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ABSTRACT

Nuclear factor erythroid-derived 2-like 2 (Nrf2) is a stress-acti-
vated transcription factor that is highly responsive to oxidative
stress and electrophilic stimuli. Upon activation, Nrf2 upregu-
lates a battery of cytoprotective genes meant to prevent cell
death or damage. In many models of inflammation, Nrf2 protects
against the immune response and decreases injury, including in
the context of asthma and allergy. However, in some models of
asthma and allergy, Nrf2 either does not play a role or can even
exacerbate inflammation. In general, the reasons behind these dis-
crepancies are not clear and the mechanisms by which Nrf2 modu-
lates immune response are largely uncharacterized. The aim of this
review is to highlight current literature assessing the role of Nrf2 in

allergy and asthma to understand Nrf2 as a potential therapeutic
target.

SIGNIFICANCE STATEMENT

Nuclear factor erythroid-derived 2-like 2 (Nrf2) is an important immune
mediator that modulates numerous immune cell types in various
inflammatory diseases, including allergy and asthma. There is consid-
erable interest inNrf2 as a drug target in inflammation, which is compli-
cated by the complex nature of Nrf2 in the immune system. This
review focuses on the role of Nrf2 in asthma and allergy, including in
regulating immune cell function and in detoxifying xenobiotics that
exacerbate these diseases.

Introduction

Nuclear factor, erythroid-derived 2, -like 2 (Nrf2: encoded by Nfe2l2)
was identified as a member of the Cap “n” Collar basic leucine zipper
transcription factor family in 1994 (Moi et al., 1994). It was first isolated
from K562 cells (a human chronic myelogenous leukemia cell line)
where it was found binding to the b-globin locus control region. The
name Nrf2 was adopted from the nomenclature for the transcription fac-
tor known as nuclear factor erythroid-derived 2-like 1 (Nrf1), which was
named because of its similarities with nuclear factor erythroid 2 (NF-E2)
(Chan et al., 1993). However, unlike NF-E2, which is essential for eryth-
ropoiesis and is neonatally lethal in mice when knocked out, Nrf2 gene
function is not necessary for blood cell differentiation, and homozygous

Nrf2-null offspring are fertile and produce normal litter sizes (Shivdasani
and Orkin, 1995; Chan et al., 1996; Williams et al., 2016). Subsequent
research has demonstrated that Nrf2 forms a heterodimer with small
musculoaponeurotic fibrosarcoma (Maf) proteins and regulates the
expression of Nrf2-target genes involved in oxidative stress response and
drug detoxification such as NAD(P)H quinone-oxidoreductase-1
(NQO1), c-glutamyl cysteinyl synthetase, and heme-oxygenase-1 (HO-
1) by binding to the antioxidant response elements (AREs) in the pro-
moter regions of these genes (Itoh et al., 1997; Thimmulappa et al.,
2002; Nguyen et al., 2003; Tong et al., 2006). In addition to its antioxi-
dant and detoxification roles, Nrf2 plays a protective anti-inflammatory
role in many different animal models of inflammation. Although much
is known about the mechanism by which Nrf2 protects against reactive
toxicants and oxidative stress, the mechanism by which Nrf2 modulates
immune cell function is not nearly as well understood. We recently pub-
lished a review focused on the role of Nrf2 in autoimmunity and infec-
tious disease (Freeborn and Rockwell, 2021). In addition, others have
reviewed the role of Nrf2 in inflammation and in crosstalk with nuclear
factor kappa B (NF-jB) (Li et al., 2008a; Wardyn et al., 2015; Ahmed
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et al., 2017; Mohan and Gupta, 2018; Staurengo-Ferrari et al., 2019;
Saha et al., 2020; Bhandari et al., 2021; Freeborn and Rockwell, 2021).
To complement these previous reviews, the purpose of the present paper
is to review what is known about the role of Nrf2 in asthma and allergy.

Brief Historical Perspective

Structure and Regulation of Nrf2 Protein. The Nrf2 protein
comprises six highly conserved Nrf2-enoyl-CoA hydratase (ECH)
homology (Neh) domains (Neh1–6) (Ma, 2013). Each domain has a dis-
tinct function. Neh1 contains the Cap “n” Collar-basic leucine zipper
domain, which allows Nrf2 to heterodimerize with small Mafs (MafF/
G/K) and to bind to the ARE (Satta et al., 2017). The Neh3, Neh4, and
Neh5 domains contribute to Nrf2 transactivation (Satta et al., 2017).
The redox-insensitive Neh6 degron is essential for the degradation of
the Nrf2 in stressed cells (McMahon et al., 2004). In contrast, in
homeostatic cells, the Glu79-Thr80-Gly81-Glu82 (ETGE) tetrapeptide
motif and Asp29- Leu30-Gly31 (DLG) motif within the redox-sensitive
Neh2 domain interact with Kelch ECH-associating protein 1 (Keap1).
Keap1 represses Nrf2 by associating with a ubiquitin E3 ligase that pol-
yubiquitinates the Nrf2 protein, resulting in its subsequent degradation
by the 26S proteasome (Canning et al., 2015). However, under condi-
tions of oxidative stress, or in the presence of electrophilic xenobiotics,
the conformation of Keap1 is changed, which disrupts the polyubiquiti-
nation and degradation of Nrf2. Subsequently, Nrf2 translocates and
accumulates in the nucleus, where it activates Nrf2-target genes to
induce expression of antioxidant proteins, detoxification enzymes, and
other protective genes (Itoh et al., 2003; Kensler et al., 2007; Ma, 2013;
Ahmed et al., 2017; Yamamoto et al., 2018).
The regulation of the Nrf2 signaling pathway is complex. Nrf2 stabil-

ity can be enhanced through inhibition of Keap1 or disruption of the
Nrf2-Keap1 interaction (Kansanen et al., 2013). Nrf2 activators, such as
electrophilic compounds, can hinder the degradation of Nrf2 by modify-
ing key cysteines of Keap1 and thereby changing the conformation of
Keap1. Proteins that interact or compete with Keap1 can disrupt the
Nrf2-Keap1 association, resulting in the accumulation of newly synthe-
sized Nrf2. Nrf2 can also be regulated at transcription level. The pro-
moter region of Nfe2l2 (the gene that encodes Nrf2) contains
xenobiotic response element-like (XRE) sequences, which are the bind-
ing sites of the aryl hydrocarbon receptor (AhR) (Miao et al., 2005).
AhR is a basic helix-loop-helix transcription factor regulating xenobiotic
metabolism and works in close concert with the transcription factor
Nrf2 (Miao et al., 2005; Yeager et al., 2009). Published studies indicate
that the Nfe2l2 gene is directly upregulated by AhR activation, and con-
versely, Nrf2 induces AhR expression and thus triggers several down-
stream events of the AhR signaling cascade (Li et al., 2019). Thus,
these two xenobiotic sensors induce one another. In contrast to AhR,
the NF-jB p65 subunit represses the Nrf2-ARE pathway at the tran-
scriptional level (Liu et al., 2008). Thus, Nrf2 expression and activity
are modulated by multiple other mediators in a complex network.
Beyond the classic Nrf2/Keap1-mediated activation and degradation

and transcriptional regulation of Nrf2, Nrf2 can also be regulated at the
post-transcriptional level. Numerous microRNA (miR) molecules can
repress Nrf2 expression by sequence-specific binding, particularly in the
context of cancer (Tonelli et al., 2018). miR-29-b1 and miR-144 down-
regulate Nrf2 expression directly within the cytoplasm (Ayerdemons-
trated elevated type 2 cytokines such et al., 2015). In contrast,
microRNA targeting Keap1, such as miR-200a and miR7, represses
Keap1 expression corresponding with Nrf2 nuclear translocation and
activation (Eades et al., 2011; Kabaria et al., 2015).

Evidence that Nrf2 Modulates the Immune System: The
Development of Autoimmunity in Nrf2-Knockout Mice. Consider-
able evidence points to an important role for Nrf2 in regulating the
immune system. Some of the strongest and earliest indications that Nrf2
regulates immunity were in the area of autoimmunity. Between 2004
and 2006, two different groups described the spontaneous development
of an autoimmune disease in Nrf2-knockout (KO) mice that resembled
systemic lupus erythematosus. The disease was female-predominant and
characterized by autoantibody production (anti-dsDNA), formation of
antibody complexes in kidney, and development of glomerulonephritis
that resulted in kidney injury, among other pathologies in these animals
(Li et al., 2004a; Ma et al., 2006). In addition to the spontaneous devel-
opment of autoimmunity, many animal models of autoimmune disease
were found to be more severe in Nrf2-KO mice. Antibody-induced
rheumatoid arthritis (RA) is exacerbated in Nrf2-null mice, with an
increase in joint damage and a decrease in the expression of antioxidant
genes, such as HO-1, c-glutamyl cysteinyl synthetase, and thioredoxin
(Wruck et al., 2011). In experimental autoimmune encephalomyelitis
(EAE), Nrf2-null mice develop symptoms earlier and have increased
severity of clinical outcomes when compared with wild-type (WT) con-
trols (Johnson et al., 2010; Larabee et al., 2016). Consistent with these
animal studies, the Nrf2 activator dimethyl fumarate (DMF) is used
clinically to treat multiple sclerosis (Tecfidera) and psoriasis (Skilar-
ence) in humans (Bomprezzi, 2015). Furthermore, recent studies using
patient samples and animal models indicate that DMF may be beneficial
for the treatment of systemic sclerosis patients as well (Toyama et al.,
2018; Kourakis et al., 2020). There is evidence to show that several
other Nrf2 activators, such as 3H-1,2-dithiole-3-thione, sulforaphane,
dimethyl itaconate, and A-1396076, can also ameliorate autoimmune-
mediated inflammation in rodents under experimental conditions (Geisel
et al., 2014; Kuo et al., 2016, 2020; Goess et al., 2020). The therapeutic
potential of Nrf2 activators in the treatment of autoimmune disease
remains an active area of research that has yielded many developments
over the years. We have recently written a comprehensive review of
research in this area (Freeborn and Rockwell, 2021). Taken together,
these studies provide strong evidence that the Nrf2 signaling pathway
modulates immune cell function and paved the way for an explosion of
research into the role of Nrf2 in the immune system, including in atopic
diseases. The present manuscript reviews the role of Nrf2 in asthma and
allergy. In an effort to keep the review focused, we have largely
restricted the studies with animal models to those where a causative
role for Nrf2 has been established (with a few exceptions for disease
models with fewer studies published).

Key Recent Advantages

The Role of Nrf2 in Asthma and Airway Allergic Inflamma-
tion. Atopic diseases, such as asthma, allergic rhinitis, skin allergy, and
food allergy, are the sixth leading cause of chronic illness in the United
States (https://acaai.org/news/allergy-facts/). Asthma is a condition in
which airways are hyperreactive to irritants and allergens, leading to
uncontrolled airway constriction that can result in hypoxia and death
(Barnes, 2018). Allergic lung inflammation and asthma are lower respi-
ratory tract disorders characterized by reversible airflow obstruction, as
well as wheezing, coughing, and chest tightness upon exposure to aller-
gens, such as dust mites, cockroaches, mold, pollen, and animal dander
(Bousquet et al., 2000). Allergic rhinitis is an upper airway disorder
characterized by nasal itching, sneezing, and nasal obstruction caused
by inflammation of the nose upon contact of the nasal mucosa with cer-
tain allergens, such as pollen, mold, diesel fumes, and air pollutants
(Pawankar et al., 2011; Varshney and Varshney, 2015; https://acaai.org/
allergies/allergic-conditions/hay-fever).
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Oxidative stress in airway cells has been proposed to be a contribut-
ing factor in the pathogenesis of hyperreactive airway disorders.
Extensive studies, listed in Table 1, have been conducted on the role
of Nrf2 in allergic airway inflammation and asthma. For instance,
genetic deletion of Nrf2 in mice increased airway inflammation and
hyperresponsiveness to ovalbumin (OVA) (Rangasamy et al., 2005).
Specifically, the authors demonstrated elevated type 2 cytokines such
as interleukin (IL)-4 and IL-13 in bronchoalveolar lavage fluid and
splenocytes in Nrf2-deficient mice after OVA challenge (Rangasamy
et al., 2005). This group further showed that Nrf2 is specifically cyto-
protective in airway epithelial cells in this model (Sussan et al., 2015).
Consistent with this, Hirai et al. (2019) showed that low Nrf2 expres-
sion correlated with increased severity in human asthma patients. A
study by Brown et al. (2015) showed that consumption of the Nrf2
activator sulforaphane ameliorated bronchoconstriction in 60% of indi-
viduals with moderate asthma. Interestingly, sulforaphane administra-
tion was associated with a decrease in Nrf2 target gene expression in
these patients. However, 20% of the patients who consumed sulfo-
raphane experienced exacerbated bronchoconstriction, suggesting that
sulforaphane was not protective in all subsets (Brown et al., 2015).
Similarly, a protective role of Nrf2 has been implied in chemical-

induced asthma. Chlorine gas-induced airway inflammation and asthma
were significantly greater at 48 hours postexposure in Nrf2-deficient mice
compared with WT (Ano et al., 2017). Other studies have directly shown
the therapeutic effect of Nrf2 activation in acute allergic asthma models.
Both genetic activation of Nrf2 via deletion of its suppressor protein
Keap1 and pharmacological activation of Nrf2 via 2-trifluoromethyl-2’-
methoxychalone improved the cytoprotective function of the airway epi-
thelium in an OVA-induced asthmatic mouse model (Sussan et al., 2015).

To prevent asthma-induced bronchoconstriction, long-acting beta
agonists and inhaled steroids are chiefly used. Steroids, such as dexa-
methasone, act as a local anti-inflammatory agent and preserve the
integrity of the airway epithelium, preventing the airway irritation that
leads to constriction. However, steroids can lose their effectiveness over
time. Activation of Nrf2 restores steroid sensitivity in a mouse model of
asthma (Sakurai et al., 2018). The protective effects of Nrf2 in these
models are likely mediated by Nrf2 target genes rather than Nrf2 itself.
Aldehyde oxidase is a well described target gene of Nrf2 and is instru-
mental in the formation of tight junctions and adherent junctions in air-
way epithelium (Shintani et al., 2015). Genetic ablation of Nrf2 in cell
lines led to decreased signaling via the aldehyde oxidase pathway (Shin-
tani et al., 2015). Overall, the evidence points to a protective role for
Nrf2 in this model of asthma, which is likely mediated at least in part
by maintaining the integrity of the airway epithelial barrier.
House dust mites (HDMs) are some of the most common perennial

sources of allergens that induce asthma and allergic airway inflammation.
Investigators have shown that exposure to house dust mites decreases
Nrf2 levels, suggesting that antioxidant and anti-inflammatory pathways
are inhibited, which may contribute to the dysregulation of sinonasal epi-
thelial cell barrier function and the development of asthma (London
et al., 2017). Nrf2 deficiency has also been shown to exacerbate the
response of lung dendritic cells to ragweed extract. Specifically, Nrf2-
deficient lung dendritic cells cultured in vitro showed greater induction of
TNF-a and IL-6 in response to ragweed extract (Rangasamy et al.,
2010). OVA is another major allergen that induces allergic reactions, par-
ticularly in experimental animal models of allergy and asthma. Several
studies have shown that OVA induces several hallmarks of allergic reac-
tions, including sinonasal inflammation and most prominently, asthma
(Rangasamy et al., 2005; Sussan et al., 2015).

TABLE 1

Studies focused on the role of Nrf2 in allergic airway and asthma

Disease Model Environmental Factors/Activators Genetic Model
Effect of Knockout/

Knockdown (Nrf2 or Keap1) References

OVA-induced allergic
airway inflammation/
asthma

CD1: ICRWT & Nrf2(�/�) " AHR, " inflammatory
cell infiltrate in lung, "
lipid peroxidation, "
IL-4, IL-13, " mucus
cell metaplasia

(Rangasamy et al., 2005)

Diesel C57BL/6WT & Nrf2(�/�) " AHR, " inflammatory
cells infiltrate in lung,
" IL-5, " mucus cell
hyperplasia

(Li et al., 2010)

ambient UFP (<0.18 lm) BALB/c WT & Nrf2(�/�),
DC from WT & Nrf2(�/�)

" Adjuvant effect of
intranasally instilled
UFP, " eosinophil
count and IL-13 in
BAL, V serum IgG1

(Li et al., 2013)

Tam-Keap1�/� # AHR, # eosinophilic
inflammation, and # IL-
4 and IL-13 in BAL

(Sussan et al., 2015)

Ragweed Extract-induced
asthma

BMDC and lung DC from WT
Nrf2 (�/�)

" CD80, CD86, and
MHCII on DC, " IL-6
and TNF-a "

(Rangasamy et al., 2010)

Cl2-induced inflammation
and airway
hyperresponsiveness

BALB/cWT & Nrf2(�/�) # mRNA for antioxidant
genes (NQO1 and
GPX2)

(Ano et al., 2017)

IL-33-induced allergic
lung inflammation

CDDO-Im, 15d-PGJ2 C57BL/6WT & Nrf2(�/�) Transient " in IL-33, "
ILC2 proliferation

(Nagashima et al., 2019)

PM2.5-induced airway
inflammation

C57BL/6WT & Nrf2(�/�) # Inflammatory infiltrate,
# oxidative stress, #
lung injury, # CYP2E1

(Ding et al., 2021)

C57BL/6WT & Nrf2(�/�) " Lung function, #
alveolar wall
thickening, # in low-
grade inflammation

(Jiang et al., 2021)

CDDO-Im, 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole; GPX2, glutathione peroxidase 2; ILC2, type 2 innate lymphoid cells; 15d-PGJ2, 15-deoxy-prostaglandin J2.
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Nrf2 deficiency is associated with mucus cell hyperplasia and eosino-
philic lung infiltration in a murine OVA-induced asthma model. In these
studies, bronchoalveolar lavage fluid (BALF) and splenocytes of Nrf2-
deficient mice showed increased expression of IL-4 and IL-13 after
OVA exposure (Rangasamy et al., 2005). Other studies have examined
the role of Nrf2 in the airway epithelium after sensitization to OVA, in
which they demonstrated that genetic and pharmacological Nrf2 activa-
tion suppressed asthma (Sussan et al., 2015). The suppression of OVA-
induced asthma by Nrf2 was associated with increased expression of
the Nrf2 target gene NQO1 and a significant decrease in infiltrating neu-
trophils and lymphocytes. The secretion of cytokines like IL-4 and IL-
13 in BALF was also decreased (Sussan et al., 2015). In contrast to
these studies, a study by Seumois et al. (2014) in asthmatic and non-
asthmatic individuals suggests that Nrf2 is a strong positive determinant
of Th2 differentiation in CD4 T cells in humans. The data show signifi-
cant enrichment of Nrf2 binding sites in Th2-specific enhancers. Consis-
tent with this, our group has shown that activation of Nrf2 promotes
Th2 differentiation of isolated murine CD4 T cells (Rockwell et al.,
2012).
Epidemiologic data have shown that there is a link between certain

genetic polymorphisms in the N-acetyltransferase 2 (NAT2), glutathione
S-transferase Pi 1 (GSTP1), and Nfe2l2 genes and the occurrence of
asthma in children if they are exposed to acetaminophen. They also
reported an increase in serum eosinophils when children with a specific
Nrf2 polymorphism were taking acetaminophen (Kang et al., 2013).
However, it is not clear whether the impact of the Nrf2 polymorphism
in this study is due to effects on immune cell function, detoxification of
acetaminophen, or some combination of these.
There has been interest in Nrf2 as a therapeutic target for chronic

respiratory illnesses, including asthma (Wang et al., 2018). For example,
targeted activation of Nrf2 in female mice suppresses allergic lung
inflammation and alleviates OVA-induced asthma (Nagashima et al.,
2019). Nrf2 activation decreases type 2 innate lymphoid cells (ILC2s),
which release the major allergic airway inflammation-inducing cyto-
kines IL-4 and IL-13 (Nagashima et al., 2019). Recently, it has been
shown that Nrf2 activation by alpha lipoic acid also suppressed cyto-
kines TNF-a and IL-6, which are associated with non-Th2-mediated air-
way inflammation (Van Nguyen et al., 2020).
Nrf2, Air Pollution, and Asthma/Allergy. Air pollutants and die-

sel fumes are among the common causes of allergic rhinitis (Li et al.,

2020; Jung et al., 2021). Air pollutants, such as carbon monoxide, nitro-
gen dioxide, lead, ozone, and other particulate matter (PM), contribute
to oxidative stress and inflammation in rhinitis (Lodovici and Bigagli,
2011; Pardo et al., 2020). Diesel fumes are one of the major contribu-
tors to air pollution, consisting of particulate matter composed of metals
and polycyclic aromatic hydrocarbons. These diesel-derived particles
have an aerodynamic diameter of 2.5 lm or smaller (PM2.5), allowing
them to effortlessly penetrate the lungs. Studies have shown that expo-
sure to PM2.5 induces oxidative stress by increasing cellular reactive
oxygen species and inflammation, as marked by increased IL-8 expres-
sion (Buttrick et al., 2018). Studies have also indicated that exposure to
PM2.5 from biodiesel results in increased inflammation marked by an
increase in macrophage-derived TNF-a expression, as well as increased
expression of Nrf2 and HO-1 proteins, suggesting that PM2.5 from bio-
diesel may stimulate the activation of Nrf2/HO-1 pathways (Cattani-
Cavalieri et al., 2019). Exposure to PM2.5 from biodiesel increased
expression of p-NF-jB, which stimulates proinflammatory cytokines,
such as TNF-a (Cattani-Cavalieri et al., 2019). Similarly, diesel exhaust
particles (DEP) have also been shown to activate Nrf2 in macrophage
and bronchial epithelial cell lines (Li et al., 2004b). Furthermore, expo-
sure to DEP or exposure to DEP in combination with OVA sensitization
resulted in increased airway hyperresponsiveness and greater immune
cell counts and cytokine levels in bronchial alveolar lavage fluid from
Nrf2-KO mice compared with WT mice (Li et al., 2008b, 2010). Stud-
ies with ultrafine particles (UFP) indicate that adoptive transfer of Nrf2-
deficient dendritic cells treated with UFP and OVA into WT mice
resulted in greater immune cell infiltrate, OVA-IgG1, and IL-13 in the
BALF after in vivo OVA sensitization compared with mice receiving
similarly treated WT dendritic cells (Li et al., 2013). Taken together,
these studies indicate that particulate matter can activate Nrf2 in the
lung, which can have a protective effect in these models.
Although most studies indicate that Nrf2 deficiency results in wors-

ened oxidative stress, other studies show that Nrf2 may also contribute
to injury or have no effect under certain conditions (Fig. 1). A recent
study using a real-ambient air exposure system demonstrated that
chronic exposure to real ambient air containing high levels of PM2.5

caused an increase in inflammatory infiltrate, oxidative stress, and lung
injury in WT, but not Nrf2-null, mice (Ding et al., 2021). The authors
hypothesize that the diminished inflammation and damage observed in
the Nrf2-KO mice may be due to decreased expression of CYP2E1

Nrf2
OVA-induced 

airway 
inflamma�on

PM2.5-induced 
airway 

inflamma�on
(+)

(-)

Nrf2 
ac�vator

Nrf2 
knockout

Cytoprotec�on ↑

Epithelial cell 
barrier func�on ↓

Reduce

Reduce

Oxida�ve Stress ↑

Cyp2E1↓
Inflamma�on ↓

Epithelial cell 
barrier func�on ↑ 

Cytoprotec�on ↓

Enhance

Enhance

Oxida�ve Stress ↓

Cyp2E1↑ 
Inflamma�on ↑

Fig. 1. The role of Nrf2 in airway inflammation. Nrf2 can either contribute to or be protective against airway inflammation. Nrf2 has been shown to be protective in
OVA-induced airway inflammation by promoting airway epithelial cell barrier function. In contrast, Nrf2 contributes to airway inflammation caused by PM2.5 through
a mechanism that is thought to involve CYP2E1.
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(cytochrome P450 family 2 subfamily E member 1), which they postu-
late produces a toxic metabolite of PM2.5. Further, they assert that
induction of protective phase II enzymes is not sustained with long-
term Nrf2 activation in their system. The diminished injury by chronic
PM2.5 exposure in Nrf2-KO mice was corroborated in another study,
where it was associated with increased p62 (sequestosome) expression
and impaired intrinsic autophagy (Jiang et al., 2021). Collectively, these
studies indicate that Nrf2 may contribute to lung injury resulting from
chronic exposure to particulate matter under certain circumstances.
Nrf2 and Atopic Dermatitis. Atopic dermatitis (AD), also known

as atopic eczema, is the most common inflammatory skin disease that is
characterized as persistent eczematous lesions, itch, and discomfort. The
pathophysiology of AD involves both genetics and environmental fac-
tors that can cause epidermal barrier abnormalities and inflammation of
the skin from T cells (Weidinger et al., 2018).
Many studies have identified compounds with anti-inflammatory

properties in both in vitro and in vivo models of AD with evidence for
activation of Nrf2; however, it is important to note that a causative role
for Nrf2 has not yet been established in most of these studies (Table 2).
Specifically, studies have shown that sulforaphane, saponins derived
from Platycodon grandiflorum, quercetin, macakurzin-C derivative, and
a chrysin derivative all have protective effects in animal models of
atopic dermatitis, with data suggesting that these effects correlate with
Nrf2 activation (Wu et al., 2019; Choi et al., 2014; Karuppagounder
et al., 2015; Akram et al., 2016; Yu et al., 2019). Additional studies will
be needed to identify the role of Nrf2 in these effects.
Whereas most of the evidence for a role of Nrf2 in AD comes from

studies utilizing Nrf2 activators, there has been at least one study that
employed Nrf2-knockout mice (Table 2). Ogawa et al. (2020b) demon-
strated that expression of Nrf2 is required for the development of atopy
in experimental AD induced by chronic TNCB (2,4,6-trinitro-1-chloro-
benzene) treatment. Specifically, the authors showed decreased ear
thickness and diminished infiltration of a number of effector cells,
including mast cells, basophils, and CD4 T cells in Nrf2-null mice.
These effects correlated with a marked decrease in the expression of
type 2 cytokines and serum IgE levels. Overall, this study suggests a
role for Nrf2 in promoting type 2 immune response, inflammation, and
atopy in AD (Ogawa et al., 2020b).
The Role of Nrf2 in Contact Dermatitis. Allergic contact derma-

titis (ACD) is one on the most common skin allergies in western coun-
tries, with allergens differing based on an individual’s environment and
personal habits (Thyssen et al., 2007). ACD is a T cell-mediated response
induced by epicutaneous sensitization with an allergen that results in
immunologic memory and increased inflammation at the site of re-expo-
sure to the allergen (Vocanson et al., 2009). In contrast to atopic dermati-
tis, contact dermatitis is not typically associated with a pronounced type
2 immune response.

Nrf2 is thought to play a protective role in contact dermatitis through
the upregulation of antioxidant and cytoprotective genes (Ma, 2013).
Numerous studies have reported contact sensitizers to induce the Nrf2
pathway, and these are listed in Table 2. Cluster of differentiation
(CD)34-derived dendritic cells (DC) and the THP-1 myeloid cell line
were treated with various sensitizers, and an increased expression of
HO-1 and NQO1 mRNA was observed. Additionally, Nrf2 protein
accumulation was found only in cells treated with chemical sensitizers
(Ade et al., 2009). In keratinocytes, the antioxidant and Nrf2 target gene
HO-1 was significantly upregulated when exposed to contact sensitizers
(Vandebriel et al., 2010). Others have found activation of Nrf2 to allevi-
ate contact dermatitis through several compounds such as melatonin,
JNJ7777120 (histamine H4 receptor antagonist), 2’,30-dihydroxy-4’,6’-
dime-thoxychalcone, and 6-shogaol (active compound of ginger) (Park
et al., 2016; Shen et al., 2017; Mohamed et al., 2018; Takada-Takatori
et al., 2019). Although these studies suggest a potential protective effect
of Nrf2 activators on allergic contact dermatitis, further studies with
Nrf2-deficient models are needed to identify the role of Nrf2 in these
effects.
To specifically address the role of Nrf2 in contact dermatitis, a study

was performed using WT and Nrf2-deficient mice. These mice were
sensitized using the strong contact sensitizer 2,4-dinitrochlorobenzene
(DNCB), which resulted in a significant increase in ear swelling in
Nrf2-deficient mice compared with WT mice, suggesting that Nrf2 miti-
gates inflammation in this model (Table 2, El Ali et al., 2013). Addi-
tionally, when mice were treated with low concentrations of DNCB,
inflammation was solely observed in Nrf2-deficient mice, further sup-
porting the idea that Nrf2 protects against contact dermatitis. The pro-
tective effect of Nrf2 was not limited to DNCB, as several other
chemical sensitizers also increased lymphocyte proliferation in Nrf2-
deficient mice compared with WT mice (El Ali et al., 2013).
However, activation of Nrf2 is not protective against every contact

sensitizer. Topical application of 1-fluoro-2,4-dinitrobenzene (DNFB),
an immunogenic hapten, was found to elicit an antioxidant response
through the expression of Nrf2 downstream targets. However, in Nrf2-
deficient mice, contact hypersensitivity was not developed due to a
compromised epidermal innate immune response as demonstrated by a
decrease in IL-1a and keratinocyte-intrinsic factor, which is necessary
for the development of immune memory (Ogawa et al., 2020b). Further-
more, clinical relevance of Nrf2 involvement in ACD was also assessed
in this study through analysis of patients with various congenital disor-
ders that resemble allergic contact dermatitis. Increased expression of
Nrf2 and its target gene, small proline-rich protein 2, were found in the
epidermis of patients with Netherton syndrome and peeling skin syn-
drome as compared with healthy controls. Nrf2 has also been shown to
play a role in maintaining contact hypersensitivity response in aging
mice. Aging is associated with diminished T helper (Th)1-mediated
responses, including contact hypersensitivity. The decline in the contact

TABLE 2

Studies focused on the role of Nrf2 in skin allergy

Disease Model Effect of Nrf2-Knockout References

Atopic Dermatitis BALB/cWT & Nrf2 (�/�) # Ear thickness; # effector cell
infiltration, # type 2 cytokine, #
IgE response

(Ogawa et al., 2020b)

Contact Dermatitis Ex vivo: BMDC Nrf2 (1/1)
versus (�/�)

# Expression of antioxidant genes (Mussotter et al., 2016)

C57BL/6WT & Nrf2(�/�) " PMN recruitment to skin during
sensitization phase

(Helou et al., 2019)

C57BL/6WT & Nrf2(�/�) " Ear thickness (El Ali et al., 2013; Helou et al., 2019)

IgE, immunoglobulin E.
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hypersensitivity in aged mice was more pronounced in Nrf2-deficient
mice and less pronounced with treatment of the Nrf2 activator sulfo-
raphane (Kim et al., 2008). Overall, these studies suggest that Nrf2
plays a contributing or causative role in the development of contact der-
matitis in some instances.
Polymorphonuclear neutrophils (PMNs) are involved in hapten-

induced inflammation during sensitization through the activation of DC
(Weber et al., 2015). Nrf2 implication in PMN recruitment to DNCB-
sensitized skin in WT and Nrf2-deficient mice was reported by Helou’s
group. They found that Nrf2 plays an important role in controlling
PMN recruitment to the skin, which was demonstrated by an increase
in lymphocyte antigen 6 locus, complex G/C (Ly6G/C) 1 cells in the
skin of Nrf2-deficient mice after sensitization with DNCB (Helou et al.,
2019). Additionally, antioxidant genes, such as HO-1, glutamate-cyste-
ine ligase catalytic subunit (GCLC), and NQO1, were upregulated in
WT mice compared with Nrf2-deficient mice sensitized with DNCB.
Notably, they discovered an upregulation in the efferocytosis receptor
CD36 on macrophages in the skin of sensitized WT mice, which was
not observed in Nrf2-deficient mice. Overall, this study indicates that
Nrf2 regulates neutrophil recruitment during the sensitization phase in
this model of contact dermatitis.
A proteomics study was performed to assess potential biomarkers of

activated DC by contact allergens, such as DNCB, cinnamaldehyde,
and nickel (II) sulfate. Bone marrow-derived dendritic cells (BMDCs)
from WT and Nrf2-deficient mice were used to determine the role of
Nrf2. Several proteins, specifically stress response proteins such as gluta-
mate-cysteine ligase modifier subunit (GCLM) and HO-1, were upregu-
lated in WT cells treated with cinnamaldehyde and DNCB. Conversely,
in Nrf2-deficient BMDCs, many of the proteins were not induced, sug-
gesting Nrf2-dependent regulation (Mussotter et al., 2016). Taken
together, the data from this study suggest an important role for Nrf2 in
the induction of antioxidant genes by contact allergens in dendritic cells.
Current Challenges, Knowledge Gaps, and Future Directions.

Based on studies dating back to the 2010s, there has been interest
in developing Nrf2 activators for the treatment of allergic airway
disease and skin allergy. However, the available therapeutic agents
for this mechanism are limited in their practicality. Some of these
therapeutic agents have related risks and are shown to have low
efficacy and bioavailability (Egbujor et al., 2021). One of the chal-
lenges of these therapeutic agents is the lack of accurate and appro-
priate pharmacokinetic and pharmacodynamic reports, as well as
safety profiles for administration.
Currently, there are several FDA-approved Nrf2 activators for clinical

use. Dimethyl fumarate is approved for relapsing-remitting multiple scle-
rosis (Tecfidera) and internationally for psoriatic arthritis (Fumaderm).
Recently, monomethyl fumarate (Bafiertam) and diroximel fumarate
(Vumerity) have been approved for relapsing-remitting multiple sclerosis
(Hoogendoorn et al., 2021). These drugs have also been tested in in vitro
studies, which indicate that they induce Nrf2 target genes and would
potentially have an antioxidant effect. Likewise, these drugs have been
shown to ameliorate the symptoms of other chronic diseases, such as
diabetes, chronic kidney disease, asthma, and dermatitis (Seidel and
Roth, 2013; Hu et al., 2018; Zhao and Wen, 2018; Ogawa et al., 2020a).
One of the major challenges in Nrf2 drug development is the lack of

specificity of Nrf2 activators reacting with protein thiol targets. Most
Nrf2 activators that have been approved or are under clinical develop-
ment aim to react with Cys151 of the N-terminal domain of Keap1.
However, these Nrf2 activators have off-target effects and accompanied
toxicity due to covalent and indiscriminate alkylation of thiol groups on
other proteins (Gazaryan and Thomas, 2016; Robledinos-Anton et al.,
2019). In addition, the use of many of these drugs is limited by short
half-life (Hoogendoorn et al., 2021). Some synthetic drug candidates,

such as fumaric acid esters, sulforaphane, and nitro fatty acids have
been considered as therapeutic agents and tested in clinical trials; how-
ever, they present inconsistent effects related to poor absorption, metab-
olism, and excretion (Egbujor et al., 2021). In addition to the covalent
alkylation to thiol groups of Keap1, Nrf2 activation through a noncova-
lent inhibition of the Nrf2-Keap1 interaction is also being considered
for therapeutic use (Satoh and Lipton, 2017).
Despite these challenges, there are ongoing clinical trials studying the

pharmacokinetics of synthetic and naturally derived Nrf2 activators and
inhibitors (Robledinos-Anton et al., 2019). Future work should be
directed toward finding compounds or prodrugs with good pharmacoki-
netic/pharmacody-namic profiles that contain a more specific reaction to
key thiol groups of Keap1 to avoid systemic side effects.
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