants, textile dyes, polycyclic 
aromatic hydrocarbons, and polychlorinated biphenyls [reviewed by Bilal et al. (137) 
and Sellami et al. (138)]. Among them, extracellular peroxidases including horseradish 
peroxidase (HRP), lignin peroxidase (LiP), and manganese peroxidase (MnP) have been 
documented to engage in the biodegradation and biotransformation of PFAS.

HRP

HRP, extracted and obtained from horseradish roots, can catalyze the oxidation of 
phenolic acids, aromatic phenols, and non-aromatic amines using H2O2 (139). Inter
actions between HRP and phenolic substrates facilitate the generation of highly 
reactive radical intermediates, enabling catalysis of secondary reactions with diverse 
organic contaminants (140). Hence, in addition to its application in the degradation 
of phenol-containing wastewater, HRP has also been extensively employed for the 
transformation/degradation of dyes, pesticides, pharmaceuticals, and various hazardous 
contaminants (137, 138).

Colosi et al. (140) first reported the effectiveness of HRP-mediated degradation of 
PFOA. In reactions using HRP, H2O2, and 4-methoxyphenol (a phenolic co-substrate), 
approximately 68% removal of PFOA (initial concentration of 850 µM) was observed. 
Accompanied by PFOA degradation, fluoride ions (less than 1%) and various short-chain 
fluorinated compounds were identified via ion chromatography and gas chromatogra
phy-mass spectrometry, respectively.

LiP and MnP

LiP and MnP are capable of catalyzing lignin degradation in the presence of H2O2. In 
addition to following a similar catalytic cycle (e.g., HRP or LiP), MnP uses Mn2+ ions as 
electron donors, wherein these ions are oxidized to Mn3+ ions using H2O2. This oxidative 
transformation is a crucial step contributing to lignin degradation and activation of the 
ligninolytic system (134, 141). Both LiP and MnP can oxidize a wide range of environmen
tal pollutants such as phenolic and non-phenolic compounds, dyes, and xenobiotics 
(134, 139, 142).

The genes encoding LiP (lipD) and MnP (mnp1) demonstrated differential expres
sion in comparison to the PFAS-free control when P. chrysosporium was cultured 
under ligninolytic conditions in a modified Kirk medium containing 1% glucose (122). 
Specifically, both genes exhibited gradual accumulation of transcripts over time, 
reaching their peak expression levels on day 28 when P. chrysosporium was cultivated 
with 5:3 FTCA as the parent compound. Correspondingly, the LiP activity exhibited a 
progressive increase over time, whereas the MnP activity remained stable between days 
7 and 14, followed by an upsurge on day 28. These observations suggest that both 
enzymes may have contributed to the biotransformation of 5:3 FTCA or were positively 
influenced by 5:3 FTCA and its metabolites. The underlying mechanisms warrant further 
investigation in future studies (122).

Exploration of the defluorination mechanisms of PFOA and PFOS driven by peroxida
ses is currently at an early stage. These mechanisms were inferred based on the identified 
products and theoretical calculations (140). For HRP-driven PFOA degradation, the initial 
assumption was that PFOA underwent Kolbe decarboxylation, followed by the stepwise 
conversion of -CF2 units to CO2 and fluoride ions. This speculation was based on the 
detected products and fluoride ions. However, there was a substantial imbalance in 
the released fluoride concentrations between the actual measured value (2 mg/L) and 
theoretical value (165 mg/L) (140), suggesting that further work is needed to understand 
this reaction at a mechanistic level.
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Laccases

Laccases, primarily obtained from bacteria, fungi, plants, and insects, constitute a 
subgroup within the enzyme family of multi-copper oxidases (143). Like the peroxida
ses, extracellular laccases are used by saprophytes in the decomposition of complex 
biological polymers, such as polysaccharides and lignin (136). Within their active sites, 
these enzymes harbor four copper atoms, categorized into three types: single “blue” 
copper (type 1, T1), single “non-blue” copper (type 2, T2), and a copper-copper pair (type 
3, T3) (143, 144). Laccases exhibit the capability to oxidize a wide range of phenolic 
and non-phenolic compounds and employ O2 as an electron acceptor (four-electron 
reduction of oxygen), yielding water as a by-product (143). This renders them extensively 
applicable in the oxidative removal of various pollutants, such as herbicides, synthetic 
dyes, and pharmaceuticals (134, 143, 144).

Laccases catalyze the oxidation of various substrates via a single-electron trans
fer, involving a chemical mediator. Specifically, they oxidize suitable redox mediators 
through a single-electron transfer mediated by the copper site, forming a free radical 
cation. Subsequently, an internal electron is transferred from the reduced T1 to the T2 
and T3 copper sites, where the bound O2 molecule undergoes activation and reduction 
to water in the T2/T3 trinuclear domain (145, 146). This radical cation formed by mediator 
oxidation diffuses from the enzyme-active site and nonspecifically oxidizes reduced 
compounds in the local environment. Examples of such mediators include 2,2′-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid) and 1-hydroxybenzotriazole (HBT) (144, 145).

Luo and co-authors explored the degradation of PFOA and PFOS through the 
enzyme-catalyzed oxidative humification reactions (ECOHRs) using laccase (147–150). 
Laccase (sourced from Pleurotus ostreatus) effectively degraded approximately 50% (0.5 
µM) of PFOA over 157 days, with periodical addition of HBT. Fluoride ions were detected, 
and the concentration revealed 28% defluorination of PFOA. Rather than short-chain 
perfluorocarboxylic acids, partially fluorinated shorter-chain alcohols and aldehydes 
were identified as degradation products via high-resolution mass spectrometry (147). 
The metal ion regulation of PFOA and PFOS degradation in the laccase-HBT system 
was investigated (148, 149). Notably, Cu2+ and Fe3+ can complex with PFOA, thereby 
enhancing PFOA degradation and increasing the HBT radical efficacy. In contrast, little 
PFOA degradation occurred in solutions containing Mg2+ or Mn2+ (148). Metal ions, 
Mg2+ and Cu2+, were also tested with PFOS degradation in the laccase-HBT system, 
resulting in 59% (0.59 µM) degradation in the Cu2+ solution and 35% (0.35 µM) in the 
Mg2+ solution over 162 days (149). The products of PFOS degradation were identified 
as partially fluorinated compounds, similar to those reported in previous studies of 
PFOA degradation during ECOHRs by Luo et al. (147, 148). The presence of metals 
capable of complexing with the selected PFAS was postulated to reduce the distance 
between laccase and the negatively charged PFOS and PFOA, thereby increasing the 
likelihood of the HBT radical reacting with them (148, 149). Instead of HBT, soybean meal 
was validated as an alternative organic mediator in laccase-induced ECOHR for PFOA 
degradation in soil (150). Moreover, purified laccase (Pleurotus ostreatus, purchased from 
Sigma-Aldrich) and crude laccase (concentrated from the fungus Pycnoporus sp. SYBC-L3) 
exhibited similar efficiency in PFOA degradation (150).

As is the case for peroxidase-mediated defluorination, in laccase-mediated PFOA and 
PFOS degradation, the generation of partially fluorinated short-chain compounds was 
attributed to degradation via a combination of free-radical decarboxylation, coupling, 
and rearrangement processes (147, 149, 150), although more evidence is needed to 
understand this mechanism.

Desulfonases that may participate in fluorotelomer biodegradation

Sulfur serves as an essential component of amino acids and enzyme cofactors in all. 
Numerous bacterial organisms acquire sulfur via the assimilation pathway of inorganic 
sulfate or amino acid sulfur, which ultimately yields sulfide, subsequently utilized in the 
synthesis of sulfur-containing organic molecules (151–153). However, inorganic sulfur 

Minireview Applied and Environmental Microbiology

April 2024  Volume 90  Issue 4 10.1128/aem.00157-2413

https://doi.org/10.1128/aem.00157-24


sources are not available for bacteria to grow in all environments. Consequently, bacteria 
have evolved an ability to acquire sulfur from organosulfonates such as sulfonates 
and sulfonate esters, both aerobically and anaerobically [reviewed by Kertesz (151)]. 
Under sulfur-limiting conditions, certain bacteria express two operons, tau and ssu, to 
utilize organosulfonates as sulfur sources for growth. Both operons encode an ABC-
type transport system for the uptake of organosulfonates (tauABC and ssuABC) and 
an oxygenase system for their desulfonation (tauD and ssuDE) (Fig. 5). Consistent with 
their metabolic function, the Tau and Ssu proteins demonstrate a lower-than-average 
content of sulfur-containing amino acid residues (151, 153–155). In addition, the TauABC 
and SsuABC transport systems are not interchangeable due to no shared membrane 
component or ATPase between the periplasmic binding proteins of these two systems 
(153, 156).

TauD is an Fe (II) and α-ketoglutarate-dependent dioxygenase, with activity with a 
range of sulfonates (e.g., butanesulfonate and pentanesulfonate), but a preference for 
taurine (153, 157). TauD catalyzes the oxygen-dependent desulfonation of taurine into 
sulfite and aminoacetaldehyde, with the unstable intermediate 1-hydroxyaminoethane
sulfonate presumed as an intermediate (157) (Fig. 5).

SsuD is an alkanesulfonate monooxygenase belonging to a two-component system 
that catalyzes the desulfonation of organosulfonates to sulfite and the corresponding 
aldehyde (153, 154, 158) (Fig. 5). Its activity is dependent on reduced flavin mononucleo
tide (FMNH2) that is provided by SsuE (an NAD(P)H-dependent FMN reductase) (158), 
where the reduced flavin functions as a co-substrate, instead of a bound prosthetic 
group (151, 154). SsuD has a broad substrate range, including linear alkanesulfonates 
(from methanesulfonate to tetradecanesulfonate) and several substituted sulfonated 
compounds, but not taurine (158, 159). Recently, it was suggested that 6:2 FTSA is also 
included into the substrate range of SsuD, albeit the evidence supporting this claim is 
incomplete. Strain RHA1, a pure strain isolated from γ-hexachlorocyclohexane-contami
nated soil, is capable of desulfonating and defluorinating 6:2 FTSA, where 6:2 FTSA is 
used as a sole sulfur source to support growth (73). Additionally, the gene ssuD exhibited 
a significantly higher expression level in strain RHA1 when supplemented with ethanol 
and 6:2 FTSA as carbon and sulfur sources, respectively, in comparison with the control 
group that adopted an identical carbon source with sulfate as the sole sulfur source. 
Furthermore, genes (ssuD and ssuE) were expressed in strain PD631 (ssuD) and E. coli 
BL21 (DE3) (ssuE), respectively. Sulfite (60–100 µM) was detected in the reaction mixture 
containing crude enzymes of SsuD/SsuE and 6:2 FTSA (500 µM) with 1 hour incubation at 
30℃ (73). However, the aldehyde product was not observed in these reactions, which is 
necessary to confirm the desulfonation of 6:2 FTSA by SsuD/SsuE in strain RHA1.

Nitrilotriacetate monooxygenase (NTA-Mo) has also been suggested to desulfonate 
6:2 FTSA and fluorotelomer sulfonamidoalkyl betaine (6:2 FTAB) (160–163). NTA-Mo 
belongs to the family of two-component monooxygenases as SsuD/SsuE, functioning as 
an oxidoreductase for initiating the oxidation of NTA under aerobic conditions (164, 165). 
This enzyme consists of two components, NtaA and NtaB (165). The former exhibits 
monooxygenase activity, catalyzing the oxidative conversion of NTA to iminodiacetate 
(IDA) and glyoxylate in the presence of FMNH2 and O2. Meanwhile, the latter, a flavin 
reductase, utilizes NADH to reduce FMN to FMNH2, a requisite cofactor in the oxidization 
step by NtaA (165).

Gordonia sp. strain NB4-1Y, able to cleave C-S bonds, showed activities in desulfona
tion and partial defluorination of 6:2 FTSA and 6:2 FTAB (160, 161, 163). Transcriptomics 
analysis revealed that in addition to one gene encoding alkanesulfonate monooxyge
nase (RS02630), two nitrilotriacetate monooxygenase genes (RS14730 and RS14155) 
were highly expressed in the presence of 6:2 FTSA and 6:2 FTAB compared with MgSO4 
as sources of added sulfur for growth (161). Previously, Van Hamme et al. (160) found that 
two nitrilotriacetate monooxygenases (component A) (ntaA) were differentially 
expressed in the presence of 6:2 FTSA through two-dimensional differential in-gel 
electrophoresis (2D DIGE) experiments on strain NB4-1Y growing in the 6:2 FTSA 
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(100 µM) or MgSO4 (100 µM) as the sole sulfur source, respectively. Subsequently, they 
proposed that these two NtaAs functioned as desulfonases. In fact, through the genomic 
re-annotation and transcriptomics analysis, these two NtaAs, highly expressed in the 
cultures of strain NB4-1Y amended with 6:2 FTAB and 6:2 FTSA, were re-annotated as two 
FMN-dependent monooxygenases (RS09755 and RS 09775) (161). Consistent with the 
hypothesis that these genes encode desulfinases, the encoded proteins have signifi
cantly lower percentages of sulfur-containing amino acids that would be expected by 
chance (155, 160, 161).

The genome of Dietzia aurantiaca J3 (strain J3), isolated from landfill leachate 
exposed to some PFAS (e.g., 6:2 FTSA, PFOS, PFOA, and PFHxS), contains an operon 
related to uptake and assimilation of organosulfonates. Proteomics, where strain J3 
grew amended with 6:2 FTSA and MgSO4 as sulfur sources, respectively, revealed that 
putative enzymes capable of transporting and desulfonating 6:2 FTSA were signifi
cantly upregulated (162). For the putative desulfonase annotated as ssuD in strain J3 
(MCD2262844.1) (162), it actually has over 99% identity with luciferase-like monooxyge
nase class flavindependent oxidoreductase (WP_269074981.1) and over 89% identity 
with alkanesulfonate monooxygenase (PAY22235.1) in Dietzia sp. The ntaB annotated 
based on NCBI Prokaryotic Genome Annotation Pipeline (MCD2262842.1) shares 100% 
identity with flavin reductase family protein (WP_230929925.1) in Dietzia aurantiaca, 
which provides reduced flavin for desulfonation.

Notably, the assertion that strains NB4-1Y and J3 may use desulfonases in the 
catabolism of PFAS is supported largely by the correlation between changes in their 
transcriptomes and the presence of PFAS in their growth media. Moreover, neither strain 
is able to grow with PFOS or PFHxS as sole sulfur sources (160, 162). Further investigation 
is essential to provide direct evidence for PFAS desulfonation and the desulfonases 
identified.

FIG 5 Schematic regarding uptake and desulfonation of alkanesulfonates and taurine by (A) TauABCD and (B) SsuEADCB systems, based on data from van der 

Ploeg et al. (153). This figure was created with BioRender.com.
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OTHER MOLECULAR PROCESSES NEEDED TO SUPPORT MICROBIAL PFAS 
DEFLUORINATION

Resistance to intracellular fluoride

A major concern for the microbial remediation of fluorinated compounds is the 
production of intracellular fluoride. The anion is highly toxic to microbes, impacting 
the function of a variety of metabolic processes, such as enolase activity (166), cation 
translocation (167), and polysaccharide synthesis (168). It also behaves as a weak acid 
itself, accumulating in the cytoplasm without active uptake when the extracellular pH 
is lower than the intracellular pH, due to the high pKa and membrane permeability of 
hydrogen fluoride (HF) (169).

Fluoride is abundant in the Earth’s crust and present in most, if not all, natural 
environments. To counter the toxic effects of fluoride, bacteria have evolved induci
ble, fluorideselective export channels. The first evidence of a molecular mechanism 
for bacterial resistance to fluoride was the discovery of a widespread family of fluo
rideresponsive riboswitches, found upstream of genes predicted to encode halide-spe
cific membrane channels (170–172). When coupled to a reporter system, the fluoride 
riboswitch has also been shown to have utility as a sensitive and biocompatible fluoride 
sensor that can be used in living bacteria or in wholly in vitro systems (170, 173).

There are two known classes of F− channels, which appear to have evolved independ
ently of each other: fluoridespecific members of the CLC family and the Fluc family 
of proteins. The broader CLC family members are chloride transporters that are found 
in every domain of life. A subclass of bacterial CLC proteins has been described that 
lack the conserved chloride-binding motif and that were expressed under the control 
of a fluorideinducible riboswitch. These CLCF proteins have been demonstrated to 
be F−/H+ antiporters with high specificity for F− compared with other anions (174), 
unlike chloridespecific CLCs that tend to have more promiscuous activities. Moreover, 
expression of CLCF has been demonstrated to confer resistance to fluoride toxicity, 
supporting the hypothesis that F− efflux is its physiological function (172). The Fluc 
proteins are small, homodimeric permeases (175), with extremely high specificity for 
the fluoride anion (10,000-fold versus chloride) (176). This ultrahigh specificity has been 
suggested to allow the permease to remain “open” at all times without leading to 
leakage of ions that would otherwise result in the collapse of the membrane potential 
(176) (Fig. 6).

PFAS uptake

The majority of enzymes discussed in this review are either intracellular or membrane 
bound. For these enzymes to interact with PFAS as a substrate, PFAS needs to cross 
cellular membranes. However, there is a significant knowledge gap regarding the 
mechanisms underlying cellular PFAS uptake, particularly in microbes. In recent years, 
numerous studies have emerged and subsequently reviewed the processes of PFAS 
uptake and transportation in plants (18, 179–186). In general, PFAS uptake by plants 
occurs through root uptake and foliar uptake, with the former widely regarded as 
the primary pathway (181, 183, 184) and the latter potentially for semi-volatile PFAA 
precursors and their degradation products (such as FTOHs) (180, 183).

The pathways associated with PFAS uptake by roots and their subsequent transporta
tion within plants are intricate and species dependent (18, 179, 184, 185), influenced 
by various factors, such as PFAS properties (180, 185, 186), and environmental factors 
(such as pH, temperature, and soil organic carbon) [reviewed by Adu et al. (186), Mei et 
al. (184), and Ghisi et al. (18)]. Moreover, proteins in plant roots have been identified in 
various studies as factors influencing the processes of PFAS uptake and accumulation 
(179, 185, 186). For example, Wen et al. (187) explored the plant uptake mechanism 
of PFOS and PFOA in maize, finding that PFOA uptake by maize roots is an active 
(energy-dependent) process, potentially involving anion channels, whereas PFOS uptake 
is a passive (carrier-mediated) process, potentially occurring through aquaporins and 

Minireview Applied and Environmental Microbiology

April 2024  Volume 90  Issue 4 10.1128/aem.00157-2416

https://doi.org/10.1128/aem.00157-24


anion channels in root cell membranes. Wang et al. (188) investigated the uptake process 
of PFOA and PFOS in the wetland plant Alisma orientale, revealing active absorption 
facilitated by water and anion channels in the roots.

In addition, short-chain PFAS tend to accumulate in plant leaves because of their 
small molecular size and relatively high water solubility. This feature facilitates their ease 
of passage through root cell walls, leading to higher translocation and bioaccumulation 
potentials (180, 186). In contrast, long-chain PFAS are more likely to accumulate in 
roots, exhibiting a higher adsorption affinity due to their hydrophobic nature (185, 186). 
Differences in PFAS uptake and translocation are also affected by the functional head 
groups, leading to observable distinctions in the uptake and translocation patterns of 
PFCAs and PFSAs (189, 190).

FIG 6 Bacterial response to fluoride toxicity. Hydrogen fluoride and fluoride (F−) are present in pH-dependent equilibrium, and only HF can cross biological 

membranes without the aid of efflux channels. At low environmental pH, this drives the accumulation of intracellular F−. F− -responsive riboswitches bind F−, 

allowing the translation of F−specific efflux proteins, including Fluc F− channel (PDB: 6B2A) (177) and the H+/F− CLCF antiporter (PDB: 36D0J) (178). This figure was 

created with BioRender.com.
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OUTLOOK

Excepting the evolutionary response to highly toxic compounds (i.e., fluoroacetate), 
the low abundance and diversity of naturally occurring fluorinated compounds in the 
environment have led to the lack of selective pressures that would otherwise have 
supported the evolution of biological defluorination. While biological defluorination has 
some unique challenges, rigorous investigation into the biochemical routes to defluori
nation of organofluoride compounds suggests that there is no specific physiochemical 
impediment to the natural evolution of such biological systems.

PFAS were first deployed over 70 years ago in the 1950s. Pesticides, such as triazine 
herbicides and organophosphate insecticides, were introduced in the same 1950s and 
1930s, respectively, and microbial degradation of these compounds has been observed 
and characterized in molecular detail since before the start of this millennium (33, 191). 
None of these compounds are toxic to bacteria but instead provide access to otherwise 
limited nutrients, providing a selective pressure by virtue of the growth advantage their 
catabolism provides (192).

PFAS could potentially provide a carbon source after defluorination, but to access 
any carbon atom in the molecule requires the removal of up to three fluorides. It is 
very likely that multiple enzymes with promiscuous defluorination activity would be 
required within a bacterium or bacterial community to achieve complete defluorination 
of a PFAS molecule and provide a starting point for the evolution and assembly of 
dedicated PFAS catabolic pathways. While this may be technically tractable, the growth 
advantage for doing so may not provide a large enough competitive advantage to drive 
this evolutionary outcome.

It has also been suggested that PFAS could be used as a terminal electron 
acceptor in anaerobic respiration, providing a significant growth advantage under 
anaerobic conditions. Some early reports provide circumstantial evidence that this 
energy metabolism pathway may be present in Acidimicrobium and other bacterial 
strains (103, 107, 108), while some researchers suggest that existing electron transport 
chains may be unsuitable for the delivery of electrons to fluorinated compounds due 
to their extremely low redox mid-point potentials (as low as −2,700 mV) (47). There is a 
clear need to provide direct evidence for respiratory defluorination of PFAS to establish 
whether or not these pathways are possible.

Regardless of the molecular mechanisms proposed, many of the reports of PFAS 
biodegradation to date rely on indirect or incomplete evidence to support their claims. 
The formation of fluoride or reduction in concentration of substrate is an insufficient 
line of evidence to support claims of PFAS biodegradation. Instead, all the reaction 
products (not just fluoride) need to be identified. Where practical, time courses that 
quantify the formation of these products and reduction in substrate concentration 
should also be presented to demonstrate mass balance and eliminate the possibility 
of adsorption/absorption of the substrate.

Similarly, for claims involving the identification of gene/enzyme systems and 
molecular mechanisms of defluorination, direct evidence is needed. The presence of 
homologs of genes that encode proteins that are mechanistically plausible candidate 
PFAS degraders is not sufficient. Genetic knockouts, complementation studies, func
tional heterologous expression, and in vitro studies all provide direct evidence for the 
involvement of specific gene/enzyme systems, and ideally, multiple lines of evidence 
should be provided.

Fluoride toxicity and resistance mechanisms are well understood and will be 
necessary for bioremediation using live organisms. However, there is a substantial 
knowledge gap concerning PFAS uptake in microorganisms. While the use of extracel
lular enzymes may mitigate the need for PFAS uptake, this strategy precludes the use 
of enzymes that require intracellular cofactors (e.g., NAD(P)H) to function. A detailed 
mechanistic understanding of PFAS transport across biological membranes will greatly 
improve our ability to engineer solutions for environmental PFAS contamination.
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Regardless of the reason, catabolism of PFAS appears not to be a widespread 
capability in microbial communities. However, as the biochemical potential for PFAS 
defluorination is clear, synthetic biology and enzyme engineering may afford non-nat
ural approaches to approaches to developing PFAS bioremediants. Rapid advances in 
artificial intelligence and machine learning are already enabling substantial advances in 
biological design that were unimaginable 5 years ago (193–196), and the application 
of these techniques to the PFAS problem has already started to appear in the scientific 
literature (197–199). As discussed in this review, the progenitor “biochemical tool kit” for 
the biodegradation of PFAS and other highly fluorinated anthropogenic compounds 
already exists; whether a synthetic approach or evolutionary pressures are first to 
produce a biological solution to the issue of PFAS in the environment is still an open 
question.
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