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ABSTRACT

Oleuropein (OLE), the main constituent of Olea europaea, displays
pleiotropic beneficial effects in health and disease, which are
mainly attributed to its anti-inflammatory and cardioprotective
properties. Several food supplements and herbal medicines con-
tain OLE and are available without a prescription. This study inves-
tigated the effects of OLE on the main cytochrome P450s (P450s)
catalyzing the metabolism of many prescribed drugs. Emphasis
was given to the role of peroxisome proliferator-activated receptor
a (PPARa), a nuclear transcription factor regulating numerous
genes including P450s. 129/Sv wild-type and Ppara-null mice were
treated with OLE for 6 weeks. OLE induced Cyp1a1, Cyp1a2,
Cyp1b1, Cyp3a14, Cyp3a25, Cyp2c29, Cyp2c44, Cyp2d22, and
Cyp2e1 mRNAs in liver of wild-type mice, whereas no similar
effects were observed in Ppara-null mice, indicating that the OLE-
induced effect on these P450s is mediated by PPARa. Activation of
the pathways related to phosphoinositide 3-kinase/protein kinase
B (AKT)/forkhead box protein O1, c-Jun N-terminal kinase, AKT/
p70, and extracellular signal-regulated kinase participates in P450

induction by OLE. These data indicate that consumption of herbal
medicines and food supplements containing OLE could accelerate
the metabolism of drug substrates of the above-mentioned P450s,
thus reducing their efficacy and the outcome of pharmacotherapy.
Therefore, OLE-induced activation of PPARa could modify the
effects of drugs due to their increased metabolism and clearance,
which should be taken into account when consuming OLE-contain-
ing products with certain drugs, in particular those of narrow thera-
peutic window.

SIGNIFICANCE STATEMENT

This study indicated that oleuropein, which belongs to the main
constituents of the leaves and olive drupes of Olea europaea, indu-
ces the synthesis of the major cytochrome P450s (P450s) metabo-
lizing the majority of prescribed drugs via activation of peroxisome
proliferator-activated receptor a. This effect could modify the phar-
macokinetic profile of co-administered drug substrates of the
P450s, thus altering their therapeutic efficacy and toxicity.

Introduction

Globally, there is an upsurge in the use of medicines coming from
herbs as many people claim that they are nontoxic based on their natural
origin and their use in popular medicine for centuries. Nonetheless,

herbs contain many active substances that could induce adverse effects,
toxicity, or even cancer (Bensoussan et al., 2002; De Smet, 1995; Deng,
2002; Eisenberg et al., 1993; Ernst and Pittler, 2002a; Ernst and Pittler,
2002b; Greensfelder, 2000; Haller and Benowitz, 2000; Kennedy and
Seely, 2010; Klepser and Klepser, 1999; Koh and Woo, 2000; Malliou
et al., 2018; Mckenna et al., 2012; McRae et al., 2002; Stedman, 2002).
When all foreign substances (xenobiotics) enter the body, they undergo
biotransformation primarily in the liver, which accelerates their elimina-
tion. In particular, the metabolism of xenobiotics, such as drugs, precar-
cinogens, and toxic agents, during phase I is mainly catalyzed by
cytochrome P450s (P450s) and can result either in activation of pro-
drugs or in inactivation of pharmacologically active drugs, or in activa-
tion of precarcinogens to carcinogens (Gonzalez and Gelboin, 1994;
Ingelman-Sundberg, 2004a). It is estimated that P450s belonging to the
CYP3A, CYP2C, CYP2D, and CYP1A subfamilies catalyze hepatic
metabolism of more than 95% of the most widely prescribed drugs
(Daskalopoulos et al., 2012a; Guengerich, 2003; Ingelman-Sundberg,
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2004a; Konstandi, 2013). From a toxicological point of view, it is worth
noting that CYP1A1/2 and CYP1B1 catalyze the bioactivation of the
major groups of precarcinogens, the polycyclic aromatic hydrocarbons,
polycyclic arylamines, and aflatoxin B1, to electrophilic DNA-binding
derivatives (Cheng and Morgan, 2001; Flint et al., 2010; Harkitis et al.,
2015; Kawajiri, 1999; Konstandi et al., 2006; Konstandi et al., 2005;
Pasanen and Pelkonen, 1994). Interestingly, the biotransformation of
steroids, fatty acids, and several other endogenous compounds is also
catalyzed by P450s (Guengerich, 2003; Spatzenegger and Jaeger, 1995).
It is well documented that the traditional Mediterranean diet has vari-

ous beneficial effects in health and longevity, and olive oil and olives
are substantial ingredients of this diet (Impellizzeri et al., 2012). The
main compounds found in the leaves and olive drupes of Olea europaea
are oleuropein (OLE) and its hydrolysis product, hydroxytyrosol. There
is accumulating evidence based on preclinical studies that OLE displays
significant cardioprotective properties (Andreadou et al., 2006; Briante
et al., 2001; Malliou et al., 2018; Oi-Kano et al., 2008; Tuck and Hay-
ball, 2002; Visioli and Galli, 1994; Visioli et al., 2002a; Visioli et al.,
2002b), which could be attributed to activation of peroxisome prolifera-
tor-activated receptor a (PPARa) (Harkitis et al., 2015; Malliou et al.,
2018), a ligand-activated nuclear receptor that controls lipid homeostasis
(Fruchart and Duriez, 2006; Hansen and Connolly, 2008; Kuusisto
et al., 2007; Robillard et al., 2005). The anti-inflammatory properties of
OLE may also contribute to the drug’s cardioprotective effects (Shi-
mada et al., 1996; Spatzenegger and Jaeger, 1995). Preliminary data
also indicated a pleotropic effect of OLE on several vital functions of
the body including stimulation of neural plasticity and protection against
neurodegenerating disorders, among others, effects potentially mediated
by activation of PPARa (data not shown).
It is well defined that OLE activates PPARa (Malliou et al., 2018;

Spatzenegger and Jaeger, 1995), which controls several genes participat-
ing in the regulation of inflammatory responses, the metabolism of lip-
ids and glucose, as well as the adipose differentiation and cancer,
among others (Malliou et al., 2018; Yang et al., 2008; YUMUK, 2006).
It is of interest that PPARa apparently holds a substantial regulatory
role for P450s (Choi and Waxman, 1999; Tauber et al., 2020). In partic-
ular, the hepatic sexual dimorphism of the P450 expression pattern is
largely regulated by PPARs (Leuenberger et al., 2009).
Drug-drug interactions are of critical clinical significance because

they markedly determine the outcome of pharmacotherapy, the side
effects of the drugs, and pharmacotoxicity (Konstandi, 2013). They are
usually dependent on the drugs’ effect on P450s acting either as
inducers, inhibitors, or substrates. On one hand, induction of the most
important P450s that catalyze the metabolism of the majority of pre-
scribed drugs may accelerate the biotransformation of their drug sub-
strates and, in most cases, result in their reduced pharmacological
efficacy (Daskalopoulos et al., 2012a; Daskalopoulos et al., 2012b;
Ingelman-Sundberg et al., 2007; Konstandi et al., 2020; Konstandi
et al., 2005; Zhou et al., 2004) or, in other cases, result in perturbation
of several endogenous regulatory circuits, often associated with patho-
physiological states (Choi and Waxman, 1999). On the other hand, inhi-
bition of P450s may lead to accumulation of their drug substrates in the
blood, followed by adverse side effects of varying severity that may
reach the level of toxicity; this is of particular clinical interest when
drugs of low therapeutic index are administered (Daskalopoulos et al.,
2012b; Konstandi et al., 2020; Spatzenegger and Jaeger, 1995). There-
fore, it should be noted that food supplements or herbal medicines con-
taining pharmacologically active compounds, such as OLE, which act
either as substrates of P450s or even as their inducers or inhibitors
(Zhou et al., 2004), may modify the efficacy of co-administered drugs in
multidrug therapeutic schemes and, potentially, induce pharmacotoxicity
(Daskalopoulos et al., 2012a; Daskalopoulos et al., 2012b; Gonzalez and

Gelboin, 1994; Guengerich, 2003; Harkitis et al., 2015; Konstandi et al.,
2014; Pelkonen et al., 2008).
In the light of the above considerations, the current study investigated

the potential regulatory role of OLE for the main P450s that are
involved in drug metabolism, emphasizing the role of PPARa in this
regulation. To approach this issue, wild-type (WT) and Ppara-null mice
were treated with OLE and P450 mRNA, and protein expressions were
analyzed. OLE markedly upregulated several genes encoding the most
significant drug-metabolizing P450 isozymes in the liver, a process pro-
foundly mediated by PPARa activation.

Materials and Methods

Animals and treatment. Adult male 129/Sv WT and Ppara-null mice that
were used in this study were bred in the Animal House of the University of Ioan-
nina (Ioannina, Greece) and were housed up to five mice per cage. All animals
(5–6 per group of treatment) had access to a standard chow diet for rodents
(1324 TPF, Altromin Spezial futter GmbH & Co. KG) and water ad libitum.
Throughout the experiments, all mice were housed in their cages under a stan-
dard 12-hour light/12-hour dark cycle (lights on at 6:00 AM). The experimental
protocols employing procedures with animals received the approval of the Ethics
Committee of the University of Ioannina–Faculty of Medicine. The procedure
followed was in compliance with the European Commission ethical standards for
the care and use of experimental animals (Directive 86/609-EEC). Both WT and
Ppara-null mice were treated with food pellets containing OLE (100 mg/kg)

TABLE 1

Oligonucleotide sequences used as primers for quantitation of gene mRNA levels
through quantitative PCR assays

Gene Primer sequence

Ppara F: CAGTGGGGAGAGAGGACAGA
R: AGTTCGGGAACAAGACGTTG

Cyp2d22 F: ACCGGTAAAGGTAGCTGGAGT
R: CATAGGGCCTGGAGGGTAGT

Hnf4a F: CGGAGCCCCTGCAAAGT
R: ACTATCCAGTCTCACAGCCCATTC

Cyp2e1 F: TGGTCCTGCATGGCTACAAG
R: CGGGCCTCATTACCCTGTTT

Cyp2c29 F: TGTTACAAACCCCCGTGACT
R: GGATGTGGATAAAGACCTGAGAC

Cyp2c44 F: CCTAAAGGCTCTGGTGGAGC
R: GAAACAAATGCCCACGTGCT

Cyp3a14 F: GGCCCAGTGGGGATAATGAG
R: GGTGCCTTATTGGGCAGAGT

Cyp3a25 F: TAGAAACCTGGGTGCTGCTG
R: GGATGTGGATAAAGACCTGAGAC

Pxr F: AAGAAGCAGACTCTGCCTTGGA
R: GTGGTAGCCATTGGCCTTGT

Car F: CCTCTTCTCCCCTGGTTTCTG
R: TCATTGCCACTCCCAAGCTC

Rxra F: CAGTACGCAAAGACCTGACCTACA
R: GTTCCGCTGTCTCTTGTCGAT

Rxrb F: AAGTGTCTGGAGCACCTGTTCTT
R: CTCCATGAGGAAGGTGTCAATG

Cyp1a1 F: GAAGTGGAAGGGCATAGGCAG
R: GGCCAAAGCATATGGCACAG

Cyp1a2 F: ACTTCGAACCAGTCAGCCAG
R: GTGCTTGAACAGGGCACTTG

Cyp1b1 F: CCAGCTTTTTGCCTGTCACC
R: TGCACTGATGAGCGAGGATG

Ahr F: TTCAGAACTGACTCCACCGC
R: CCGGGTGTGATATCGGGAAG

Ahrr F: AGTGTACATACGCCGGTAGG
R: CAAGACTGGTGCCACAATGC

Hsp90 F: CAGACCATGGTGAGCCCATT
R: TCAACCACACCGCGGATAAA

eNos F: GCAGAAGAGTCCAGCGAACA
R: GGCAGCCAAACACCAAAGTC

iNos F: GTGTTCCACCAGGAGATGTTG
R: CTCCTGCCCACTGAGTTCGTC

F, forward; R, reverse.
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daily for 6 consecutive weeks (Andreadou et al., 2006; Andreadou et al., 2014;
Impellizzeri et al., 2012). For the isolation of OLE the leaves of O. europaea
were used following a previously described method (Andreadou et al., 2014).
The choice of the dose of OLE that was used in this study was based on informa-
tion from the literature and our previous findings (Andreadou et al., 2006;
Andreadou et al., 2014; Impellizzeri et al., 2012). It corresponds approximately
to the average consumption of olive oil and olive drupes in the Mediterranean
countries during a day (Abdel-aleem et al., 1997), represents total polyphenol
consumption from these olive products, and is estimated to be approximately
100 mg/d (Abdel-aleem et al., 1997; Del Boccio et al., 2003). Mice were treated
with OLE in food pellets because it is known that the drug is slightly absorbed
in intestinal lumen even under normal iso-osmotic conditions. The absorption of
OLE can be markedly improved by solvent flux through paracellular junctions,
an effect that is facilitated by hypotonic luminal conditions (Edgecombe et al.,
2000). A significant factor stimulating the water flux through the opening of par-
acellular junctions is the postprandial presence of glucose or amino acids in the
intestinal lumen. This mechanism regulating the absorption of OLE in intestinal
lumen appears to have similar effects with those of hypotonic solutions (Pappen-
heimer and Reiss, 1987). The pharmacokinetic profile of OLE in mice has not
been determined, but only that in rats, when one dose of OLE (100 mg/kg per
os) reached 200 ng/ml in the time of maximum concentration tmax of 2 hours
(Del Boccio et al., 2003). Controls received regular rodent food for 6 weeks.
Wild-type and Ppara-null mice also received intraperitoneally either fenofibrate
(100 mg/kg), a selective PPARa agonist (Ghonem et al., 2015; Hu et al., 2019),
or normal saline for 7 consecutive days. Upon completion of the experiments, all
mice were euthanized using CO2 asphyxiation, and parts from the liver were dis-
sected for the extraction of total RNA, nuclear/cytosolic proteins, and micro-
somal proteins. All liver tissue samples were preserved at �80�C until assayed.

Isolation of microsomal proteins. Liver tissue was homogenized in
homogenization buffer containing 0.15 M KCl, 10 mM K2EDTA, and 1 mM
dithiothreitol (pH 7.4) at 14�C, for the isolation of microsomal fractions. The
homogenates were then centrifuged for 20 minutes at 15,000 rpm (14�C). The
upper phase was transferred into clean vials followed by centrifugation at 27,500
rpm (14�C) for 60 minutes. The formed microsomal pellet was resuspended by
homogenization in the specific ice-cold homogenization buffer and centrifuged at
27,500 rpm for 45 minutes. Temperature was always kept at 14�C. Finally, the
formed microsomal pellet was resuspended in the specific ice-cold storage buffer
containing K2HPO4/KH2PO4 (pH 7.4), K2EDTA (1 mM), dithiothreitol (0.1 mM),
and 20% glycerol. Aliquots of microsomal suspensions were stored at �80�C until
assayed (Lang et al., 1981).

CYP2D activity, 10-bufuralol hydroxylation. 10-Bufuralol hydroxylation
is mainly catalyzed by CYP2D isozymes (Matsunaga et al., 1990). Liver micro-
somal proteins (40 mg to �20 ml of sample) were preincubated in a 180 ml reac-
tion mixture containing potassium phosphate (0.1 M, pH 7.4) at 37�C for 5
minutes, in the presence of 50 mM bufuralol (substrate) and NADPH (0.5 mM,
Sigma-Aldrich). The duration of the reaction was 7.5 minutes and was termi-
nated using 20 ml of perchloric acid (60%). After a 10-minute centrifugation at
14,075g, the supernatant containing the main metabolite of bufuralol (10-
hydroxy-bufuralol) was analyzed using a high-performance liquid chromatogra-
phy (HPLC) method. The fluorescence detection was set at 252 nm (excitation
wavelength) and 302 nm (emission wavelength), and a specific column (reverse-
phase Luna C18, 5 mm, 150X 3 mm; Phenomenex, Torrance, CA) was used for
this purpose. The mobile phase consisted of 30% acetonitrile/70% perchlorate
buffer (20 mM, pH 2.5). The elution of each sample took place at a flow rate of
1 ml/min for 14 minutes. The recombinant rat CYP2D1 and CYP2D2, enriched
with P450 reductase BD Supersomes, were used as a positive control of bufuralol
10-hydroxylation (BD Gentest, Woburn, MA). Bufuralol (50 mM) was used as
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Fig. 1. PPARa-mediated regulation of hepatic CYP1A1, CYP1A2, and CYP1B1. Assessment of the effect of OLE, a PPARa agonist, on CYP1A1 (A), CYP1A2 (B),
and CYP1B1 (C) protein levels employing Western blotting, and relative gene expression with quantitative PCR analysis. In wild-type and Ppara-null mice, compari-
sons were made between controls (designated C) and OLE-treated mice. Values are expressed as means ± S.E. Wild-type mice (n = 11); Ppara-null mice (n = 10). *P <
0.05; **P < 0.01; ***P < 0.001. Numbers below bands in Western blot captures show the ratio of the density of the sample band to that of a-tubulin.
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substrate, which was preincubated at 37�C for 2 minutes with approximately
200 ml 0.1 M potassium phosphate buffer (pH 7.4). Recombinant P450s (50 mM)
along with NADPH (1 mM) were added in the mixture, which was incubated at
37�C for 30 minutes. The termination of the reaction was achieved with 20 ml
acetonitrile. Then, all samples were placed on wet ice and left undisturbed for 10
minutes before their injection into the HPLC for analysis.

Western blot analysis. Alterations in P450 apoprotein levels were assessed
with immunoblot analysis using liver microsomes, whereas nuclear extracts were
used for PPARa and hepatocyte nuclear factor 4a (HNF4a) analysis. Phosphory-
lated c-Jun N-terminal kinase (JNK), phosphorylated P38, phosphorylated extra-
cellular signal-related kinase (ERK), phosphorylated P70, pregnane X receptor
(PXR), constitutive androstane receptor (CAR), and phosphorylated forkhead
box protein O1 (FOXO1) were analyzed using total cellular extracts. For the
preparation of nuclear and cytosolic extracts, the corresponding cytosolic and
nuclear extraction kit of Thermo Fisher Scientific (Waltham, MA) was used. The
content of proteins in the sample was determined using the bovine serum albu-
min assay (Thermo Fisher Scientific). All proteins run on SDS-polyacrylamide
gel electrophoresis followed by immunoblotting, and for this purpose the follow-
ing antibodies were used: mouse/rat polyclonal CYP3A, CYP2C, and CYP2D
IgGs; mouse/rat monoclonal HNF4a, CAR, and PXR IgGs; mouse polyclonal
PPARa IgG (Santa Cruz Biotechnology); rabbit phosphorylated polyclonal IgGs
cAMP responsive element-binding protein (Ser133), P38 (Thr180/Tyr182) (Santa
Cruz Biotechnology), mitogen-activated protein kinase (Erk1/2) (Thr202/Tyr204)
(Cell Signaling Technology), p70S6K (Thr389) (Cell Signaling Technology),
FOXO1 (Ser256) (Santa Cruz Biotechnology), and protein kinase B (AKT)
(Ser473) (Santa Cruz Biotechnology); and mouse phosphorylated monoclonal
JNK (Thr183 and Tyr185) IgG (Santa Cruz Biotechnology). The secondary anti-
bodies used in this study were conjugated with horseradish peroxidase (Santa
Cruz Biotechnology). For the detection of proteins in the blot the enhanced
chemiluminescence detection kit (GE Healthcare, Chalfont St. Giles, Bucking-
hamshire, UK) was used. As a loading control, immunoblotting employing the

specific antibodies, histone H3 or actin (Santa Cruz Biotechnology), and the sec-
ondary antibody, anti-mouse horseradish peroxidase–conjugated IgG, was used.

Quantitative real-time polymerase chain reaction assays. TRIzol
reagent (Invitrogen) was used for the isolation of total RNA from liver tissue fol-
lowing the instructions in the manufacturer’s protocol. Following a spectrophoto-
metric method the concentration of total RNA in each sample was determined.
Total RNA (1 mg) and a SuperScript II reverse transcriptase kit (Invitrogen)
were used to generate cDNA, which was used in quantitative and reverse tran-
scription–polymerase chain reaction (PCR) assays. Table 1 shows all sequences
of the forward and reverse gene-specific primers that were used in this study. For
the real-time reactions, the SYBR Green PCR Master Mix (Applied Biosystems,
Foster City, CA) was used, and these reactions were performed employing the
C1000 Touch thermal cycler with a real-time detection system (Bio-Rad Labora-
tories, Hercules, CA). Relative mRNA expression was estimated using b-actin
mRNA levels to normalize mRNA expression levels of each gene (QuantiTect
primer assay; QIAGEN, Valencia, CA). The comparative threshold cycle method
was used to quantify all values.

Statistical analysis. For the analysis of data, one-way analysis of variance
followed by multiple comparisons employing Bonferroni’s and Tukey’s least
honest significant difference methods was used. All values are presented as
means ± S.E., and P values of <0.05 were considered significant.

Results

OLE-induced effect on CYP1s. OLE markedly increased hepatic
Cyp1a1 and Cyp1a2 mRNA expression and CYP1A protein expression
in WT mice (Fig. 1A and B, respectively); Cyp1b1 mRNA levels were
also increased by OLE (Fig. 1C).
Oleuropein-induced effect on CYP2 and CYP3s. Oleuropein

markedly increased hepatic Cyp2c29 and Cyp2c44 mRNA and CYP2C
protein expression in WT mice (Fig. 2A and B, respectively). Similarly,
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OLE increased the hepatic Cyp2d22 mRNA, CYP2D protein and activ-
ity levels (Fig. 2C), and the hepatic Cyp2e1 (Fig. 3A), Cyp3a14, and
Cyp3a25 expression (Fig. 3B) at mRNA and protein levels.
Assessment of OLE effect on transcription factors and signal

transduction pathways related to P450 regulation. The OLE-
induced effect on aryl hydrocarbon receptor (AHR), aryl hydrocarbon
receptor repressor (AhrR), and heat shock protein 90 (HSP90) (Fig.
4A–C, respectively), critical transcription factors in Cyp1a1, Cyp1a2,
and Cyp1b1 regulation (Nebert et al., 2013), is apparently followed by
upregulation of these P450s, an effect profoundly associated with the
OLE-induced PPARa activation (Malliou et al., 2018), because OLE
did not increase Ahr, AhrR, and Hsp90 mRNAs in Ppara-null mice,
but the drug rather slightly repressed the expression of these transcrip-
tion factors (Fig. 4A–C).
The OLE-induced effect on Cyp2c29, Cyp2c44, and Cyp3a25

mRNA expression in the liver of WT mice is apparently mediated by
induction of Pxr, Car, retinoic X receptor (Rxr) a, and Rxrb, which
encode critical transcription factors regulating the above P450 genes
(Daskalopoulos et al., 2012a) (Fig. 5A–D). The drug’s upregulating
effect on these transcription factors is probably mediated by PPARa
because OLE had a repressing effect on Pxr, Car, and Rxrb in Ppara-
null mice (Fig. 5A, B, and D, respectively).
Long-term treatment of WT mice with OLE induced hepatic Ppara

mRNA expression by 4–5-fold, a stimulating effect that was also evi-
dent at the protein level (Malliou et al., 2018; Supplemental Fig. 1).
Further analysis employing molecular docking experiments suggests
that OLE is a PPARa ligand, and the luciferase reporter gene assay
revealed significant activation of this nuclear receptor and transcription
factor by OLE (Malliou et al., 2018), followed by upregulation of vari-
ous PPARa target genes including Acox1, Acot1, Cyp4a10, and
Cyp4a14 (Malliou et al., 2018). Hnf4a, encoding a nuclear transcription
factor, which holds a determinant role in the regulation of several P450

genes (Daskalopoulos et al., 2012a; Konstandi et al., 2020), was also
upregulated by OLE in the liver of mice (Malliou et al., 2018;
Supplemental Fig. 1). It is assumed that the OLE-upregulating effect on
all P450s analyzed in this study is profoundly mediated by PPARa
because no similar effects on these P450s were observed in Ppara-null
mice (Fig. 1A–C, Fig. 2A–C, Fig. 3A–C). In particular, OLE either
repressed Cyp1a1, Cyp1a2, Cyp1b1 (Fig. 1A–C) Cyp2c29, Cyp2c44,
Cyp2d22 (Fig. 2A–C), and Cyp3a25 (Fig. 3C) or had no effect on
Cyp2e1 (Fig. 3A) and Cyp3a14 (Fig. 3B) in the liver of Ppara-deficient
mice. The determinant role of PPARa in P450 induction was also con-
firmed in mice treated with the selective PPARa agonist, fenofibrate
(Ghonem et al., 2015; Hu et al., 2019), which increased CYP1A1,
CYP1A2, CYP1B1, CYP2C, CYP2D, CYP2E1, and CYP3A protein
expression in the liver of WT mice, whereas fenofibrate had no similar
effects in the liver of PPARa-deficient mice (Fig. 6).
The role of the nitric oxide synthases (NOSs), endothelial NOS

(eNOS) and inducible NOS (iNOS), in the regulation of hepatic Cyp1a,
Cyp1b, Cyp3a, Cyp2c, Cyp2d, and Cyp2e1 by OLE in WT mice
appears to be less significant because although OLE induced eNOS and
iNOS mRNA expression (Fig. 7A and B), this effect was not followed
by inhibition of the aforementioned P450s (Hara and Adachi, 2002).
Instead, OLE induced the synthesis of these P450s (Fig. 1A–C, Fig.
2A–C and Fig. 3A–C), indicating that the NOS-inhibiting effect on
P450s was probably overlapped by the inducing effect of other regula-
tory factors.
At signal transduction level, OLE increased FOXO1 and JNK phos-

phorylation, along with that of p70 in the livers of WT mice (Fig. 8).
These findings indicate that the OLE-induced activation of phosphoino-
sitide 3-kinase/AKT/FOXO1, JNK, and AKT/p70 pathways (Fig. 8) is
profoundly related to the induction of P450s that belong to the CYP1A,
CYP1B, CYP3A, CYP2C, CYP2D, and CYP2E subfamilies. Activation
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of ERK could also participate in the regulation of P450 induction by
OLE (Fig. 8).
Comparatively, OLE and fenofibrate at the doses given induced

hepatic protein expression of CYP1A1, CYP2C, and CYP3A to a simi-
lar extent, whereas the induction of CYP1A2, CYP1B1, CYP2D, and
CYP2E1 by fenofibrate was markedly higher than that by OLE (Figs.
1–3 and Fig. 6).

Discussion

There is an accumulating amount of evidence that supports the bene-
ficial effects of OLE in preservation of good health and in the outcome
of various disease states, including those related to the cardiovascular
system (Ahamad et al., 2019; Andreadou et al., 2006; Araki et al.,
2019; Lockyer et al., 2017; Vogel et al., 2014), which are mainly attrib-
uted to the drug’s anti-inflammatory properties (Malliou et al., 2018), to
its effects on lipid homeostasis (Andreadou et al., 2014; Araki et al.,
2019; Lockyer et al., 2017; Malliou et al., 2018), and to the protection
of myocardium in conditions related to ischemia (Andreadou et al.,
2014). Based on these OLE-related beneficial effects, the pharmaceuti-
cal industry produced several food supplements and herbal medicines
containing the drug, which are available in the market without a pre-
scription, a potentially high-risk practice for health and disease.
It is well documented that cytochromes belonging to P450 families

1–3 are involved in the metabolism of a plethora of diverse endogenous
and exogenous compounds, such as drugs, precarcinogens, carcinogens,
environmental pollutants, food additives, prostaglandins, fatty acids,
lipid hydroperoxides, steroid hormones, biogenic amines, and numerous
other xenobiotics (Cribb et al., 2005; Gonzalez, 2005; Gonzalez and
Gelboin, 1994; Gonzalez and Yu, 2006; Guengerich, 2003; Ingelman-

Sundberg, 2004b; Xu et al., 2005) to increase their water solubility and
prepare them for the subsequent conjugation and elimination (Gonzalez,
2005). Their biotransformation takes place primarily in the liver and
usually results in inactive metabolites or, in some cases, in active mole-
cules, a process that usually depends on the structure of the parent com-
pound. These active metabolic products may induce several serious
toxic manifestations, such as teratogenesis, carcinogenicity, cell death,
and oxidative stress, among others (Cribb et al., 2005; Gonzalez, 2005;
Gonzalez and Gelboin, 1994; Gonzalez and Yu, 2006; Guengerich,
2003; Ingelman-Sundberg, 2004a; Konstandi, 2013; Xu et al., 2005).
The findings of the current study clearly showed that OLE induced the
expression of several P450s in the liver of WT mice, including
CYP1A1, CYP1A2, CYP1B1, CYP3A14, CYP3A25, CYP2C29,
CYP2C44, CYP2D22, and CYP2E1 via activation of major nuclear
transcription and other cellular factors, such as AHR, CAR, RXR, and
PXR (Dalton et al., 2000; Daskalopoulos et al., 2012a; Harkitis et al.,
2015). Induction of P450s is a part of the regulatory mechanisms aimed
at maintaining homeostasis. It is important for the adaptation of the
organism to a modified biologic and chemical internal milieu and envi-
ronment. Nonetheless, it is not always feasible to predict the extent of
the effect of P450 induction on drug efficacy and toxicological risk
assessment, determinant parameters in clinical drug therapy (Pelkonen
et al., 2008). According to the regulatory standards of the U.S. Food and
Drug Administration, a drug is considered a P450 inducer with clinical
significance if the fold change of P450 mRNA expression relative to the
vehicle control is $2-fold and then is efficient to accelerate the metabo-
lism of P450 substrates (Fahmi and Ripp, 2010; https://www.fda.gov/
drugs/drug-interactions-labeling/drug-development-and-drug-interactions-
table-substrates-inhibitors-and-inducers). It is considered that induction
of CYP1A2, CYP3A14, CYP3A25, CYP2C29, CYP2C44, CYP2D22,
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and CYP2E1 may result in reduced concentrations of their drug sub-
strates in blood, potentially below their therapeutic levels, and therefore
in failure of pharmacotherapy (Dalton et al., 2000; Kawajiri and
Fujii-Kuriyama, 2007; Konstandi, 2013; Okey, 1990; Zhang et al.,
1999), whereas induction of CYP1A1, CYP1A2, and CYP1B1 is fol-
lowed by bioactivation of the major groups of precarcinogens, the
polycyclic aromatic hydrocarbons, polycyclic arylamines, and afla-
toxin B1, to DNA-binding metabolites (Cheng and Morgan, 2001;
Kawajiri, 1999; Mulder et al., 2001; Pasanen and Pelkonen, 1994). In
contrast to the present findings related to the induction of CYP3A14/
25 by OLE, previous in vitro studies indicated that OLE and its
metabolite hydroxytyrosol inactivated androstenedione 6beta-hydroxy-
lase (CYP3A4-dependent) activity in microsomal preparations of
human liver (Stupans et al., 2001; Stupans et al., 2000; Zhou et al.,
2007). This discrepancy could be explained primarily on the basis of a
species-specific regulation of the main P450s (Konstandi et al., 2020;
Visioli et al., 2002a) and the different experimental approaches fol-
lowed in these studies. The current in vivo study evaluated the OLE
effect on CYP3A14/25 in mouse liver microsomes, whereas the
in vitro studies mentioned above used human liver microsomes (Stu-
pans et al., 2001; Stupans et al., 2000).
To investigate the mechanisms underlying the OLE-induced upregu-

lating effect on P450s, the role of the nuclear transcription factor,

PPARa, that regulates a variety of genes encoding P450s was assessed
(Tauber et al., 2020). For this purpose, WT and Ppara-null mice were
employed and received OLE in their diet for 6 weeks. The findings indi-
cated that, in contrast to what happened in WT mice, OLE did not
induce the expression of CYP1A1, CYP1A2, CYP1B1, CYP3A14,
CYP3A25, CYP2C29, CYP2C44, CYP2D22, and CYP2E1 in the liver
of Ppara-null mice. It is apparent that the OLE-mediated induction of
these P450s in the liver of WT mice is mediated by the drug’s stimulat-
ing effect on PPARa activation. To further evaluate the involvement of
PPARa in the regulation of P450s and, in particular, of P450 induction,
WT mice were treated with the selective PPARa agonist fenofibrate
(Ghonem et al., 2015; Hu et al., 2019), which induced CYP1A1,
CYP1A2, CYP1B1, CYP2C, CYP2D, CYP2E1, and CYP3A protein
expression in their livers. No similar effects were observed in the liver
of Ppara-null mice after treatment with fenofibrate, and these findings
confirm the role of PPARa in P450 induction. This hypothesis is also
supported by other studies reporting the upregulating effects of PPARs
on several P450s and, in particular, of PPARa on P450s displaying
epoxygenase activities on polyunsaturated fatty acids, including iso-
zymes that belong to the CYP1A, CYP3A, CYP2C, and CYP2E subfa-
milies (Tauber et al., 2020; Thomas et al., 2013). Interestingly,
however, findings from the current and previous studies (Shi et al.,
2017) showed that basal P450 expression levels in the liver of Ppara-
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null mice are markedly higher than those in WT mice. This observation
indicates a distinct role of PPARa in the regulation of constitutive and
inducible P450 expression. It is well established that P450 induction
and constitutive expression are regulated by distinct mechanisms (Hahn
et al., 2009; Nebert, 2000; Zanger and Schwab, 2013), including various
transcription factors, coactivators, and corepressors, with both positive
and negative regulatory roles that crosstalk between several regulatory
pathways (Pelkonen et al., 2008). In this regard, the diverse role of
PPARa in P450 regulation at basal and induced states may be attributed
in the crosstalk between this transcription factor and AHR, CAR, PXR,
and/or other transcription factors with significant regulatory roles in
P450 induction by xenobiotics (Honkakoski and Negishi, 2000; Pelko-
nen et al., 2008; Zanger and Schwab, 2013). This hypothesis is sup-
ported by the finding that several functional PPARa-binding regions
within the P450 promoters were detected (Makia and Goldstein, 2016;
Oshida et al., 2016a; Thomas et al., 2013; Yao et al., 2007) (Oshida
et al., 2016b). It should be noted that the mechanism underlying the
PPARa-mediated P450 induction by OLE could also include modifica-
tions at PPARa phosphorylation status. It is well established that
ligand-induced PPARa activation is mediated by increased expression
of this nuclear receptor at transcriptional and protein level along with
alterations at its phosphorylation state (Ning et al., 2016; Tamasi et al.,
2008; Barger et al., 2001; Passilly et al., 1999).
The nuclear transcription factor, HNF4a, profoundly participates in

the OLE-induced upregulation of the above-mentioned P450s because
OLE induced hepatic Hnf4a expression in WT mice. It is known that
the transcription factors HNF4a, RXR, and HNF1a (Weltman et al.,
1998; Wiwi and Waxman, 2004), along with FOXO1 and the nuclear
receptors CAR and PXR (Kodama et al., 2004), belong to a complex

crosstalk mechanism displaying central regulatory roles in the expres-
sion of various P450s.
In P450 regulation there is also an interplay between PPARa and

iNOS, efficient enough to modify P450 expression. In particular, it has
been reported that PPARa ligands reduced the lipopolysaccharide-
induced iNOS expression and subsequent nitric oxide synthesis in mac-
rophages by increasing the proteasome pathway mediated iNOS protein
degradation (Paukkeri et al., 2007). Notably, nitric oxide displays down-
regulating effects on several P450 genes, including CYP1A1/2,
CYP2B1/2, CYP2D6, CYP2E1, and CYP3A4, but the underlying
mechanism of this regulation remains blurred (Gergel et al., 1997; Hara
and Adachi, 2002; Wink et al., 1993). Current findings indicated that
the OLE-induced effect on NOS has a weak impact on P450s compared
with other regulatory factors. It appears that the upregulating effect of
OLE on NOS, which should be followed by P450 downregulation (Ger-
gel et al., 1997; Hara and Adachi, 2002; Wink et al., 1993), was over-
lapped by the upregulating effects of other transcription factors. Further
analysis indicated that at signal transduction level, activation of the sig-
naling pathways related to phosphoinositide 3-kinase/AKT/FOXO1,
JNK, AKT/p70S6K, and ERK profoundly participate in P450 induction
by OLE (Kim and Novak, 2007). It is well documented that upon acti-
vation, AKT stimulates the phosphorylation of the nuclear transcription
factor, FOXO1, which in turn translocates into the cytoplasm. This pro-
cess is usually followed by termination of FOXO1 transcriptional activ-
ity in P450 genes. But then, the OLE-mediated activation of JNK
promotes the nuclear localization of FOXO1, an effect that restores its
transcriptional activity in P450 genes and counteracts the
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downregulating effect of AKT (Daskalopoulos et al., 2012a; Hay,
2011). Current findings indicated that OLE decreased JNK phosphoryla-
tion in the liver of Ppara-null mice, an effect that likely participates in
the OLE-mediated downregulation of P450s in these mice.
Taken together, the above data clearly show the upregulating effect

of OLE on various P450s encoding the main drug-metabolizing
enzymes of phase I, an effect that is apparently mediated by PPARa
activation. Current and previous findings indicate that diverse and dis-
tinct mechanisms participate in the regulation of constitutive and induc-
ible P450 expression by PPARa agonists. Apparently, PPARa displays
a negative regulatory role in constitutive P450 expression and a positive
role in P450 induction by OLE. Although it is not always feasible to
accurately predict the clinical impact of the OLE-induced effect on
CYP3A14, CYP3A25, CYP2C29, CYP2C44, CYP2D22, CYP2E1,
CYP1A1, CYP1A2, and CYP1B1, under certain conditions it could
modify the pharmacokinetic profile of drug substrates of these P450s
and subsequently affect the outcome of pharmacotherapy and the sever-
ity of drug-related adverse reactions. Although these data come from a
preclinical study and cannot be extrapolated directly to humans, they
underscore the necessity of taking into consideration the consumption
of herbal medicines and food supplements containing drugs such as
OLE that may affect the pharmacokinetic profiles of co-administered
drugs. This parameter should be considered predominately in multiple
drug therapeutic schemes, in particular those of vital significance for the
patient, or in drugs with narrow therapeutic windows or with severe
side effects. This concern is of particular importance because herbal
medicines and food supplements are widely used and freely available in
the market. All of these concerns indicate that further investigation,
pharmacovigilance, better regulatory control, and advice from health
professionals is essential to ensure safety when using herbal medicines
and food supplements.
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