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ARTICLE

The association of cigarette smoking
with DNA methylation and gene expression
in human tissue samples

James L. Li,1,2,10 Niyati Jain,1,3,10 Lizeth I. Tamayo,1 Lin Tong,1 Farzana Jasmine,4

Muhammad G. Kibriya,1 Kathryn Demanelis,5,6 Meritxell Oliva,1,7 Lin S. Chen,1

and Brandon L. Pierce1,8,9,*
Summary
Cigarette smoking adversely affects many aspects of human health, and epigenetic responses to smoking may reflect mechanisms that

mediate or defend against these effects. Prior studies of smoking and DNAmethylation (DNAm), typically measured in leukocytes, have

identified numerous smoking-associated regions (e.g., AHRR). To identify smoking-associated DNAm features in typically inaccessible

tissues, we generated array-based DNAm data for 916 tissue samples from the GTEx (Genotype-Tissue Expression) project representing

9 tissue types (lung, colon, ovary, prostate, blood, breast, testis, kidney, and muscle). We identified 6,350 smoking-associated CpGs in

lung tissue (n ¼ 212) and 2,735 in colon tissue (n ¼ 210), most not reported previously. For all 7 other tissue types (sample sizes 38–

153), no clear associations were observed (false discovery rate 0.05), but some tissues showed enrichment for smoking-associated

CpGs reported previously. For 1,646 loci (in lung) and 22 (in colon), smoking was associated with both DNAm and local gene expression.

For loci detected in both lung and colon (e.g., AHRR, CYP1B1, CYP1A1), top CpGs often differed between tissues, but similar clusters of

hyper- or hypomethylated CpGs were observed, with hypomethylation at regulatory elements corresponding to increased expression.

For lung tissue, 17 hallmark gene sets were enriched for smoking-associated CpGs, including xenobiotic- and cancer-related gene sets. At

least four smoking-associated regions in lung were impacted by lung methylation quantitative trait loci (QTLs) that co-localize with

genome-wide association study (GWAS) signals for lung function (FEV1/FVC), suggesting epigenetic alterations can mediate the effects

of smoking on lung health. Our multi-tissue approach has identified smoking-associated regions in disease-relevant tissues, including

effects that are shared across tissue types.
Introduction

Cigarette smoking has many detrimental effects on human

health, including increased risk for cancer, cardiovascular

diseases, and respiratory diseases.1 Tobacco smoke con-

tains thousands of chemicals, dozens of which are known

carcinogens, and the potential mechanisms underlying

the adverse effects of these chemicals on health include

DNA damage, inflammation, and oxidative stress.2 The ef-

fects of smoking on specific features of the human epige-

nome have been described previously, including studies

that identify associations between smoking behaviors

and epigenetic features, such as DNA methylation

(DNAm) at cytosine-guanine (CpG) dinucleotides.3,4

The association between cigarette smoking and DNAm

has been characterized in prior epigenome-wide association

studies (EWASs).5–22Gene regionswhereDNAmin leukocytes

shows consistent associationwith smoking status include the

aryl-hydrocarbon receptor repressor (AHRR),7,9,19–22 coagula-

tion factor II (thrombin) receptor-like 3 (F2RL3),7–9,19–21 G

protein-coupled receptor 15 (GPR15),7,19,21 2q37.1 (contain-
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ing ALPPL2),7,9,19 and 6p21.33 (major histocompatibility

complex) regions.7,9,19,20 These studies demonstrate that

DNAmchanges inblood canbeused asbiomarkers of tobacco

exposure and smoking history,6 and subsequent studies have

reported associations between smoking-related DNAm fea-

tures and risk for smoking-related diseases, such as lung

cancer.23,24

While the majority of prior studies on this topic focus on

the effects of smoking on DNAm in leukocytes, there have

been a small number of studies focusing on other tissue

types, including lung,6,15 cord blood,25 placenta,17 and

blood from newborns with prenatal exposure.11,16 These

studies highlight regions affected by tobacco exposure

in multiple tissue types (e.g., AHRR),10,16,18,22,25,26 as

well as effects that are potentially tissue-specific (e.g.,

cg27402634 near LEKR1 and long noncoding RNA

LINC00886, a hallmark of maternal smoking in pla-

centa).17 However, the association of cigarette smoking

with DNAm in non-blood tissue types has received rela-

tively little attention, as most tissue types are typically

inaccessible in human studies.
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In this study, we generate genome-wide array-based

DNAm data using human tissue samples from the

Genotype-Tissue Expression (GTEx) project to assess the

association of smoking and DNAm in the lung, colon,

and seven additional tissue types.
Material and methods

Sample collection and ethics approval
As detailed in Oliva et al.,27 the GTEx research protocol was re-

viewed by Chesapeake Bay Review, Roswell Park Comprehensive

Cancer Center’s Office of Research Subject Protection, and the

institutional review boards at the University of Pennsylvania. An-

alyses of DNA samples fromGTEx participants at the University of

Chicago was not considered human subjects research by the uni-

versity’s institutional review board since only deidentified data

on deceased individuals were utilized in this study.

The GTEx project
The GTEx project has established a biobank of human tissue sam-

ples from >950 postmortem multi-tissue donors for the study of

molecular phenotypes.28 The GTEx v8 dataset consists of tissue-

specific RNA-sequencing and genotyping data from 838 donors

and 17,382 unique samples from 52 tissue types.29,30 GTEx also

provides information on sex, age, and race/ethnicity based on

questionnaire data, as well as measurements of ischemic time

for all samples. For this project, we obtained DNAm measure-

ments for 916 GTEx tissue samples representing nine tissue types

(lung, colon, ovary, prostate, whole blood, breast, testis, kidney,

and muscle), described previously.27 These nine tissue types

were selected based on several criteria reflecting our research in-

terests, including inclusion of cancer-relevant tissues (lung, co-

lon, prostate, ovary, breast, and kidney), tissues with unique ag-

ing biology (testis and skeletal muscle), and tissues commonly

used in epidemiological research (whole blood). With resources

available to profile DNAm for �1,000 samples, we selected larger

numbers of samples for some tissue types of strong public health

interest (e.g., lung, colon, and ovary) and to assess the impact of

sample size on power for DNAm quantitative trait loci (mQTL)

detection.27

Determination of smoking status for GTEx donors
Smoking status was assigned ‘‘ever cigarette smoker’’ for GTEx do-

nors with a reported history of cigarette smoking and ‘‘never ciga-

rette smoker’’ for donors with no reported history of cigarette

smoking. Assignment was based on the MHSMKSTS variable

(smoking status: yes, no, unknown) and the MHSMKTP variable

(smoke type: cigarette, cigar, pipe, others) provided by GTEx. We

were able to assign ever/never status to 396 donors with DNAm

data (269 cigarette smokers and 127 non-cigarette smokers),

with 21 donors (46 samples) lacking data on cigarette smoking sta-

tus. Ever cigarette smokers include both current and former

smokers; however, the distinction between these two smoking cat-

egories was not assessed in our primary analyses due to incomplete

information of prior smoking and smoking duration for many

GTEx donors. However, we constructed a ‘‘current smoker’’ vari-

able, which was used for secondary analyses. This variable was

constructed using free text comments from family members of

the tissue donors, recorded in the MHSMKCMT variable provided

by GTEx.
The Ame
DNAm data and quality control
DNA was extracted from GTEx tissue samples via the Qiagen

Gentra Puregene method at GTEx Laboratory Data, Analysis and

Coordinating Center (LDACC). The LDACC shipped DNA from

1,000 unique tissue samples to the University of Chicago. These

1,000 samples represent 424 unique GTEx donors and 9 unique

GTEx tissue types. Genome-wide DNAm at >850,000 CpG sites

was assessed using the InfiniumMethylationEPIC array (Illumina,

SanDiego, CA, USA). All DNA samples were prepared and analyzed

in accordance with the manufacturer’s guidelines and protocols.

For sample quality control (QC), we excluded 3 samples with un-

detectable or missing methylation values (detection p > 0.01) in

R5% of CpGs, 6 samples with mismatched sex, and 13 samples

that did not show clear clustering with their corresponding tissue

type. The EPIC arraymeasures 59 high-frequency SNPs that can be

used as a genetic fingerprint.31 Using these SNPs, we identified one

sample that did notmatch the donor’s existing genotype data, and

this sample was excluded. The 15 male samples from breast tissue

were excluded from the DNA methylation data. The 46 samples

lacking data on cigarette smoking status were also excluded from

the analyses. In total, 84 samples were excluded. After excluding

samples due to quality control or missing data issues, there were

916 samples used for analysis (representing 9 tissue types and

398 GTEx donors).

For CpG QC, we followed guidance from Pidsley et al.32 We

excluded CpGs measured by probes with potential non-specific

binding (n ¼ 43,254), CpGs overlapping genetic variants or with

variants that overlap single-base extension sites for type 1 probes

(n ¼ 7,708), CpGs mapping to the X and Y chromosomes (n ¼
16,037), and poorly performing CpGs according to Illumina

(n ¼ 169). We also excluded CpGs that had detection p > 0.01

in at least one sample (n¼ 44,135). A total of 754,119 CpGs passed

QC andwere retained for analyses. Genomic positions for all CpGs

(and for all SNP and gene expression analyses described below) are

based on human reference genome build hg19.
GTEx gene expression data
Gene-level expression data (v8) derived from RNA sequencing was

obtained from the GTEx portal. The expression value for each gene

was estimated as reads per kilobase of transcript per million map-

ped reads (RPKM) using RNA-SeQC on uniquelymapped, properly

paired reads fully contained within exon boundaries and with

alignment distances %6.33 Samples with <10 million mapped

reads or with outlier expression measurements based on the D sta-

tistic were removed.34 A total of 56,200 genes in the v8 dataset had

expression levels recorded in both read counts and transcripts per

million (TPM). Read counts from these genes were normalized

across samples using the trimmed mean of M-values (TMM)

normalization method in the ‘‘edgeR’’ package to generate TMM-

normalized TPM for each gene.35 Following TMM normalization,

genes were selected based on the expression threshold of >0.1

TPM in at least 20% of samples and R6 reads in at least 20% of

the samples. We then restricted to the fully processed, filtered,

and normalized autosomal genes from the GTEx v8 dataset, which

resulted in 25,272 genes expressed in lung (n ¼ 541) and 24,580

genes expressed in colon (n ¼ 382).
Association of cigarette smoking status with DNAm
The beta values for each CpG were logit transformed into

M-values prior to analyses using the following formula: log2[-

beta/(1 � beta)]. For each tissue type, the association between
rican Journal of Human Genetics 111, 636–653, April 4, 2024 637



smoking status (ever/never) and DNAm at each CpG site was esti-

mated using a linear model implemented in the ‘‘limma’’ pack-

age36 in R, with age, sex, body mass index (BMI), race/ethnicity,

ischemic time, batch/plate, and surrogate variables (SVs) included

as covariates. For analyses of lung tissue, we also adjusted for

common lung-related health conditions, including asthma (n ¼
24), chronic obstructive pulmonary disease (COPD) (n ¼ 34),

and pneumonia (n ¼ 24). The R ‘‘sva’’ package37 was used to

generate the SVs for each tissue type. We included the smoking

variable in the full model matrix but omitted the smoking vari-

able from the null model matrix to prevent the effects of smoking

from being captured by SVs. The resulting SVs were used to con-

trol for technical variation and other biologic sources of vari-

ability (i.e., cell-type composition). As a general rule, we adjusted

for 10 SVs for tissue types with n > 100 and 5 SVs for tissue types

with n < 100. To ensure the SVs captured all variability due to

cell-type composition (but not effects of smoking), we examined

correlations of the first 20 SVs (per tissue type) with smoking sta-

tus and cell-type composition estimates (derived using the

EPISCORE method as described below). SVs showing clear associ-

ation with EPISCORE cell-type estimates were typically among

the top 5 SVs (Table S1). We considered the exclusion of SVs asso-

ciated with smoking status. For example, for lung tissue, four of

the top 10 SVs showed association with smoking status

(p < 0.05); however, including these SVs as covariates resulted

in only mild attenuation of associations observed, so all 10 SVs

were retained. For colon DNAm data, no SVs were associated

with smoking status, so all 10 SVs were retained. The false discov-

ery rate (FDR) was estimated using the Benjamini-Hochberg

method.38

Estimating power to detect smoking-related CpGs at

varying sample sizes
We estimated the power to detect the effect sizes observed for

CpGs identified in lung tissue (FDR 0.05) at sample sizes similar

to other tissues by first generating 1,000 random subsamples of

our lung tissue samples at sample sizes of 50, 100, and 150.

We then performed an EWAS (described above) in each of

these subsamples and determined the proportion of subsamples

where we identified the smoking-associated CpG with the

largest effect size magnitude (cg01584760), median effect size

magnitude (cg20291548), and the smallest effect size magnitude

(cg09138315) observed in lung.

Enrichment of smoking-associated CpGs in each tissue

with previously reported CpGs
To assess whether smoking-associated CpGs in each of our tissues

were significantly enriched for previously reported CpGs in

whole blood,39 adipose,13 placenta,17 or CpGs identified in ana-

lyses of GTEx lung tissue, we calculated the proportion of all

smoking-associated CpGs (p < 10�5) in each tissue that had

been reported previously for each of these tissue types (and based

on GTEx lung results). We performed a one-sided, two-sample z

test of proportions to determine if CpGs previously reported

were higher than the proportion of smoking-associated CpGs de-

tected among all CpGs analyzed. We repeated these analyses us-

ing a p< 10�3 threshold for classifying smoking-associated CpGs.

Association of smoking status with gene expression
The association between smoking status and expression in lung

and colon for each gene was estimated using a linear model imple-
638 The American Journal of Human Genetics 111, 636–653, April 4,
mented in ‘‘limma,’’ adjusting for age, sex, BMI, race/ethnicity,

ischemic time, and 5 SVs (created using expression data). For

lung tissue, we also adjusted for three lung-related diseases:

asthma, COPD, and pneumonia (as described above).
Enrichment and pathway analyses for smoking-related

CpGs
We compared the proportion of smoking-associated CpG sites

(FDR 0.05) assigned to island, shore, shelf, and open sea (Illumina

annotations) in lung and colon tissue to the distribution in the

entire Infinium MethylationEPIC array (754,199 CpGs) using

chi-square tests. We assessed enrichment of smoking-associated

CpGs in chromatin segmentation features using reference data

from the Roadmap Epigenomics project database40 (primary tissue

colonic mucosa and lung). We used the R package ‘‘oddsratio’’ to

calculate enrichment and Fisher’s exact test to compute p values.

The above enrichment analyses were performed stratified by hy-

permethylated vs. hypomethylated smoking-associated CpG sites.

Additionally, we performed a motif enrichment analysis to iden-

tify enrichment of smoking-associated CpGs in transcription fac-

tor binding sites (TFBS). We used annotations from the ENCODE

version 2 and 3 chromatin immunoprecipitation sequencing ex-

periments (1,256 experiments), representing 340 transcription

factors (TFs) in 129 cell and tissue types. These annotations were

obtained from the University of California, Santa Cruz (UCSC) ta-

ble browser (encRegTfbsClustered, build hg38). We assessed

enrichment via hypogeometric tests, using the phyper function

in R. CpGs were additionally assigned to genes (based on annota-

tions provided by Illumina), and genes were assigned to pathways

and biologic processes using the hallmark gene set collections (n¼
50 sets),41 as well as Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway annotations42–44 We conducted gene set enrich-

ment analysis (GSEA) using the gometh function in ‘‘mis-

sMethyl’’45 for lung and colon tissues using smoking-associated

CpGs (FDR 0.05). This function accounts for the potential bias

in GSEA due to the number of CpGs per gene by computing prior

probabilities46 and evaluates enrichment using a hypergeometric

test. Enriched gene sets were defined as those passing an FDR of

0.05. The motif enrichment analysis and pathway analysis were

performed for all smoking-associated CpGs as well as stratified

by hypomethylated vs. hypermethylated smoking-associated

CpGs.
Identification of mQTLs for smoking-associated CpGs

that co-localize with GWAS signals for tissue-relevant

diseases
For the 2,478 smoking-associated CpGs observed in lung tissue

(FDR < 0.01) and the 662 CpGs observed in colon tissue, we

identified the CpGs previously shown to be affected by an

mQTL in GTEx lung or colon tissue.27 For the 566 CpGs and

68 CpGs identified in lung and colon, respectively, we extracted

the identifiers for the lead SNP for each corresponding mQTL

(550 and 68 lead SNPs, respectively). We then searched for these

lead SNPs of lung mQTLs in the genome-wide summary statis-

tics from several large genome-wide association studies (GWASs)

of lung-related diseases and phenotypes,27,47–49 including lung

cancer, asthma, chronic obstructive pulmonary disease, as well

as two spirometry-based phenotypes that have been clinically

used to assess lung health: FVC (forced vital capacity) and

FEV1/FVC (forced expiratory volume in the first 1 s divided

by the forced vital capacity) (obtained from MR-Base).48 We
2024



additionally searched for these lead SNPs of colon mQTLs in

several large GWASs of colorectal cancer and inflammatory

bowel disease.50,51 We retained all mQTL lead SNPs showing as-

sociation (p < 5 3 10�8) in these GWASs (corresponding to 10

mQTLs in lung). For each mQTL retained, we used mQTL results

for SNPs within 250 kb of the lead mQTL SNP to test for coloc-

alization with the corresponding GWAS association signal, using

GWAS summary statistics for the same set of SNPs via the ‘‘co-

loc’’ package in R52 with the following default prior probabili-

ties: the prior probability of a SNP is associated with either

mQTL or GWAS ¼ 1.0 3 10�4; the prior probability of a SNP is

associated with both mQTL and GWAS ¼ 1.0 3 10�5. We visual-

ized evidence of colocalization using the LocusCompare

software.53
Analyses of cell-type proportions
For lung and colon, we estimated cell-type composition using the

methylation-based EPISCORE method (‘‘wRPC’’ function) using a

pan-tissue DNAm atlas54 as a reference dataset. We chose this

method instead of expression-based deconvolution methods

because (1) it provides cell-type estimates for all samples with

DNAm data (some of which lack RNA-sequencing data) and (2)

it provides cell-type estimates based on the same tissue samples

used for DNAm measurement (as RNA was extracted from a

different piece of tissue). The cell types estimated by EPISCORE

and their distributions are shown in Figure S1. We observe inter-

individual variability in cell-type proportions and correlation

with DNAm-derived SVs.

For benchmarking purposes, we compared EPISCORE estimates

of epithelial cell proportions to epithelial cell enrichment scores

previously computed for GTEx samples using xCell, an expres-

sion-based method (Figure S2).55 EPISCORE epithelial cell esti-

mates and xCell epithelial scores were not correlated in lung

(Spearman rho ¼ �0.093; p ¼ 0.29) but showed a clear correlation

in colon (rho ¼ 0.55; p ¼ 4.1 3 10�7). Thus, we have more confi-

dence that our cell-type estimates accurately represent cell-type

abundances in colon samples (as compared to lung). However,

we utilize EPISCORE estimates for both tissue types for smoking-

by-cell-type interaction analyses. To identify effects of smoking

that vary by cell types in lung tissue, we identified CpGs involved

in smoking and cell-type interactions (SxCT) by performing an

interaction test between smoking and a given cell type for all

CpGs and for each inferred cell type. For these SxCT analyses,

we transformed cell-type proportion estimates obtained from

EPISCORE to standard normal distributions. We performed a

linear regression testing the association of DNAm with the smok-

ing and cell-type proportion interaction term, adjusting for age,

sex, BMI, race/ethnicity, and ischemic time. For analyses of lung

tissue, we also adjusted for common lung-related health condi-

tions mentioned above.
Results

Characteristics of GTEx tissue donors

We generated DNAm data for 917 unique tissue samples,

obtained from 396 unique GTEx donors, representing 9

different GTEx tissue types (Table 1). Sample sizes analyzed

for each tissue type ranged from 38 (breast) to 212 (lung).

The number of tissues analyzed per donor ranged from 1 to

7 (average of 2.3). Among tissue types that are not sex spe-
The Ame
cific,�70% of samples came frommale donors. 85% of the

398 donors were reported to be white. Among all donors

included, 70% were classified as smokers, and there were

no clear differences in this percentage across age groups.

Identification of smoking-associated CpG sites across

different tissue types

Analyses of smoking status in relation to genome-wide

DNAm in lung (n ¼ 212) identified 6,350 smoking-associ-

ated CpG sites at an FDR of 0.05 (p < 0.0004) (Table S2),

including many reported in previous EWASs. However,

the majority of the CpGs identified (6,209 CpGs) have

not been reported in previous studies of DNAm in blood

cells based on a recent review of smoking-related changes

in DNAm and gene expression.39 Analyses of smoking

and DNAm in colon (n ¼ 210) resulted in 2,735 smok-

ing-associated CpGs at an FDR of 0.05 (p < 0.0001). Smok-

ing-associated CpGs identified in lung had effect sizes with

magnitudes ranging from 0.073 to 1.459, with a mean ef-

fect size of 0.286; those identified in colon had effect sizes

withmagnitudes ranging from 0.072 to 1.075, with amean

effect size of 0.334. For all 7 other tissue types (with sample

sizes ranging from 38 to 153), no clear associations with

smoking status were observed (FDR of 0.05, Table S2 and

Data S1–S9).

Secondary analyses performed in lung and colon tissues

using current vs. never smoking as the exposure variable

produced a larger number of CpGs passing the FDR

threshold (Table S2b), but the top CpGs were the same,

and p values were similar (Data S10 and S11). Additionally,

we observed strong correlation between association esti-

mates from our primary EWAS in lung tissue (ever vs.

never) and our secondary EWAS (current vs. never) (R ¼
0.87), with a slight bias toward stronger association in

the secondary analysis (Figure S3); this correlation was

even stronger for smoking-associated CpGs reaching an

FDR of 0.05 (R ¼ 0.99). However, our remaining analyses

focus on our primary exposure variable (ever vs. never

smoking).

The abundance of smoking-associated CpG sites

observed for lung was clearly larger than those observed

for colon (a tissue type with similar sample size). To assess

the extent to which lung tissue showed more prominent

effects of smoking than other tissue types, we randomly

selected subsets of lung samples to produce sample sizes

similar to those of the other tissue types studied (e.g.,

n ¼ 111 for prostate). After this down-sampling, the num-

ber of smoking-related CpGs detectable in lung tissue was

larger than the number detected in ovary (n ¼ 153) in

1,000 of 1,000 subsamples and the number detected

in prostate (n ¼ 111) in 997 of 1,000 subsamples

(Figure S4). However, for tissue types with sample sizes of

�50, we had limited power to clearly demonstrate that

lung had a larger number of smoking-associated CpGs

(Figure S4). To assess power to detect the effect sizes

observed in lung at lower sample sizes, we performed an

EWAS in 1,000 random subsamples of lung tissue samples
rican Journal of Human Genetics 111, 636–653, April 4, 2024 639



Table 1. Summary of GTEx tissue samples used for DNA methylation analyses

Tissue types

Lung
(n ¼ 212)

Colon
(n ¼ 209)

Ovary
(n ¼ 153)

Prostate
(n ¼ 111)

Whole blood
(n ¼ 52)

Breast
(n ¼ 38)

Testis
(n ¼ 48)

Kidney
(n ¼ 47) Muscle (n ¼ 46)

Age (years) 55.1 (11.1) 55.7 (11.4) 50.7 (13.5) 54 (12.4) 49.7 (12.7) 50.0 (11.9) 53.7 (12.2) 59.3 (8.3) 56.9 (10.5)

BMI (kg/m2) 27.5 (3.9) 27 (3.9) 26.8 (4.2) 27 (3.8) 27.3 (4.2) 25.4 (3.94) 27.1 (3.8) 26.2 (3.8) 26.7 (4.4)

Sex

Male 150 (70.8) 143 (68.4) 0 111 (100) 43 (82.7) 0 48 (100) 36 (76.6) 27 (58.7)

Female 62 (29.3) 66 (31.6) 153 (100) 0 9 (17.3) 38 (100) 0 11 (23.4) 19 (41.3)

Race

White 180 (84.9) 183 (87.6) 124 (81.1) 101 (91) 46 (88.5) 32 (84.2) 45 (93.8) 42 (89.4) 40 (87)

Af. Americans 27 (12.7) 21 (10) 26 (17) 8 (7.2) 5 (9.6) 6 (15.8) 3 (6.3) 5 (10.6) 6 (13)

Others 5 (2.4) 5 (2.4) 3 (2) 2 (1.8) 1 (1.9) 0 0 (0) 0 0

Cigarette smoking

Ever 150 (70.8) 152 (72.7) 96 (62.8) 73 (65.8) 40 (76.9) 27 (71.1) 36 (75) 37 (78.7) 34 (73.9)

Current 89 (42) 91 (43.5) 66 (43.1) 42 (37.8) 25 (48.1) 19 (50) 16 (33.3) 19 (40.4) 15 (32.6)

Former 61 (28.7) 61 (29.2) 30 (19.6) 31 (27.9) 15 (28.8) 8 (21.1) 20 (41.7) 18 (38.3) 19 (41.3)

Never 62 (29.3) 57 (27.3) 57 (37.3) 38 (34.2) 12 (23.1) 11 (28.9) 12 (25) 10 (21.3) 12 (26.1)

Format of metrics in table is as follows (mean [SD] or n [%]). Report of the donor’s race was either reported by the donor, the donor’s family/next of kin, or
abstracted from medical records. The classification categories were taken from the NIH and refer to geographically based categories that humans share (i.e., com-
mon history, nationality, or geographic distribution).
(at sample sizes of 50, 100, and 150) and determined the

proportion of subsamples that included the smoking-asso-

ciated CpG with the largest (cg01584760), median

(cg20291548), and smallest (cg09138315) effect size

magnitude observed in lung. In subsets with n ¼ 50,

none of the three CpGs were identified. For sample sizes

of 100 and 150, the CpG with the largest effect size was de-

tected in 54.0% and 98.2% of subsamples, respectively,

and the CpG with the median effect size was discovered

in 0.4% and 34.9% of subsamples, respectively (Table S3).

Together, these results demonstrate the expected power

for each tissue-specific analysis to detect effect sizes similar

to those observed in lung.

For each tissue type, we specifically examined the CpGs

associated with smoking in lung (from analyses of GTEx re-

ported here), blood cells (3,722 CpGs reported in a recent

review of 30 studies focused on the association of active

smoking with DNAm and gene expression),39 placenta tis-

sue (443 CpGs),17 and adipose tissue (42 CpGs)13 (based on

prior studies) to assess the evidence that some smoking-

associated CpGs are shared across tissue types. Among

the tissues examined, colon, ovary, whole blood, breast,

and kidney showed the strongest evidence of enrichment

for smoking-associated CpGs identified in GTEx lung tis-

sue (Figure 1; Table S4). These tissue types were also en-

riched for CpGs identified previously in whole blood; in

addition, muscle and prostate were enriched for CpGs pre-

viously identified in adipose tissue (Figure 1; Table S4). In

contrast, with the exception of lung tissue, other tissue

types were not enriched for smoking-associated CpGs
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identified previously in placental tissue (Figure 1;

Table S4). The overlap of smoking-associated CpGs be-

tween tissue types and the overlap of genes annotated to

these CpGs are characterized in Figures S5 and S6.

Since the abundance of CpGs detected in each tissue is

dependent on sample size, we compared association esti-

mates of smoking-associated CpG sites in lung to estimates

of the same of set CpG sites in the other 8 tissues

(Figure S7). Association estimates for CpG sites identified

in lung showed clear positive correlations (p < 1.9 3

10�7) with estimates from all other tissue types (except

muscle). While correlations were generally weak, our re-

sults indicate that many smoking effects in lung are pre-

sent in other tissues, suggesting the lack of signal in other

tissues is due in part to limited power. Additionally, we per-

formed stratified EWAS by sex for lung and colon

tissues. We observed effect size estimates across smoking-

associated CpGs identified in our primary analysis

(FDR < 0.05) were strongly correlated between males and

females in both lung (R2 ¼ 0.70) and colon (R2 ¼ 0.56)

(Figure S8).

Regions in which smoking is associated with both DNAm

and gene expression

Examining the association of smoking status with DNAm

and gene expression (in lung and colon), we observe that

smoking is associated with both DNAm and gene expres-

sion in some regions. In lung tissue, notable gene regions

included CYP1B1, AHRR, and CYP1A1, with AHRR expres-

sion and methylation also showing clear association with
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Figure 1. Quantile-quantile plots of p values showing the association between smoking status and DNAm by tissue type
Results are shown for genome-wide analyses in each tissue (black circles), for the 6,350 CpG associated with smoking based on GTEx
lung samples (blue circles), and for the 3,722 CpGs associated with smoking based on prior studies of DNAm in blood samples39 (red
circles), adipose samples (orange circles),13 and placenta samples (gray circles).17 Several noteworthy genes with previously reported as-
sociations between smoking and DNAm are labeled including AHRR, NOTCH1, and EDC3.
smoking in colon tissue (Figure 2). The strongest smoking-

related gene expression signal in both colon and lung was

GPR15, a gene previously reported to be a biomarker of

smoking in leukocytes (both expression and methyl-

ation).56,57 The CpG with the strongest evidence of associ-

ation in this region in colon (cg19859270, p ¼ 3.7 3 10�8)
The Ame
did not pass QC for lung. Overall, 994 loci in lung and 3 in

colon showed association of smoking with both DNAm

and gene expression (Tables S5 and S6).

The top 10 smoking-associated DNAm features/regions

for lung and colon are shown in Table 2. For lung, 7 of

the 10 regions have been previously reported in prior
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Figure 2. p values corresponding to the association of smoking status with DNAm and gene expression in lung (top) and colon (bot-
tom) GTEx samples
Regions associated with both DNAm and gene expression based on a Bonferroni p value threshold are indicated with green dots. Gene
expression analyses are based on 541 lung samples and 382 colon samples. Blue line represents the FDR threshold and red line represents
the Bonferroni threshold.
studies of DNAm, including blood cells,7,13,39,58–60 non-tu-

mor lung tissue,6 adipose tissue,13 oral mucosa61 and/or

non-small-cell lung cancer.62Most of these regions contain

multiple smoking-associated CpGs, including AHRR with

66 CpGs, CYP1A1 with 18 CpGs, and LRP5 with 15

CpGs. Six of these regions also showed evidence of associ-

ation with smoking in colon (FDR 0.05): HIPK2, AHRR,

CYP1A1, AOPEP, LRP5, and CYP1B1.

Among the top 10 smoking-associated regions in

colon (Table 2), five have been previously reported in prior

studies of non-tumor lung tissue6 and/or blood.25,58,63–65
642 The American Journal of Human Genetics 111, 636–653, April 4,
However, among these 10 regions, only two (AHRR and

GPR55) showed evidence of association with smoking in

lung (FDR 0.05). The smoking-associated sites we identi-

fied in colon include CpGs annotated to RHOU andWNK2.

For several regions in which smoking was associated

with both DNAm and gene expression (in both lung

and colon), we examined the smoking and DNAm associ-

ations in detail. In the AHRR region (Figure 3), we observe

clear differences between lung and colon with respect to

the CpGs showing the clearest (based on p value) associa-

tion with smoking. However, we observe some similarities
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Table 2. Top smoking-associated CpGs in GTEx lung and colon samples (based on p value)

Tissue

Annotated
genea

(or region) Chr:Position CpG p value
CpGs passing
FDRb

Region identified
previously

Other tissues
(FDR 0.05)

Association with
expression (p value)

Lung EDC3 15:74935742 cg26843110 2.61E-25 4 yes no up (5.63E-12)

HIPK2 7:139420300 cg03224163 3.70E-23 4 yes colon down (0.05)

AHRR 5:346695 cg04135110 6.97E-22 66 yes colon up (1.08E-46)

CYP1A1c 15:75015502 cg23655854 8.26E-22 18 yes colon up (3.08E-17)

AOPEPd 9:97544885 cg21081352 1.79E-19 5 no colon no

5p15.33 5:1128194 cg03504128 3.76E-19 1 no no N/A

LRP5 11:68079135 cg04840942 1.70E-17 15 yes colon no

PLA2G4E 15:42313231 cg16167478 2.47E-17 6 no no up (2.61E-12)

NOTCH1 9:139416102 cg14120703 1.04E-16 2 yes no down (0.04)

CYP1B1 2:38296474 cg01584760 2.83E-16 10 yes colon up (1.90E-16)

Colon AHRR 5:374252 cg04141806 2.85E-12 17 yes lung up (2.31E-7)

GPR55e 2:231809610 cg08840017 7.61E-12 1 yes no up (6.31E-6)

HIPK2 7:139366758 cg25748521 4.40E-11 2 yes lung no

RHOU 1:228871677 cg27437294 1.73E-10 2 no no no

WNK2 9:95947164 cg10281741 1.99E-10 5 no no no

FAM184B 4:17783205 cg01886556 4.88E-10 4 yes no no

LAMA3 18:21269793 cg25009504 7.59E-10 3 no no no

NRP1 10:33624100 cg09009410 1.35E-09 4 no lung no

NHLH2 1:116381475 cg24106636 3.17E-09 2 no no N/A

DIP2C 10:735472 cg25488288 3.54E-09 2 yes no no

aBased on Illumina’s annotation for the EPIC array. Cytoband is listed if there is no annotated gene.
bThe number CpGs passing FDR (0.05) that are annotated to the gene listed (based on Illumina’s annotation).
cCYP1A1 and EDC3 are in the same region, separated by < 25 kb.
dAOPEP is also known as C9ORF3.
eCpG cg08840017 was assigned to GPR55 as it resides in a GRP55 isoform.
between lung and colon with respect to patterns/clusters

of increased and decreased methylation across the AHRR

region (Figure S9). For example, decreased methylation

among smokers is observed at CpG islands overlapping

regulatory elements (based on ENCODE histone marks,

DNase I hypersensitive sites (DHSs), and chromatin state),

including the AHRR start site, for both lung and colon.

These hypomethylated regions tend to have at least one

site with a very low methylation level (beta value). In

contrast, regions of increased methylation among

smokers, in both lung and colon, tend to fall in the

AHRR gene body, outside of regulatory elements coin-

ciding with CpG islands (Figure 3). In both tissues, smok-

ing is associated with increased expression of AHRR (lung

p ¼ 9.9 3 10�47; colon p ¼ 2.4 3 10�7).

Sharper, more defined association signals (as compared

to AHRR) were observed in both the CYP1B1 and CYP1A1

regions (Figure 4), for both lung and colon. While there

are differences across tissues in terms of the specific CpGs

showing the strongest association, these signals are located

at CpG islands near the gene start site/promoter and show

clear decreased methylation among smokers, with at least
The Ame
one smoking-associated CpG showing very low overall

methylation levels (Figures 4B, S10, and S11). Smoking is

associated with increased expression of CYP1B1 (lung

p ¼ 7.2 3 10�27; colon p ¼ 0.002) and CYP1A1 (lung p ¼
3 3 10�17; colon p ¼ 8.1 3 10�6).

Co-localization of cis-mQTLs and disease-related GWAS

SNPs

To identify CpGs in lung and colon that may mediate the

effects of smoking on lung or colon health, we first identi-

fied smoking-associated CpGs that are affected by an

mQTL (using existing mQTL results from GTEx passing

an FDR of 0.01).27 For lung mQTLs, we determined if their

lead SNPs were associated with lung-related phenotypes

(FEV1/FVC, FVC, and lung adenocarcinoma) using GWAS

summary statistics. Among our 2,478 smoking-associated

CpGs in lung (FDR < 0.01), 566 are impacted by mQTLs

in lung tissue. Among the 550 lead SNPs for these 566

lung mQTLs, 10 SNPs showed genome-wide significant as-

sociations with FEV1/FVC (p< 53 10�8) based on UK Bio-

bank results47 (Table S7). We found evidence of co-localiza-

tion (between the mQTL and a FEV1/FVC GWAS signals)
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Figure 3. Association between smoking
and DNA methylation for CpG sites in
the AHRR region for lung and colon tissues
(A) p values for association.
(B) Beta values for each CpG reflecting the
level of DNAmethylation at the CpG. Beta
values represent the average across all indi-
viduals (smokers and non-smokers). Up-
ward arrowheads indicate DNAm values
were higher in smokers for a given CpG
compared to in non-smokers, while down-
ward arrowheads indicate DNAm values
were lower in smokers.
for 4 of the 10 SNPs identified (PP4< 0.99, Figure S12). The

strongest co-localization detected was for an mQTL (lead

SNP rs7962469) affecting cg01996125, within the

gene body of ACVR1B on chromosome 12 (PP4 ¼ 0.99).

Smoking was associated with decreased DNAm at

cg01996125 (Figures 5A, 5D, and S13). The co-localized

GWAS and mQTL signals also co-localized with an eQTL

for ACVR1B (Figure 5B). The FEV1/FVC risk allele (G) was

associated with decreased FEV1/FVC, increased DNAm at

cg01996125 (and several surrounding CpGs, Figure 5C),

and decreased ACVR1B expression (Figure 5D). Smoking

was associated with decreased DNAm at cg01996125 and

decreased ACVR1B expression (Figure 5D). Given that the

risk allele (G) and smoking were both associated with

decreased ACVR1B expression, but with opposite effects

on cg01996125 methylation (Figure 5D), these results sug-

gest the epigenetic mechanism (or response) linking smok-

ing to repression of ACVR1B may be different than from

the mechanism of the FEV1/FVC risk allele. We also per-

formed an interaction analysis regressing cg01996125

methylation on an interaction term between rs7962469

and smoking status (while adjusting for other covariates

in the primary lung EWAS analysis) and observed an inter-
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action p value of 0.28, corroborating

the notion that these genetic and

epigenetic mechanisms leading to

ACVR1B repression may be distinct.

Despite these differences in genetic

and environmental effects on

cg01996125, repression of ACVR1B

expression represents a potential

mediator by which smoking (and

the risk allele at rs7962469) impacts

lung health. Additional examples of

co-localization between FEV1/FVC

GWAS signals and mQTLs include

SFTPA1 (PP4 ¼ 0.99), PRSS23 (PP4 ¼
0.96), and MARCHF3/MARCH3 (PP4

¼ 0.96) (Figure S12). However, no

eQTLs were observed for these genes.

We did not find evidence of co-local-

ization between colon mQTLs and

GWAS signals of either colorectal can-

cer or inflammatory bowel disease. If
we relax the mQTL discovery threshold from an FDR of

0.01 to 0.1,we find evidence of co-localization between a co-

lon cis-mQTL (for smoking-associated CpG cg13616097

located in the gene body ofWNT7B) and a colorectal cancer

GWAS signal (PP4 ¼ 0.98).50 We also find evidence of co-

localization between a colon cis-mQTL (for smoking-associ-

ated CpG cg04048259 located downstream of ZNF831) and

a GWAS signal for inflammatory bowel disease (PP4 ¼
0.99) (Table S8).51

Enrichment of smoking-associated CpGs within

genomic features and biological pathways

Examining the distribution of hypermethylated and

hypomethylated smoking-associated CpGs within genomic

features, we observed that hypomethylated CpGs (FDR <

0.05) in colon were enriched in islands (p < 10�5). In

contrast, in lung, hypomethylated CpGs were depleted in

islands (p < 10�5) (Figure S14). Similarly, we observed

different patterns of enrichment of smoking-associated

CpGs sites in chromatin segmentation features between co-

lon and lung. Both hypermethylated and hypomethylated

lung CpGs showed enrichment in repressed polycomb

states, whereas hypermethylated and hypomethylated



Figure 4. Association between smoking and DNA methylation for CpG sites in lung and colon for the CYP1B1 and CYP1A1 regions
Shown are p values for association (top) and beta values for each CpG reflecting the level of DNAmethylation at the CpG (bottom). Beta
values represent the average across all individuals (smokers and non-smokers). Upward arrows (blue) indicate DNAm values were higher
in smokers for a given CpG compared to in non-smokers, while downward arrows (red) indicate DNAm values were lower in smokers.
colon CpGs showed enrichment in regions of active tran-

scription (Figure S15). Finally, we observed clear enrichment

of smoking-associatedCpG sites across all TFBS in colon (p¼
1.48 3 10�166) and lung (p ¼ 1.59 3 10�105). The top en-

riched TFBS differed between the tissues and between

hypermethylated and hypomethylated CpG sites within

each tissue types (Figures S16 and S17).

We conducted pathway analyses of the 6,350 smoking-

associated CpGs (from lung) assigned to 2,948 genes, which

revealed 17 overrepresented biological pathways (FDR of

0.05). The top ten pathways identified using all 6,350 smok-

ing-associated CpGs (Table 3) included xenobiotic meta-

bolism (p ¼ 9.33 10�4), a pathway that included several of

our strongest signals already described (AHRR, CYP1A1,

and CYP1B1), highlighting the response of biotransforma-

tion genes to the chemicals in cigarette smoke. Numerous

cancer-related pathways also showed enrichment, including

tumor necrosis factor alpha (TNF-a),66 signaling via nuclear

factor kappa beta (NFKB), apoptosis,67 p53,68 IL6-JAK-

STAT3 signaling,69 early estrogen response,70 ultraviolet

(UV) radiation response,71 transforming growth factor b

signaling,72 hypoxia,73,74 MTORC1 signaling,75 and choles-

terolhomeostasis.76Weadditionally exploredenrichmentof

gene sets related to human diseases among KEGG pathways

and identified a pathway for lipids and atherosclerosis (Ta-

ble 3).When examining enrichment separately for hypome-

thylatedCpGs (n¼ 4,637), which comprised themajority of
The Ame
smoking-associated CpGs, we observed similar pathway en-

richments (Table S9); the number of hypermethylated,

smoking-associated CpGs was small and underpowered for

pathway analysis. Similar analyses of the 2,735 smoking-

associated CpGs from colon (assigned to 1,369 genes), of

which 94.6% were hypomethylated, resulted in the detec-

tion of only two enriched Hallmark gene sets (FDR 0.05),

epithelial to mesenchymal transition, and UV response

(down regulation) (Table S10).

While gene set enrichment analysis resulted in six Hall-

mark pathways that were shared between primary (ever vs.

never) and secondary (current vs. never) analyses, there

were also several pathways specific to either analysis with

more pathways unique to the secondary analysis (Tables 3

andS11; Figure S18).Whenexploring enrichment ofhuman

diseases among KEGG pathways in our secondary analysis,

we identified enrichment of a pathway for atherosclerosis,

similar to our primary analysis. The secondary analysis

further identified KEGG pathways for human health condi-

tions including circadian entrainment and insulin resis-

tance, thereby supporting the notion that dysregulation of

the epigenome impacts these previously reported, smok-

ing-associated health conditions.77,78 Together, these results

suggest that epigenetic dysregulation, and the effects of this

dysregulation on human health and disease, may be more

pronounced between current vs. never smokers in compari-

son to ever vs. never smokers.
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Figure 5. Co-localization of mQTL (for cg01996125), eQTL for ACVR1B, and lung function GWAS signal in the chromosome 12q13.13
region
(A) Plots of smoking EWAS (beta and p values) by effect direction for this region.
(B) Plot of p values for cg01996125 mQTL, ACVR1B eQTL, and FEV1/FVC ratio GWAS showing co-localization of all three association
signals.
(C) Plot of the association of rs7962469 (FEV1/FVC ratio risk allele G) with all CpGs in the ACVR1B region.
(D) Distribution of cg01996125 methylation and ACVR1B expression by smoking status and rs7962469 genotype. Beta values represent
the average across all individuals (smokers and non-smokers). Upward arrowheads (blue) indicate DNAm values were higher in smokers
for a given CpG compared to in non-smokers, while downward arrowheads (red) indicate DNAm values were lower in smokers.
Cell-type-specific effects of smoking on DNAm

To search for evidence of cell-type-specific effects of smoking

on DNAm, we tested the interaction between smoking and

the EPISCORE-derived cell-type proportion estimates. In

lung, cell types estimated, from most abundant to least,
646 The American Journal of Human Genetics 111, 636–653, April 4,
were endothelial cells, macrophages, epithelial cells, stromal

cells, granulocytes, lymphocytes, andmonocytes (Figure S1).

In colon, cell types estimated, frommost abundant to least,

were lymphocytes, enterochromaffin cells, stromal cells,

myeloid cells, and epithelial cells (Figure S1). The
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Table 3. Pathway analysis of smoking-associated CpGs detected in lung tissue

Description Genes in gene set
Genes with smoking-
associated CpGsa Enrichment P FDR-adjusted p value

Hallmark gene sets

TNF-alpha signaling via NFKb 199 56 8.40E-06 4.20E-04

Apoptosis 155 46 1.69E-04 4.22E-03

P53 pathway 196 53 3.35E-04 5.59E-03

Xenobiotic metabolism 197 49 9.01E-04 1.13E-02

Early response to estrogen 194 60 2.06E-03 1.69E-02

IL6-JAK-STAT3 signaling 81 23 2.21E-03 1.69E-02

UV response (down regulated) 142 52 2.36E-03 1.69E-02

TGF-beta signaling 53 21 3.59E-03 2.25E-02

Hypoxia 190 51 4.52E-03 2.51E-02

Cholesterol homeostasis 71 21 6.29E-03 3.14E-02

Myogenesis 195 55 7.08E-03 3.22E-02

IL2-STAT5 signaling 194 51 9.42E-03 3.93E-02

Adipogenesis 196 45 1.05E-02 4.02E-02

Androgen response 97 30 1.23E-02 4.17E-02

Bile acid metabolism 110 26 1.27E-02 4.17E-02

MTORC1 signaling 194 44 1.33E-02 4.17E-02

KEGG Pathways

Parathyroid hormone synthesis, secretion, and action 105 42 9.85E-05 3.50E-02

Lipid and atherosclerosis 205 56 2.11E-04 3.75E-02

aGenes with CpGs (as assigned by Illumina) that are associated with smoking.
distributionof interactionpvalues (Figures S19andS20) sug-

gests that effects of smoking onmethylation at certain CpG

sites varies according to the abundance of the cell types pre-

sent, including endothelial cells, lymphocytes, monocytes,

andmacrophages. TheCpGsshowing the strongest evidence

of interaction between smoking and cell types (i.e., involved

in SxCT) in lung tissue are listed in Table S12. Most CpGs

involved in SxCT also show evidence of a residual ‘‘main ef-

fect’’ of smoking on the CpG in a direction consistent with

the interaction effect. This observation suggests that a joint

test of the main effect and the cell type interaction could

potentially boost power for detecting environmental effects

in DNAm/EWAS studies similar to methods developed for

the GWAS context.79 Interestingly, our most significant

EWAS signals from lungdidnot show clear evidence of inter-

action by cell type (Table S13).
Discussion

In this work, we generated and analyzed genome-wide

DNAm data for 916 human tissue samples, representing

9 unique tissue types, and characterized the association

of smoking status with genome-wide measures of DNAm.

We detected >6,000 smoking-associated CpGs in lung, a
The Ame
tissue type that showed more prominent effects of smok-

ing compared to other tissue types. Our results show that

while DNAm in some regions is impacted by smoking in

multiple tissue types, the specific CpGs affected (and

the magnitude of those effects) can differ between

tissues. Several mQTLs impacting smoking-associated

CpGs in lung tissue were found to co-localize with associ-

ation signals from GWASs of lung function, suggesting

smoking-related epigenetic alterations may mediate the ef-

fects of smoking on lung health. Smoking-associated CpGs

were enriched in pathways related to xenobiotic meta-

bolism and cancer.

Lung tissue had a much larger number of CpGs showing

association with smoking status compared to colon and

the other 7 tissue types examined. While this difference is

in part due to the larger sample size for lung tissue, smoking

effects in lung also appear to be more abundant after ac-

counting for sample size differences. This is not unexpected,

as lung tissue is exposed to tobacco combustion products

directly via inhalation (as well as via the blood stream). In

contrast, the other tissues examined are primarily exposed

to tobacco combustionproducts via theblood stream,which

carries chemicals that enter thepulmonary circulation (from

the lungs) and then travel to other organs (although the co-

lon could potentially be exposed to tobacco-derived
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chemicals through the gastrointestinal tract). Furthermore,

we discovered that the number of CpGs passing an FDR of

0.05 between current vs. never smokers was around 2-fold

that between ever vs. never smokers in both lung and colon

(Table S2). Given that the ever-smokers category includes

former smokers, these results suggest that smoking cessation

may lead to a reduced impact of smoking on the epigenome

compared to continued smoking. This conclusion aligns

with studies reporting the benefits of smoking cessation

related to reduced risk of adverse health conditions,

including lung cancer80 and cardiovascular disease.81

Our results show that genomic regions affected by smok-

ing can be shared across tissue types, consistent with prior

studies,3,82 as we observe enrichment for smoking-related

CpGs (identified from prior studies of blood) in other tissue

types, including colon, ovary, and kidney. For example,

NOTCH1 contained top CpGs for both lung and kidney

(Figure 1), consistent with a prior study of adipose tissue.13

The enrichment observed for kidney (n ¼ 47) suggests

more signals are likely present (and observable at larger

sample sizes), reflecting effects of smoking that may be

consistent with the strong impact of smoking on the risk

of renal cell carcinoma.83 However, for a given region, we

observe that the specific CpGs associated with smoking

and their relative magnitudes can vary substantially by tis-

sue type (as observed for AHRR, CYP1A1, and CYP1B1).

Thus, these findings suggest that while it is possible to

assess exposure effects on DNAm within genes in acces-

sible tissues to make inferences about effects in target tis-

sues (for effects that are shared common across tissue

types), it is more challenging to infer which specific

CpGs may be impacted across tissues.

Our top smoking-associated regions in lung include

several regions previously identified in blood, including

the top three smoking-associated genes/regions involved in

xenobiotic metabolism: AHRR, CYP1A1, and CYP1B1. Each

of these regions has been identified in prior studies,7,9,19–22

and each region shows an association of smoking with

increased gene expression. Each genehas a biologically plau-

sible response tosmoking, forexample,AHRRencodesa tran-

scription factor with key roles in sensing xenobiotics

(including aromatichydrocarbons) and regulation ofmetab-

olizing enzymes including CYP1A1. Our study has also

discovered smoking associated CpGs, including the AOPEP,

PLA2G4E, and PA2G4P4 gene regions in lung, as well as the

RHOU andWNK2 gene regions in colon. Of note, PLA2G4E

is part of the secretory phospholipase A2 family, a group of

enzymes secreted during inflammation and involved in the

cleavage of phospholipids during synthesis of eicosanoids,

which are lipid mediators released by alveolar macrophages

in response to toxic elements.84–86 Additionally, experi-

mental evidence has shown that knockdown of RHOU, an

atypical member of the RHO family, leads to higher prolifer-

ation and reduced apoptosis of colon cancer cells87; our dis-

covery of smoking-associated CpGs in RHOU corroborates

previous literature establishing smoking as a causal factor

for colorectal carcinoma.1,88
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Interestingly, we observed striking differences in the

enrichment of hypermethylated and hypomethylated

smoking-associated CpGs within genomic features (CpG

islands and chromatin segmentation) for lung compared

to colon. We additionally observed differences in the top

enriched TFBS for lung and colon. Hypomethylated

CpGs in colon were enriched in islands and active tran-

scription regions, largely consistent with what we observe

for our top smoking-associated regions involved in xenobi-

otic metabolism including AHRR, CYP1A1, and CYP1B1

(Figures 3 and 4). However, in lung, we observe depletion

in islands and enrichment in repressed transcription states

for both hypermethylated and hypomethylated CpGs. We

speculate that these differences are due to the difference in

the nature of exposure in lung versus colon. In lung,

smoking effects appear larger andmore pervasive, resulting

in greater power to detect more subtle effects (e.g., tran-

scriptionally repressed regions) beyond those related to

response of xenobiotic metabolism genes.

Many of the smoking-associated CpGs identified in

lung are also impacted by inherited genetic variation (i.e.,

mQTLs), including variants impacting lung health. Ana-

lyses of co-localization between FEV1/FVC GWAS

hits and mQTLs of smoking-associated CpGs identified

cg01996125 in ACVR1B as an epigenetic feature potentially

involved in mediation of the effects of smoking on lung

health.ACVR1B, expression of which is inversely associated

with both smoking and the FEV1/FVC risk allele, is a part of

the transforming growth factor beta (TGFR-b) superfamily

contributing to inflammation and initiation of airway

remodeling.89 Repression of ACVR1B (and any associated

epigenetic alterations) may be a potential mediating

pathway by which smoking (and the risk allele) have detri-

mental effects on lung health.

We estimated the proportions of individual cell types

in lung and colon and observed substantial fractions of

immune cells in both tissue types, including lympho-

cytes and myeloid cells (e.g., monocytes and macro-

phages). It is possible that the immune cell component

of these tissues contributes to the observed overlap in

smoking-associated regions between these tissues (and

with regions previously reported in whole blood). To

determine if effects of smoking on DNAm differ by cell

type, we examined the interaction between smoking

and the inferred cell-type proportions in lung tissue,

identifying multiple CpGs potentially impacted by cell-

type-specific effects. For example, we identified CpGs

involved in SxCT, located upstream of COPS6 (SxCT:

lymphocyte) and in the second intron of WASF2 (SxCT:

monocyte and macrophage). COPS6 has been shown to

promote tumor-infiltrating lymphocyte signaling in

breast oncogenesis, facilitate tumor evasion,90 and pro-

mote the growth of various lung cancer cell lines.91

WASF2 mediates macrophage motility and phagocytosis

by interacting with filamentous actin,92,93 with in vitro

studies demonstrating immunoreactivity of WASF2 in

many lung adenocarcinomas.94 Overall, our results
2024



suggest that analyses of SxCT can identify CpGs missed

in analyses of marginal associations (i.e., main effects)

alone, implicating genes with biologically plausible roles

in cancer. Additional research is needed to explore mech-

anisms by which the effects of smoking are mediated by

genes expressed in specific cell types. While the method

we use for estimating cell-type composition (EPISCORE)

is well established, it has not been validated specifically

on GTEx samples. Additional work to further validate

and characterize DNAm-based cellular deconvolution

methods across diverse tissue types will improve our un-

derstanding of the shared cell-type-specific effects across

tissues. Single-cell studies of DNAm in human tissues can

also be leveraged to explore such mechanisms.

While we identified many previously unreported smo-

king-associated regions in disease-relevant tissues, in-

cluding effects that are shared across tissues and tissue spe-

cific, this study is limited by the lack of whole-genome data

on DNAm as the EPIC array is only able to capture a small

fraction (�2%) of all CpGs in the human genome. Addi-

tionally, we had small sample sizes for some tissues (e.g.,

kidney n ¼ 48, muscle n ¼ 46), which limited our power

to detect associations. Therefore, larger studies of diverse

tissues are needed to validate our results and generate addi-

tional data regarding the similarities and differences of

DNAm across tissues. Overall, this work highlights the util-

ity of using a multi-tissue approach to assess the effects of

smoking on the human epigenome.
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