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Abstract

Aim of the review: The primary aim of this systematic review was to investigate the most 

common electroencephalogram (EEG)-based machine learning (ML) model with the highest Area 

Under Receiver Operating Characteristic Curve (AUC) in two ML categories, conventional ML 

and Deep Neural Network (DNN), to predict the neurologic outcomes after cardiac arrest; the 

secondary aim was to investigate common EEG features applied to ML models.

Methods: Systematic search of medical literature from PubMed and engineering literature from 

Compendex up to June 2, 2023. One reviewer screened studies that used EEG-based ML models 
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to predict the neurologic outcomes after cardiac arrest. Four reviewers validated that the studies 

met selection criteria. Nine variables were manually extracted. The top-five common EEG features 

were calculated. We evaluated each study’s risk of bias using the Quality in Prognosis Studies 

guideline.

Results: Out of 351 identified studies, 17 studies met the inclusion criteria. Random Forest 

(RF) (n = 7) was the most common ML model in the conventional ML category (n = 11), 

followed by Convolutional Neural Network (CNN) (n = 4) in the DNN category (n = 6). The 

AUCs for RF ranged between 0.8 and 0.97, while CNN had AUCs between 0.7 and 0.92. The 

top-three commonly used EEG features were band power (n = 12), Shannon’s Entropy (n = 11), 

burst-suppression ratio (n = 9).

Conclusions: RF and CNN were the two most common ML models with the highest AUCs for 

predicting the neurologic outcomes after cardiac arrest. Using a multimodal model that combines 

EEG features and electronic health record data may further improve prognostic performance.
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Introduction

Poor neurologic outcome is widely considered the main cause of morbidity and mortality 

after cardiac arrest.1 Many survivors suffer from long-term cognitive and motor deficits 

from resultant hypoxic ischemic brain injury that significantly impact their quality of life.2 

Accurate and timely prediction of neurologic outcome can help inform care management 

plans and identify patients who might benefit from neuroprotective interventions.

Electroencephalogram (EEG) has been used to predict the neurologic outcome after 

cardiac arrest.3,4 However, use of EEG after cardiac arrest is limited in practice because 

the interpretation of EEGs requires a trained clinician, which is labor-intensive, time-

consuming, expensive, and subjective. Hence, an automated process that makes accurate 

and timely predictions based on EEG data can facilitate the interpretation of EEGs, reduce 

clinicians’ workload, and may improve the quality of patient care after cardiac arrest.

Machine learning (ML) is a subset of artificial intelligence focusing on developing 

computer algorithms and statistical models to enable computer systems to make predictions 

from learning data. The capability of ML to handle high-dimensional data and complex 

waveform has been proven in many fields of studies, e.g., computer vision, natural language 

processing.5,6 ML may be applied in an automated process after cardiac arrest to increase 

predictive accuracy.

The Area Under Receiver Operating Characteristics Curve (AUC) is a common performance 

metric to evaluate the ability of an ML model to predict an outcome. AUC ranges between 0 

and 1, with 0.5 representing a random guess. Generally, a ML model with an AUC between 

0.8 and 0.9 is considered to be good, and an AUC > 0.9 is considered to be excellent 

prediction.7 Hence, in this systematic review, we aim to answer two questions. First, what is 
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the most common ML model with the highest AUC in conventional ML and DNN. Second, 

what are the common quantitative EEG (QEEG) features applied to ML models?

Background in machine learning models

Generally, ML models are categorized into two categories, conventional ML and Deep 

Neural Network models (DNN). The main difference between the two categories is the 

input to the model. The input of conventional ML is typically handcrafted features, such as 

demographics (age, sex, etc.) and QEEG features (Shannon’s entropy, burst-suppression 

ratio, etc.). Such input requires domain experts to manually extract clinically relevant 

features from electronic health record (EHR) and/or raw EEG data. For instance, Shannon’s 

entropy measures the amount of information in raw EEG waveform. Low entropy implies 

that the brain is less active, which increases the likelihood of a poor neurologic outcome 

after cardiac arrest. Standard deviation measures the variability of raw EEG waveform. 

Burst-Suppression measures the continuity of raw EEG waveform.8 On the other hand, the 

input of DNN is raw EEG data. DNN automatically extracts features from the raw data.

In this review, we have identified two common conventional ML models, Random Forest 

(RF) and Logistic Regression (LR). RF model uses multiple (e.g., hundreds of) decision 

trees to make a prediction. Each decision tree contributes its prediction from the input 

dataset. The final prediction is the probability of a target outcome (e.g., poor neurological 

outcome) based on the outcomes of all decision trees. LR model calculates the probability of 

a target outcome from the input record. The key difference between RF and LR is that RF 

can better handle collinearity among variables than the LR. Fig. 1 summarized two common 

conventional ML models.

We have identified two common DNN models, Convolutional Neural Network (CNN) 

and Long-Short Term Memory Network (LSTM). CNN model has three components, 

convolutional layers, pooling layers, and fully connected layers. The convolutional layer 

automatically extracts features from the raw data. Then, features are passed down to a 

pooling layer to reduce the computational complexity, allowing the model to focus on 

more relevant and discriminative information. Finally, fully connected layers are used to 

predict the outcome. LSTM model is a type of recurrent neural network (RNN) capable 

of addressing temporal/sequential data by capturing temporal dynamics of the temporal 

data, which is important to process EEG data and its trend information. The key difference 

between CNN and LSTM is that LSTM can better handle temporal relationships among 

EEG data compared to the CNN model. Fig. 2 summarized two common DNN models.

Methods

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) guidelines to conduct the systematic review (Supplemental Table 1).9

Eligibility criteria

Included studies met the following inclusion criteria. The cohort dataset should: (1) include 

use of EEG; (2) use ML models to predict neurologic outcome; (3) include cardiac arrest 

patients.
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Studies that met the following exclusion criteria were excluded: (1) lacking an AUC; (2) a 

validation dataset was not included, (3) the study cohort consisted of non-human subjects.

Search strategy (study inclusion process)

Two librarians at the University of Pennsylvania provided guidance in our literature search. 

The search query was based on inclusion criteria, which consisted of three groups of key 

words, (1) EEG, (2) ML model, and (3) cardiac arrest. Supplemental Table 2 shows the 

details of the search queries. We then performed the search query on two popular databases: 

(1) PubMed, a medical literature database and (2) Compendex, an engineering literature 

database, up to June 2, 2023.

Screening process (study exclusion process)

We used Covidence,10 to manage the screening process, which consisted of two stages. (1) 

Screening of the title and abstract and (2) screening of the full text to assess for inclusion 

and exclusion criteria.

One primary reviewer (CC) performed both stages of the screening process. Four secondary 

reviewers (SLM, MPK, IY, and AFS) validated the results of the screening process. IY 

and AFS validated included studies and SLM and MPK validated excluded studies. FT 

supervised the entire process.

Data extraction and analysis methods

Data extraction was performed by the primary reviewer (CC). Nine variables were extracted 

to answer the primary question: (1) number of subjects (N), (2) prevalence of poor outcome, 

(3) recording time of EEG to predict neurologic outcome after cardiac arrest, (4) input 

format of EEG-based ML model (i.e., raw EEG, QEEG features), (5) poor outcome 

definition (i.e., cerebral performance category [CPC] 3–5, or pediatric cerebral performance 

category [PCPC] 4–6), (6) time of outcome assessment in months, (7) ML category (i.e., 

conventional ML and/or DNN), (8) ML model (e.g., RF and CNN), and (9) the highest AUC 

in the study.

For the secondary aim, we counted the number of handcrafted QEEG features across the 

included studies and reported the top-five most common features.

Study risk of bias assessment

Four reviewers (CC, IY, AP, and AFS) rated the risk of bias using the Quality in Prognosis 

Studies (QUIPS),11 a bias-assessment tool designed to assess the prognostic study from 

six domains: (1) study participation, (2) study attrition, (3) prognostic factor measurement, 

(4) outcome measurement, (5) study confounding, and (6) statistical analysis and reporting. 

Each domain has three levels: low, moderate, and high risk of bias. A low risk of bias 

represents a study unlikely to be bias in that assessment domain; a moderate risk of bias 

represents a study possible to be bias; a high risk of bias represents a study likely to be bias. 

Disagreement between assessors was resolved by consensus.
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Results

Screening process

A total of 351 studies were identified in PubMed and Compendex. Title and abstract 

screening resulted in 68 studies for full-text screening. Full-text screening resulted in 17 

qualified studies (n = 17). Fig. 3 summarizes the full screening process.

Study characteristics

The number of patients ranged from 50 to 1,039. The prevalence of patients with poor 

neurologic outcomes ranged from 25% to 79%. Of the 17 studies, only one study included 

pediatric patients.12 The recording time of EEG data to predict neurologic outcomes after 

cardiac arrest ranged from 20 minutes to 66 hours. The defined poor neurologic outcome 

across the 17 studies included: Cerebral Performance Category (CPC) 3–5, Pediatric 

Cerebral Performance Category (PCPC) 4–6, and not awakening from cardiac arrest. The 

time of neurologic outcome assessment ranged from 0 days (on the discharge day) to six 

months from the time of hospital discharge. Supplemental Table 3 summarizes the study 

characteristics of the final 17 studies published between August 2017 and February 2023.

The input format of ML model was raw EEG waveform (n = 4), QEEG features (n = 8), the 

integration of raw EEG waveform and EHR data (n = 1), the integration of QEEG features 

and EHR data (n = 4). EHR data included age, sex, Pittsburgh Cardiac Arrest Category, 

presence of a shockable rhythm, time to the return of spontaneous circulation, corneal and 

pupillary reflex, somatosensory evoked potential (SSEP), anoxic finding using MRI or CT, 

time from injury to EEG recording, location of arrest.13–16

Eleven studies used conventional ML, including Random Forest (RF) (n = 7),12,15,17–21 

Logistic Regression (LR) (n = 3),16,18,22 Support Vector Machine (SVM) (n = 1),23 the 

ensemble model of RF, LR, SVM, K-nearest neighbor (KNN) (n = 1)13 with AUCs 

ranging between 0.81 and 0.97; Six studies used Deep Neural Network (DNN), including 

Convolutional Neural Network (CNN) (n = 4),24–27 Long-short Term Memory Model 

(LSTM) (n = 1),28 the integration of CNN and LSTM (n = 1)14 with AUC ranging between 

0.70 and 0.92.15

Common QEEG features

The top-five common handcrafted QEEG features applied to ML models are, (1) band power 

(n = 12), (2) Shannon’s entropy (n = 11) (3) burst-suppression ratio (BSR) (n = 9), (4) 

standard deviation of raw EEG (n = 7), and (5) regularity (n = 5). We summarized top-five 

common QEEG features in Table 1.

Study risk of bias assessment

Most studies (n = 11) had a low risk of bias across all six assessment domains. The detailed 

results of study risk of bias can be found in Table 2.
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Discussion

After screening 351 abstracts, we performed a full review of 17 studies, and found that RF 

was the most common ML model with the highest AUC in the conventional ML category, 

followed by CNN in the DNN category to predict the neurologic outcome after cardiac 

arrest.

Conventional ML models handle features manually extracted from EEG waveform and/or 

EHR data, whereas DNN models handle only raw EEG waveform data. Given the 

advantages of RF and DNN in handling different domains of features, i.e., handcrafted 

(expert-chosen) features and automatically extracted features,29,30 we recommend a hybrid 

model, combining RF and CNN, to improve the prognostic performance. To the best of our 

knowledge, such a hybrid approach has not yet been developed to predict the neurologic 

outcome. For the second question, we reported the top-five common handcrafted QEEG 

features used by RF models to predict the neurologic outcome.

Additionally, we identified two issues that may limit prognostic performance. First, most 

studies (n = 14) only used non-sequential ML models, e.g., RF and CNN; only 3 studies 

used sequential ML models, e.g., LSTM, to take advantage of temporal relationships in 

waveform data. For instance, in Tjepkema-Cloostermans’s study, they extracted 9 QEEG 

features from the last 5 minutes of raw EEG, 12 hours after the cardiac arrest and passed 

them to an RF to predict the outcome.19 Similarly, in another Tjepkema-Cloostermans’s 

study, they also passed the EEG waveform from the last 5 minutes, 12 hours after cardiac 

arrest to CNN to predict the outcome.26 Since such an approach does not consider the entire 

12 hours of EEG data, but only the last 5 minutes of EEG data, it may limit the prognostic 

performance. On the other hand, Zheng et al. applied a sequential DNN model combining 

CNN and LSTM model to catch the dynamics of long-term EEG data.14 In general, the 

study showed that by including longer-term EEG data in the model, AUCs increased from 

0.82 (up to 12 hours after cardiac arrest) to 0.91 (up to 66 hours after cardiac arrest), and 

the sequential models generally outperformed non-sequential models at any time points after 

cardiac arrest. Similar results are seen in Ghassemi’s study. Instead of using a sequential 

DNN, it applied a sequential LR to predict the outcome.16 Based on these studies, we 

recommend applying sequential ML models to improve prognostic performance.

The second issue that may limit prognostic performance is the lack of multimodality. Studies 

have shown that models using single modality, i.e., only EEG or EHR data (e.g., age, 

sex, and Pittsburgh Cardiac Arrest Category) had lower performance than models using 

multimodal data, i.e., the combination of EEG and EHR data. For instance, Aghaeeaval et 

al. demonstrated that AUCs increased from 0.86 (using only EEG data) to 0.97 when both 

EEG and EHR data were included.15 Similarly, Zheng et al. compared model performance 

between single-modality models using only EHR or EEG data and a multi-modality model 

using both EHR and EEG data; the AUCs increased from 0.73 (EHR only) or 0.81 (EEG 

only) to 0.91 (EHR + EEG).14 However, none of the studies used other physiological 

signals, such as blood pressure, and blood oxygenation, in multimodality models for 

improving the performance.
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Future works

Based on our results and analyses, we suggest four areas for improving prognostic 

performance: (1) building a hybrid model that combines RF and CNN to take advantage of 

features extracted from EEG waveform and EHR data; (2) adding top-five common QEEG 

features to RF models; (3) using sequential deep learning models such as LSTM to capture 

the dynamics of temporal trend information of EEG waveform; (4) developing a multimodal 

model that uses EEG waveform, EHR data, and additional vital-sign waveforms such as 

blood pressure.

Limitation

This study has a limitation. In the search query, we listed 19 common ML model keywords 

to extract the relevant studies; some uncommon keywords may not be included. Studies that 

do not have any of our keywords in their main text are not included.

Conclusions

In this systematic review, we studied 17 papers to answer two questions. For the primary 

question, RF was the most common ML model with the highest AUC in the conventional 

ML category, followed by CNN in the DNN category. For the secondary question, the 

top-five common QEEG features include band power, Shannon Entropy, burst-suppression 

ratio, standard deviation of raw EEG, and regularity. Future studies may focus on four 

aspects to improve the prognostic performance: (1) Combining RF and CNN, (2) applying 

common QEEG features to RF, (3) using a sequential ML model, and (4) developing a 

multimodal model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CNN Convolutional neural network

LSTM Long-Short term memory network

RNN Recurrent neural network

CPC cerebral performance category

PCPC Pediatric cerebral performance category
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Fig. 1 –. 
Two common conventional machine learning models. Plot (a): a Random Forest (RF) model 

with multiple (e.g., hundreds of) decision trees for outcome prediction. Each decision 

tree contributes its prediction from the input dataset. The prediction of a RF model is 

an ensemble predicted probability from all the trees of a target outcome (e.g., a poor 

neurological outcome). Plot (b): a Logistic Regression model that calculates the probability 

of a target outcome from the input record.
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Fig. 2 –. 
Two common deep neural networks. Plot (a): a Convolutional Neural Network with 

three components, convolutional layers, pooling layers, and fully connected layers. The 

convolutional layer extracts features from the raw waveform data; the pooling layers 

reduce the computational complexity from the extracted features to focus on relevant and 

discriminative information; finally, the fully connected layers provide outcome prediction. 

Plot (b): a Long-Short Term Memory Network (LSTM), a type of recurrent neural network 

(RNN), capable of addressing temporal/sequential data by capturing temporal dynamics of 

the temporal data, which is important to process EEG data and its trend information.
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Fig. 3 –. 
Screening process of paper review.
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