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Summary
Despite the importance of gene-environment interactions (GxEs) in improving and operationalizing genetic discovery, interpretation of

any GxEs that are discovered can be surprisingly difficult. There are many potential biological and statistical explanations for a statis-

tically significant finding and, likewise, it is not always clear what can be claimed based on a null result. A better understanding of

the possible underlying mechanisms leading to a detected GxE can help investigators decide which are and which are not relevant to

their hypothesis. Here, we provide a detailed explanation of five ‘‘phenomena,’’ or data-generating mechanisms, that can lead to

nonzero interaction estimates, as well as a discussion of specific instances in which they might be relevant. We hope that, given this

framework, investigators can design more targeted experiments and provide cleaner interpretations of the associated results.
Background

Gene-environment interactions (GxEs) are of increasing

interest for improving genetic discovery, explaining

missing heritability and population heterogeneity, and

facilitating precision medicine.1 In general, the term de-

scribes any departure from a model with pure main effects

for genetic and environmental terms, implying differences

in the estimated genetic effect depending on the environ-

ment or vice versa (i.e., effect modification). They are typi-

cally estimated using a product term in a regression setting

but can also be derived through comparison of stratified

models or other approaches. Associated statistical tests

are often underpowered, but increasing sample sizes and

associated computationally efficient software options are

beginning to enable large-scale discovery efforts.2–5

Investigators often conduct a GxE analysis to estimate

and test such statistical interaction effects without speci-

fying the underlying phenomenon, or data-generating

mechanism, being sought or establishing potential expla-

nations leading to any observed GxEs. In this review, we

describe five patterns occurring at the biological level

that can result in the detection of a statistical interaction

as modeled via an interaction term. We hope that this

framework will allow investigators to state explicit hypoth-

eses, design better analytical frameworks, and think

through possible explanations for their findings.

The organization of this review is as follows. We describe

each of five data-generating models (‘‘phenomena’’) that

can lead to the detection of a statistical interaction as typi-

cally tested with a regression product term. For each, we

give a general description, provide examples from the liter-

ature, and discuss links with other known statistical issues.

We provide visualizations based on simulated data, with

specifics of the simulation setup and quantitative results
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provided in the supplemental note. We also discuss poten-

tial conditions and limitations related to data availability

and domain knowledge. Finally, we provide a series of rec-

ommendations for using these observations to inform

modeling decisions. Notes on terminology and simplifying

assumptions for the purposes of this review are provided in

Box 1.
Phenomena leading to statistical interactions

Phenomenon 1. Functional

Description

This first category of interaction arises from underlying

molecular pathways that physically intersect or modify

each other’s function; this is perhaps the most intuitive

explanation for a GxE. Here, we might imagine that a ge-

notype, via a causal association with the activity or expres-

sion level of some enzyme, modifies the activity of a

pathway that mediates the E-Y relationship (Figure 1).

Most exposures used in GxE analysis, including human be-

haviors, environmental exposures, and physiological

states (such as BMI and biological sex), ultimately impact

health outcomes and biomarkers through molecular medi-

ators such as gene expression changes, protein function,

or metabolite concentrations. We can imagine the effect

modification by genotype occurring either upstream or

downstream of this mediating quantity, as exemplified in

the next section (see Preacher and colleagues for more

detail on relevant terminology7).

Examples

Countless functional GxE effects have been reported in the

literature, but we highlight two illustrative examples here.

Variants in ERCC2, involved in DNA damage repair, appear
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Box 1. Notes on terminology and simplifying assumptions.

First, we make a few notes on terminology for the purposes of this review.

d We use the term ‘‘functional’’ to refer to molecular-level interactions in which specific metabolites, proteins, or

other molecular quantities physically interact, such that the activity of one pathway or process is modulated by

the activity of another. Though we believe that ‘‘mechanistic’’ may be an equally appropriate term for such a

phenomenon, we limit its usage here to avoid confusion with the public health-relevant sense in which it is

used by VanderWeele and Knol (related to the sufficient cause framework).6

d We use the term ‘‘pathway’’ in a biological sense (i.e., a set of enzymes and molecules involved in a particular

biological process), rather than a statistical sense (i.e., a ‘‘causal pathway’’), unless otherwise noted.

d The letters G, E, and Y will be used to reference the genotype, exposure, and outcome of interest, respectively.

In laying out these patterns, we also make a few technical, simplifying assumptions.

d We assume continuous outcomes unless otherwise noted.

d We also assume that there are no confounders of the E-Y relationship.

d We primarily focus on genotype as a modifier of exposure-outcome associations. However, all concepts also

apply for the converse (i.e., the exposure as a modifier of the genotype-outcome relationship)—we will point

out some well-recognized examples.
to modify the effect of smoking on lung cancer.8 This is

‘‘downstream’’ moderation, in which smoking induces

lung DNA damage (the molecular mediator), which then

impacts lung cancer risk differentially based on ERCC2-

related DNA repair capacity (the functional interaction).

In another domain, phenylketonuria is a classic diet-

related GxE example, where polymorphisms in PAH reduce

or abolish the ability of its protein product to metabolize

the amino acid phenylalanine in the liver.9 This is an

example of ‘‘upstream’’ moderation, in which the func-

tional interaction involves the exposure itself (the dietary

amino acid phenylalanine).

Unlike dietary phenylalanine, for which the relevant

metabolic pathways are well characterized, many more

complex exposures (such as behavioral traits like physical

activity levels) likely act through a series of parallel path-

ways. Approaches incorporating molecular-level GxE

tests (e.g., transcriptomic exposures10 and their multi-

exposure extensions11) may be helpful in resolving

the relevant biological mechanisms in these cases.

Still, such pleiotropic exposures require additional care

in considering alternative explanations for any observed

GxE.

Phenomenon 2. Nonlinear mediator of genes and

environment

Description

Suppose that both G and E independently impact the

expression of the same pathway or a specific mediator M,

which itself has a nonlinear relationship with Y. Because

G affects themediator independently of E, i.e., there is a ge-

netic main effect in the statistical model, groups of individ-

uals defined by their genotypes will differ in their mean

value of M. Due to the nonlinearity of the M-Y relation-
The Ame
ship, any nonzero main effect (independently of genotype

value) on M of another variable (in this case, E) will trans-

late into changes in Y to a different degree (Figure 2).

This type of nonlinearity can arise for any number of

technical or biological reasons, but two are of particular

note. First, floor or ceiling effects are common in contin-

uous biological quantities. Second, many binary outcomes

of clinical interest can be thought of as a sharply nonlinear

manifestation of an underlying continuous factor (suffi-

ciency of a nutrient, toxicity of a toxin, or surpassing of a

disease liability threshold). Eaves describes this phenome-

non in more depth as it relates to GxE for psychiatric

outcomes defined by specific diagnosis thresholds,12 and

Domingue and colleagues explore concerns about interac-

tion with binary and other non-continuous outcomes in-

depth outside of the genetic realm.13

Examples

One example of ceiling effects comes from preventive car-

diology: statins are very effective at producing reductions

in LDL cholesterol (the continuous outcome) via inhibi-

tion of HMGCR enzyme function (the mediating quan-

tity), but this relationship is nonlinear, with larger in-

creases in dosage required to produce each additional

increment of LDL-C reduction.14 In fact, this nonlinearity

is implied in the typical description of statin effects on

LDL-C in terms of percentage change, rather than absolute

concentrations. Thus, HMGCR inhibition reaches a ceiling

in its effect on LDL-C (at which point it may be necessary

to target additional biological pathways, such as PCSK9, to

achieve further reductions). We might then expect to

find interactions between genetic variants affecting the

expression of HMGCR and statin usage impacting LDL-C

reduction.
rican Journal of Human Genetics 111, 626–635, April 4, 2024 627



Figure 1. Simulation of a functional interaction
(A) Two genotypes in the protein coding sequence of a gene (alleles A and B, indicated by the green circle and red triangle) lead to dif-
ferences in the function of a given enzyme, leading to differential throughput of a biological pathway (squares, representing the
outcome Y) despite similar amounts of the input compound (stars, representing the environmental exposure E).
(B) Conceptual visualization of the E-Y effect modification.
(C) Results from simulation of a functional interaction.
As an example related to binary outcomes, a series of

studies has explored the joint contribution of genetic

and dietary effects on choline sufficiency in postmeno-

pausal women.15 Choline sufficiency functions as a

roughly binary variable in the sense that, once an individ-

ual has a sufficient choline supply, additional choline will

not be beneficial in preventing choline-related organ

dysfunction. Though dietary choline absorption and

endogenous choline production occur via separate path-

ways, they both contribute to the same biological pool.

In postmenopausal women with certain variation in

PEMT (required for endogenous choline production),

choline production is substantially reduced, such that

these women require additional choline from diet or

supplementation to avoid deficiency-associated organ

dysfunction. A GxE ultimately results, in which exogenous

choline reduces organ dysfunction in postmenopausal

women with PEMT-reducing alleles but has little effect in

others.

Related phenomena

When using binary outcomes, all effects (of genotype,

exposure, and mediator) are inherently nonlinear. This

makes the choice of scale critical in assessing interactions:

investigators can test for departures from additivity

affecting raw outcome probabilities (interactions on the

‘‘additive scale’’) or transformed probabilities (e.g., logistic

in logistic regression; interactions on the ‘‘multiplicative

scale’’). Additive interaction analysis is particularly useful

for detecting instances in which G and E contribute addi-

tively to an underlying liability that manifests as a binary

outcome due to thresholding (this threshold could be bio-

logical or due to clinical cutoffs). Thus, additive interaction

may be relevant for public health applications even when
628 The American Journal of Human Genetics 111, 626–635, April 4,
there is no functional interaction of the type that might

produce a multiplicative interaction (i.e., of the product

term in a logistic regression).6 We note that this question

of additive versus multiplicative interaction is most rele-

vant for binary outcomes, where a product term in (for

example) logistic regression serves to test for multiplicative

interaction. Linear regression product terms for contin-

uous outcomes, our primary focus in this review, test for

additive interactions due to the linear covariate-outcome

relationship. Phenomenon 2 also has a natural extension

to gene-gene interactions, where G and E are replaced by

two genetic variants (see Box 2 for additional discussion

of connections between outlined GxE concepts and

gene-gene interactions).

Phenomenon 3. G-E correlation with nonlinearity

Description

Statistical interactions can also appear when an exposure is

(1) correlated with G and (2) related nonlinearly with Y. In

this case, themean E varies across genotype groups and the

nonlinearity of the E-Y relationship leads to different E ef-

fect estimates by genotype group (Figure 3). This concept is

similar to that of the nonlinear mediator described above,

but in this case it is E itself, rather than a downstream

mediator, that has the nonlinear relationship with Y.

Importantly, this G-E correlation doesn’t need to be causal;

for example, it can appear systematically across the

genome in the presence of population stratification.

Example

This sort of interaction is most likely to appear for expo-

sures with plausibly strong genetic effects. For example,

body mass index (BMI) is under strong genetic control. It

also shows strong nonlinear relationships with disease
2024



Figure 2. Simulation of a nonlinear mediator
(A) Both G and E have positive effects on the mediator M, but without interaction.
(B) M is nonlinearly related to Y, with a decreasing effect at higher levels of M.
(C) Results from simulation of a nonlinear mediator-based interaction. A GxE interaction with respect to Y is produced despite no inter-
action with respect to M.
risk factors; for example, its effect on LDL-C is much stron-

ger in the lean range compared to the overweight range.22

In a hypothesis-free study examining many genetic vari-

ants and exposures, we have previously found many in-

stances of GxBMI interactions impacting cardiometabolic

risk factors.23 Though this specific hypothesis wasn’t tested

directly, it is likely that a subset of these interactions can be

explained by the simultaneous presence of G-BMI associa-

tions and a nonlinear BMI-risk factor relationship.

Related phenomena

This general phenomenon leads to the inflation often

observed in genome-wide interaction studies when regres-

sion models are misspecified with respect to the E-Y rela-

tionship.24 In such a case, random G-E correlations

genome-wide combine with the nonlinear E-Y relationship

to produce statistical evidence of GxE. Though these

apparent interaction effects are random and typically

small, in aggregate they produce a systematic departure

of genome-wide interaction p values from the uniform dis-

tribution expected under the null hypothesis.24

Phenomenon 4. Heterogeneous variability

Description

Here, some G or E directly modifies the variability, rather

than the mean, of Y (one can imagine decreasing the ‘‘fric-

tion’’ in outcome fluctuations or allowing for a wider range

of values). When the variability modifier is genetic, it is

sometimes referred to as a variance-quantitative trait locus

(vQTL). For a genotype that raises variability in Y, the same

stimulus (E) might result in a larger absolute change in Y.

More rigorously, this scenario assumes that E affects the

quantile of Y (the location within its distribution), result-

ing in a larger linear effect estimate in themore variable ge-

notype group (Figure 4).

We note an important difference between this concept

and the more common usage of the term vQTL to describe

any difference in detected statistical variance between geno-
The Ame
types. Often, statistical scans for vQTL effects are conduct-

ed to find genetic variants that produce differential vari-

ance secondary to a GxE interaction with a specific

environmental factor (i.e., the vQTL is a statistical conse-

quence of an underlying functional GxE).25 In contrast,

‘‘true’’ vQTLs have a direct effect on the variability of the

phenotype. The relevance of such variants will depend

on the research question; detection of a true vQTL might

be helpful in predicting an individual’s response to a

change in any arbitrary exposure but without adding

mechanistic insight into relevant biological pathways for

that specific exposure.

Example

Domingue and colleagues describe this scenario as a

scaling model.26 Using the UK Biobank dataset, they find

a set of genetic variants that associate more strongly with

BMI in individuals born later in time. They proceed to

show evidence that these variants may confer a general

sensitivity to environmental influences (and thus a greater

BMI variability) rather than a birth year-specific modifying

effect.

Related phenomena

The concept of a ‘‘phenotypic capacitor’’ has been invoked

to describe a true vQTL that buffers the effects of cryptic ge-

netic variation, rather than environmental variation. In

such a case, the genetic variant would be expected to asso-

ciate more strongly with phenotypic variance in dizygotic

as compared to monozygotic twins due to greater cryptic

genetic variation.27 Other, similar non-specific interaction

effects have also been described. For example, quantile-

specific heritability is a phenomenon in which genetic

effects on a phenotype differ across that phenotype’s distri-

bution.28,29 Such quantile-specific genetic effects will pro-

duce a ‘‘non-specific’’ GxE, i.e., lead to identification of an

additive interaction in standard statistical model, for any

exposure having a substantial main effect on the outcome
rican Journal of Human Genetics 111, 626–635, April 4, 2024 629



Box 2. Connections with gene-gene interactions

Exploration of gene-gene interactions (GxG) is not a goal of this review, and we refer readers to more comprehensive

discussions of the topic and the additional considerations it requires.16,17 However, we highlight a few connections

between GxE concepts and previously reported GxG phenomena.

d Phenomenon 2 (nonlinear mediator) has an intuitive extension to GxG, where G and E are replaced by two ge-

netic variants, G1 and G2, that are independently associated with the mediator.

d A GxGmaymanifest as a GxE when one of the genetic variants is associated with E (i.e., G1xG2 combined with a

G2-E correlation produces G1xE). This E can be amediator of the genetic effect, resulting in a complex scenario of

interaction plus mediation that has been explored in the statistical7,18 and genetic epidemiology19 literature.

Alternatively, E may simply be a non-causal marker for G2. Resolving causal mechanisms in this context may

require research designs leveraging environmental variation that is independent of genetic factors.20

d Phenomenon 5 (heterogeneous measurement) has conceptual links to ‘‘phantom epistasis,’’ in which an

apparent interaction effect between two non-causal SNPs appears due to a combination of a true causal additive

genetic main effect(s) of an unobserved genotype and imperfect linkage disequilibrium of the causal genotype

with the marker variants.21
(and thus shifting the location of that phenotype within

its distribution).

Phenomenon 5. Heterogeneous exposure measurement

Description

Measurement error inEdecreases the estimatedmagnitudeof

a true associationwith Y. So, if G associateswith theprecision

of E measurement, then any nonzero E-Y association will

appear stronger in the genotype group with better measure-

ment, inducing a statistical GxE (Figure 5). Importantly, this

issue arises most clearly when G associates with the degree

of noise in measurement; a G-associated directional bias

may or may not manifest as a GxE depending on its nature.

Example

There aremany examples of genotype-associated differences

in the measurement of biological factors. Studies investi-

gating vitamin D-binding protein (DBP) have established

that the chemistry of some immunoassays leads to bias in

DBP measurement.30 In another example, self-reported

race- and ethnicity-associated differences in skin pigmenta-

tion (related to underlying genetic factors) have been shown

to lead to differential pulse oximeter performance in

measuring blood oxygen saturation.31 Meanwhile, genetic

influences on self-report-related quantities such as question-

naire missingness have also been described,32 with implica-

tions for differential measurement error.

Related phenomena

For some outcomes of interest, there may be floor or ceiling

effects that affect measurement of Y, such as a measure-

ment tool that maxes out at some value. Here, a strong ge-

netic main effect could indirectly increase measurement

error by pushing the mean of Y to more extreme

values.33,34 Additionally, this phenomenon can be rele-

vant even when measurement of a (non-E) covariate de-

pends on G. It has been recognized that confounder
630 The American Journal of Human Genetics 111, 626–635, April 4,
adjustment in interaction models often requires inclusion

of G-by-confounder terms, not just their main effects.35

Genotype-associated measurement error in a confounder

can affect the ‘‘quality’’ of this adjustment and thus E effect

estimates across genotype groups, as has been previously

observed in epidemiological models of main effects.36,37

Another related phenomenon combines this measure-

ment concern with the prior discussion of G-E correlation.

As observed by Dubridge and Fletcher, spurious GxEs can

appear when there is both (1) dependence between a

causal genetic variant and the exposure and (2) a non-

causal tag variant in imperfect linkage disequilibrium

with the causal variant.38 In this case, the interaction ap-

pears due to a combination of G-E correlation and mea-

surement error in the genotype.

Recommendations

Given the outlined phenomena, are GxEs ‘‘real’’? Clearly

yes, in the sense that the observed association of G and Y

depends on levels of E, and vice versa. However, in some

cases the GxE is merely a model- or measurement-related

statistical inevitability, without an underlying biological

mechanism. For example, phenomenon 5 will be spurious

in almost all cases, as measurement error is a practical issue

that will rarely be a direct component of biological hypoth-

eses. In contrast, phenomena 1 and 4 are both fundamen-

tally driven by biological processes, with genotypes

mechanistically modifying the relationship between the

outcome and a specific exposure (phenomenon 1) or all

associated exposures (phenomenon 4). Phenomena 2

and 3 represent a middle ground in that they may be

considered spurious in a study focused on biological mech-

anisms, but important for clinical prediction models.

Table S1 provides specific notes on statistical approaches

and software tools relevant to each of the phenomena

described. Below, we expand on some specific modeling

considerations in light of the prior discussion.
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Figure 3. Simulation of G-E correlation with nonlinearity
(A) The mean of E depends on G.
(B) The primary black line illustrates the true, nonlinear E-Y relationship. Dashed lines illustrate the different linear E-Y relationship at
specific E values, with colors corresponding to hypothetical genotypes with different mean E values.
(C) Results from simulation of an interaction arising from G-E correlation with nonlinearity.
d Clinically relevant cutoffs on the raw scale

(phenomena 1, 2, 3): Is a cutoff defined on a

continuous measure for making clinical decisions,

typically to prevent a downstream outcome? If so,

any GxE interaction associated with this outcome

on the scale of its measurement will be important.

For example, it is likely that there is at least some

nonlinearity in the increased cardiovascular disease

risk (downstream outcome) associated with LDL

cholesterol (continuous measure). Nonetheless, spe-

cific LDL-C cutoffs are established to guide the use

of cholesterol-lowering medication. Therefore, linear

interactions of genetic variants and medications

affecting LDL-C (as tested by a regression product

term) will be clinically important even if they do

not correspond to a functional interaction.

d Choice of outcome scale (phenomena 2, 3, 4):

Related to the above, the choice of outcome measure-

ment scale requires careful consideration. Choices

like log transformation or coding intervention effects

in terms of percentage changes are nonlinear transfor-

mations of the raw outcome. This consideration is

already important in studies of main effects and is

amplified for interaction studies due to the phenom-

ena described here. For example, nonlinear media-

tors, G-E correlation with nonlinearity, and heteroge-

neous variability are all defined fundamentally in

terms of the outcome scale. This choice may also

differ according to analysis stage: such nonlinear

transformations may be appropriate during hypothe-

sis-free scans (such as genome-wide interaction

studies) for which the purpose is mapping loci of in-

terest, with follow-up analyses using the raw outcome

scale in order to understand effect sizes and distin-
The America
guish between some of the phenomena described

above.

d Specificity of the exposure (phenomenon 4): Is

it important that an identified interaction be specific

to the exposure in question? A ‘‘true’’ vQTL will

amplify the effect of any exposure with a non-zero

main effect on the outcome, but this may not be

a concern for all studies. For example, such a variant

demonstrating a gene-diet interaction question

will be useful for precision nutrition (it will truly

modify the expected response to dietary changes),

but perhaps not for understanding the biological

mechanisms mediating the effects of that dietary fac-

tor. The answer to this question can guide sensitivity

analysis: upon finding a GxE, statistical tools are avail-

able to test for evidence of general vQTL effects inde-

pendent of a specific GxE.26 Furthermore, databases of

vQTLs are beginning to appear, in which investigators

can look for prior evidence of variance modification at

genetic variants of interest,23 though as noted above,

these may appear secondary to a specific GxE rather

than indicating a general variance modulation effect.

d Shape of the E-Y relationship (phenomena 2,

3): It is almost always helpful to understand the shape

of E-Y associations across a substantial dynamic range

of E prior to conducting an interaction analysis. Non-

linearities in this relationship may manifest as inter-

actions via these phenomena (e.g., G-E correlation

with nonlinearity), and intentional nonlinear trans-

formations of E can be tested for interaction in

some cases. This concern also has direct implications

for replication across cohorts, a known challenge for

the GxE field.1 If two populations have substantially

non-overlapping dynamic ranges of an E, their E
n Journal of Human Genetics 111, 626–635, April 4, 2024 631



Figure 4. Simulation of heterogeneous variability
(A) G directly affects the variability, but not the mean, of Y. E (with two specific values indicated by the dotted and dashed lines) affects
the location of Y within its distribution (i.e., its percentile) in a way that is consistent across G.
(B) E has a consistent effect on Y* (Y’s percentile) across G (lines for genotypes AA and AB are hidden but identical).
(C) E has differential effects on the actual value of Y across G, due to the simultaneous differential variability.
(D) Results from simulation of a heterogeneous variability-based interaction.

632
main effects and GxE interactions will likely be

different, impacting both analytical choices (such as

nonlinear transformations of E) and population selec-

tion (matching populations with similar E distribu-

tions for discovery and replication).

d Measurement of E (phenomena 3, 5): Investiga-

tors should consider the nuances and limitations of

the measurement of the E variable used in GxE tests.

Is it a continuous variable, and if so, are there any

threshold effects in its ability to capture the underly-

ing trait of interest? Is its value or measurement preci-

sion plausibly under genetic control by the variant(s)

being tested? Fortunately, some of these questions can

be evaluated directly to some extent: G-E correlation

can be tested straightforwardly, while measurement

heterogeneity can be evaluated by comparing geno-

type-stratified variances or, ideally, intraclass correla-

tion coefficients from repeated measures.

d Polygenic scores (all phenomena): Polygenic

scores can improve statistical power and increase

the strength of the genetic instruments being tested

for interaction. However, they also render interpreta-

tion (and the considerations above) more difficult.

For example, the aggregation across multiple biolog-

ical pathways makes it harder to reason about

whether a polygenic score acts as a ‘‘true’’ vQTL or

whether it directly influences exposure measurement

quality. One strategy that may be helpful is the use

of clustered or pathway-specific polygenic scores,

which partially reduces the complexity in interpreta-

tion.39,40 The accumulation of signal over many vari-

ants in polygenic scores also makes the phenomena

described here more likely, such as the manifestation
The American Journal of Human Genetics 111, 626–635, April 4, 20
of phenomenon P3 due to a stronger potential associ-

ation with some E.
Conclusions

For any experiment exploring potential GxEs, the underly-

ing hypothesized mechanism is a critical element to under-

stand, describe, and use in guiding experimental choices.

Functional interactions, involving direct and specificmolec-

ular-level interactions, are often assumed. However, statisti-

cal GxEs can appear due to the use of linearmodels to test re-

lationships that are truly nonlinear (whether the G or E

themselves, or a mediator, have nonlinear association with

the outcome Y). They may also show up secondary to unac-

counted-for genetic effects on phenotype variability ormea-

surement. The extent to which these various explanations

are part of the hypothesis in question, versus alternative pos-

sibilities that would ‘‘explain away’’ the sought-after effect,

will depend on the specific hypothesis being tested. In pre-

senting this framework of data-generating mechanisms for

observedGxEs,wehope to facilitate greater clarity andbetter

experimental design in the genetics community.
Data and code availability

The code used for simulation and figure creation is

available at https://github.com/kwesterman/roads-to-gxe-

review.
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Supplemental information can be found online at https://doi.org/
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Figure 5. Simulation of heterogeneous measurement
(A) G directly affects the measurement accuracy of E.
(B) The true E-Y relationship is consistent across G.
(C) The measured E-Y relationship differs across G.
(D) Results from simulation of a heterogeneous measurement-based interaction.
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