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Abstract
In soybean [Glycine max (L.) Merr.], drought stress is the leading cause of yield loss from abiotic stress in rain-fed US grow-
ing areas. Only 10% of the US soybean production is irrigated; therefore, plants must possess physiological mechanisms to 
tolerate drought stress. Slow canopy wilting is a physiological trait that is observed in a few exotic plant introductions (PIs) 
and may lead to yield improvement under drought stress. Canopy wilting of 130 recombinant inbred lines (RILs) derived from 
Hutcheson × PI 471938 grown under drought stress was visually evaluated and genotyped with the SoySNP6K BeadChip. 
Over four years, field evaluations of canopy wilting were conducted under rainfed conditions at three locations across the US 
(Georgia, Kansas, and North Carolina). Due to the variation in weather among locations and years, the phenotypic data were 
collected from seven environments. Substantial variation in canopy wilting was observed among the genotypes in the RIL 
population across environments. Three QTLs were identified for canopy wilting from the RIL population using composite 
interval mapping on chromosomes (Chrs) 2, 8, and 9 based on combined environmental analyses. These QTLs inherited 
the favorable alleles from PI 471938 and accounted for 11, 10, and 14% of phenotypic variation, respectively. A list of 106 
candidate genes were narrowed down for these three QTLs based on the published information. The QTLs identified through 
this research can be used as targets for further investigation to understand the mechanisms of slow canopy wilting. These 
QTLs could be deployed to improve drought tolerance through a targeted selection of the genomic regions from PI 471938.

Introduction

Soybean [Glycine max (L.) Merr.] is the largest oilseed 
crop globally, providing over a quarter of the vegetable 
oil and almost ~ 70% of the plant protein meal used world-
wide. Global demand for soybean has led it to be the sec-
ond most cultivated row crop in the USA, with an estimated 

33.6 million hectares of soybean planted in 2020 (SoyStats 
2020). Even with its economic importance, less than 10% 
of soybean hectares in the USA is under irrigation (Specht 
et al. 2015). Lack of irrigation leaves soybean extremely 
vulnerable to drought stress, which can cause more than a 
40% reduction in yield (Specht et al. 1999; Purcell and Spe-
cht 2004).

Canopy wilting is caused by a decrease in turgor pres-
sure in the soybean leaves and is a trait commonly used by 
soybean breeders to identify differential responses to stress. 
Slow or delayed canopy wilting has been observed in exotic 
soybean germplasm and is controlled by multiple plant 
mechanisms. A maturity group (MG) VI plant introduction 
(PI) 416937 from Japan has been observed to have slower 
canopy wilting under drought conditions than other exist-
ing cultivars (Sloane et al. 1990). PI 416937 also has an 
extensive lateral root system, with a large root surface area 
(Hudak and Patterson 1996; Pantalone and Rebetzke 1996) 
combined with low stomatal conductance (Tanaka et al. 
2010). Fletcher et al. (2007) showed that under high vapor 
pressure deficit (VPD), PI 416937 reached a maximum 
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transpiration rate at 2.0 kPa, while commercial cultivars 
showed increased transpiration rates at VPD greater than 
2.0 kPa. This decreased transpiration at high VPD allows 
for the conservation of moisture, thus increasing the water 
use efficiency of the plants (Fletcher et al. 2007). The above 
results indicate that PI 416937 uses water conservation as its 
mechanism of the slow wilting phenotype that may protect 
yield under drought conditions.

PI 471938, an accession from Nepal, is an MG V intro-
duction that exhibits slow canopy wilting as well, but the 
mechanism for this response to drought stress is unknown 
(Sadok et al. 2012; Bagherzadi et al. 2017). PI 471938 has 
shown normal nitrogen fixation under soil drying condi-
tions (Sinclair et al. 2000; Devi and Sinclair 2013; Riar 
et al. 2018). It has been used by multiple southern breeding 
programs to develop cultivars in the Southeastern US (Devi 
et al. 2014; Carter et al. 2016). Based on pedigree data of 
lines that appeared in the USDA Uniform Tests, cultivar 
registrations, and plant variety protection applications, PI 
471938 is a parent of six varieties developed from the popu-
lation (Hutcheson × PI 471938) used in this experiment and 
is in the ancestry of at least 25 other breeding lines that 
reached the Uniform Yield Tests (Soybase.org, 2021). In 
addition, PI 567690 and PI 567731, both MG III, have been 
identified as two new sources of slow canopy wilting for 
early maturity group soybeans  (Pathan et al. 2014; Ye et al. 
2020).

Several studies of canopy wilting have been performed to 
understand the underlying genetics using bi-parental popula-
tions and genome-wide association studies. Kaler et al. (2017) 
used 373 MG IV soybean genotypes as a genome-wide asso-
ciation panel to identify genomic regions associated with 
slow canopy wilting. In this study, the authors found 61 single 
nucleotide polymorphisms (SNPs) that tagged 51 loci on 19 
of the 20 soybean chromosomes (Kaler et al. 2017). Steketee 
et al. (2020) used a panel of 162 MG VI-VIII accessions and 
cultivars to identify genomic regions associated with canopy 
wilting. The study identified 45 unique SNPs related to dif-
ferential canopy wilting at 44 loci in this population (Steketee 
et al. 2020). Twenty genomic regions on chromosomes (Chrs) 
1, 4, 6, 9, 12, 15, 18, and 19 from Steketee et al. (2020) were 
also identified by Kaler et al. (2017). Using GWAS, Chamarthi 
et al. (2021) confirmed 31 slow wilting loci identified previ-
ously by Kaler et al. (2017) and Steketee et al. (2020). Abdel-
Haleem et al. (2012) used a recombinant inbred line (RIL) 
population derived from a cross of ‘Benning’ (a fast wilting 
MG VII cultivar) × PI 416937 to identify seven quantitative 
trait loci (QTLs). These QTLs explained 75% of the pheno-
typic variation observed in canopy wilting using multiple 
interval mapping (Abdel-Haleem et al. 2012). Of the seven 
QTLs identified in multiple locations, five QTLs on Chrs 2, 
4, 5, 12, and 19 inherited the favorable alleles from PI 416937 
for the slow canopy wilting trait. The two remaining QTLs 

identified in this population on Chrs 14 and 17 inherited the 
favorable alleles from the fast wilting cultivar Benning.

Charlson et al. (2009) investigated the effects of drought 
stress on a RIL population developed from a cross of 
‘KS4895’, a fast wilting cultivar, and ‘Jackson’, a slow wilt-
ing cultivar. Four QTLs that explained 47% of the phenotypic 
variation in canopy wilting were identified on Chrs 8, 13, 14, 
and 17. The slow canopy wilting cultivar, Jackson, is present in 
the pedigree of the fast wilting cultivar Benning, which could 
explain the beneficial drought tolerance alleles identified from 
Benning in the Benning × PI 416937 RIL population (Charl-
son et al. 2009; Abdel-Haleem et al. 2012). Using five RIL 
populations involving three slow wilting genotypes Jackson, 
PI 424140, and PI 416937, Hwang et al. (2015) found seven 
QTL clusters on Chrs 2, 5, 8, 11, 17, and 19 based on 95% 
confidence intervals from at least two mapping populations 
(Hwang et al. 2015). The populations from the earlier study 
used by Hwang et al. (2015) were used to perform a meta-
QTL analysis, which identified nine meta-QTLs in eight QTL 
clusters on Chrs 2, 5, 11, 17, and 19 with a reduced confi-
dence interval (Hwang et al. 2016). Ye et al. (2020) mapped 
the QTLs in two RIL populations derived from PI 567690 and 
PI 567731, two MG III exotic landraces. In the ‘Pana’ × PI 
567690 RIL population, eight QTLs were identified, which 
were located at similar chromosomal positions to the QTLs 
identified in both Abdel-Haleem et al. (2012) and Hwang et al. 
(2016). Two QTLs on Chrs 6 and 10 that were identified in the 
‘Magellan’ × PI 567731 were not identified in previous QTL 
mapping studies. PI 471938 has been utilized in the breeding 
programs as a source of slow canopy wilting, contributing to 
the development of numerous soybean germplasm and culti-
vars. Although slow canopy wilting QTLs have been reported 
in several studies (Charlson et al. 2009; Abdel-Haleem et al. 
2012; Hwang et al. 2015; Kaler et al. 2017), in this research, 
we tried to understand and determine the genetic architec-
ture controlling the slow canopy wilting trait from PI 471938 
to support ongoing drought tolerance breeding efforts. The 
objectives of this study were to i) evaluate a RIL population 
in repeated field experiments for canopy wilting and ii) eluci-
date genomic regions responsible for slow canopy wilting in 
PI 471938.

Materials and methods

Plant materials

A cross between ‘Hutcheson’ (PI 518664) and PI 471938 
was made in 1998 in Raleigh, NC, USA. Hutcheson is an 
MG V cultivar developed by Virginia Tech (Buss et al. 
1988). PI 471938 is an MG V plant introduction character-
ized previously as a slow wilting soybean accession (Carter 
et al. 1999; Hufstetler et al. 2007; Sadok et al. 2012). The 
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 F1 seed from this cross was grown at the USDA Tropical 
Agricultural Research Station in Isabela, Puerto Rico. The 
 F2 to  F4 generations were advanced by single seed descent 
(Brim 1966) throughout the inbreeding process. The  F4 
plants were harvested individually and used to develop the 
130  F4-derived recombinant inbred lines (RILs) used in this 
study.

Evaluation of canopy wilting

The Hutcheson × PI 471938 RIL population was evaluated 
in Athens, GA (2016_GA) and Salina, KS (2016_KS) in 
2016. Two-row plots were planted at both locations with 
three replications in GA and two replications in KS using a 
randomized complete block design. In 2018, the RIL popu-
lation was evaluated in Midville, GA (2018_GA), Salina, 
KS (2018_KS), and Sandhills, NC (2018_NC). In 2019, 
the population was evaluated in Midville, GA (2019_GA), 
Salina, KS (2019_KS), and Sandhills, NC (2019_NC). The 
2018 and 2019 experiments were planted as two-row plots in 
a randomized complete block design, with three replications. 
All environments were planted with 0.76 m row spacing at a 
seeding density of 32 seed  m−2. A summary of phenotyping 
locations for the Hutcheson × PI 471938 RIL population is 
listed in Supplementary Table S1.

Canopy wilting was rated in increments of five on a scale 
from 0 to 100: 0 = no wilting present; 20 = slight wilting 
and some rolling in the top of the canopy; 40 = somewhat 
severe leaf rolling at the top of the canopy, moderate wilting 
of leaves throughout the rest of the canopy, and some loss 
of petiole turgidity; 60 = severe wilting of leaves throughout 
the entire canopy, with advanced loss of petiole turgidity; 
80 = plants with petioles severely wilted and dead leaves 
throughout much of the canopy; and 100 = plant death.

The RILs were evaluated for canopy wilting by taking 
the mean of three ratings as the phenotypic score for the 
2016_GA environment. A single rating was used as the phe-
notypic score for the 2016_KS environment. In 2017, an 
evaluation of this RIL population at three locations (Athens, 
GA, Salina, KS, and Sandhills, NC) was attempted, but no 
canopy wilting scores were recorded because of minimal 
water stress. In 2018, no canopy wilting evaluations were 
performed in Sandhills, NC, due to a lack of drought stress 
during the growing season. One wilting rating was taken at 
the 2018_GA environment. One wilting rating was collected 
in the 2018_KS environment for QTL mapping. The 2019_
GA environment was rated three times during the growing 
season, with one of three ratings being used for mapping. A 
single rating for 2019_KS and 2019_NC environments was 
collected in both locations (Supplementary Table S1).

Genotype data and quality control

DNA was extracted from leaf tissue and genotyped with the 
SoySNP6K iSelect BeadChip (Song et al. 2020). The leaf 
tissue collection and DNA extraction procedures were the 
same as described in Steketee et al. (2020). These geno-
typing efforts generated 5403 genome-wide SNPs that were 
analyzed using GenomeStudio software (Illumina Inc., San 
Diego, CA, USA) to perform SNP quality control for segre-
gation distortion and compression of genotype calls. Mono-
morphic markers between the two parents were removed, 
leaving 1258 polymorphic SNP markers available to cre-
ate a genetic map. Forty-six additional markers that did not 
meet requirements for joining a linkage group during the 
genetic map construction were removed, leaving a total of 
1212 polymorphic SNP markers to be used for the genetic 
map construction for QTL mapping.

Statistical analyses

Analysis of variance (ANOVA) was conducted using PROC 
MIXED in SAS version 9.4 (SAS Institute 2014). The model 
for the combined analysis was built by treating genotype, 
environment, genotype by environment interaction, and 
replication within the environment as random variables 
using the Standard Least Squares personality and REML 
method. Genotype means were separated by Fisher's least 
significant difference (LSD) test at the α = 0.05 probability 
level. Broad-sense heritability was calculated on an entry-
mean basis according to Holland et al. (2003), with the vari-
ance components being calculated using a model where all 
variables were treated as random. Correlations of genotype 
means were calculated using PROC CORR in SAS version 
9.4. Best linear unbiased predictions (BLUPs) were cal-
culated for canopy wilting scores across all environments 
using SAS version 9.4. For individual environments only, 
genotype and replication were used and treated as random 
variables to calculate BLUPs. Using BLUP values for each 
genotype across and within environments helped to account 
for variation caused by environmental factors and missing 
data. BLUPs were used as the phenotypic values for subse-
quent QTL analyses.

Genetic map construction and QTL analysis

The 1212 polymorphic SNP markers for the Hutcheson × PI 
471938 RIL population were used to construct a genetic map 
in JoinMap 4.1 (Van Ooijen 2006). The logarithm of odds 
(LOD) criterion of greater than six was used to establish 
linkage groups. As necessary, some groups were then forced 
together to form 20 linkage groups based on the known chro-
mosomes and physical positions of the SNP markers. Max-
imum likelihood (ML) mapping with the default settings 
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was used to convert recombination frequencies into map 
distances in centiMorgans (cM). These cM positions were 
then used in subsequent QTL mapping.

The software package Windows QTL Cartographer (Win-
QTLCart) 2.5 (Wang et al. 2012) was used for composite 
interval mapping (CIM) using Model 6 of the Zmapqtl 
program module. The genome was scanned with a walk-
ing speed of 0.5 cM and a window size of 10 cM, and the 
forward–backward regression method was used to choose 
cofactors. The significance LOD threshold was determined 
by 1000 permutations, with a significance level of α = 0.05. 
The significance threshold LOD = 3.3 was used for the com-
bined analysis. Significant QTLs were identified by the peak 
of the QTL meeting or exceeding the LOD score. The posi-
tion of QTL peaks was determined by the highest score on a 
specific chromosome. MapChart 2.32 (Voorrips 2002) was 
used to visualize the genetic maps and QTL mapping results.

The peak SNPs of the QTLs on Chrs 2, 8, and 9 identified 
through composite interval mapping were used to identify 
nearby candidate genes. Song et al. (2020) defined genome-
wide haplotype blocks for cultivated soybean based on a 
data set of 14,183 G. max accessions genotyped with the 
SoySNP50K assay. The confidence interval based on Glyma.
Wm82.a2 physical position of each QTL was used to search 
the candidate genes associated with slow canopy wilting 
QTLs. A list of informative candidate genes and their anno-
tations within the confidence interval for each QTL were 

examined based on the gene functional annotation deposited 
on Phytozome (https:// data. jgi. doe. gov/ refine- downl oad). 
Candidate gene analysis was based on known genes related 
to drought resistance as reported by others.

Results

Genetic variation of canopy wilting for the RIL 
population

The RIL population exhibited a wide range of canopy wilt-
ing among the RILs, and the wilting was more severe in the 
Georgia environments (Fig. 1). Genotypes, environments, 
and their interactions were statistically significant (p < 0.05) 
for canopy wilting scores (Supplementary Table S2). Cor-
relation between the environments canopy wilting scores 
ranged from r =  − 0.17 to 0.44 (Table 1). The broad-sense 
heritability of canopy wilting on an entry mean basis for the 
combined environments was 0.29. No RILs in the combined 
environments had a lower mean wilting score than the slow 
wilting parent, PI 471938. Twenty-three of the RILs had 
higher canopy wilting based on mean performance in the 
combined environments as compared to the fast wilting par-
ent, Hutcheson.

Fig. 1  Distribution of canopy wilting scores for the recombinant inbred line population across the environments. Environments are named as 
Season.Wilt.Average, with Georgia (GA), Kansas (KS), and North Carolina (NC) as locations

https://data.jgi.doe.gov/refine-download
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QTL mapping of canopy wilting trait for the RIL 
population

In the combined analysis across environments, three 
QTLs were identified on Chrs 2, 8, and 9. These QTLs 
accounted for between 10 and 14% of the phenotypic 
variation observed for slow canopy wilting. On Chr 2, 
the QTL, qWilt_Gm2, was identified and explained 11% 
of the phenotypic variation observed in canopy wilt-
ing (Table  2). The peak marker for qWilt_Gm2 was 
Gm02_15067760_G_A, which was located at 15,271,225 bp 
and the confidence interval (CI) of this QTL spanned 4.7 Mb 
(14,220,378–18,913,725 bp) (Fig. 2a). A QTL was identi-
fied on Chr 8 in the combined environments (qWilt_Gm8) 
and accounted for 10% of the phenotypic variation observed 
in slow canopy wilting (Table 2). The QTL qWilt_Gm8 
spanned a CI of 1.5 Mb (44,267,551–45,913,059 bp) on 
Chr 8 (Fig. 2b, Table 2). The peak marker for qWilt_Gm8 
was Gm08_44368268_A_G (45,403,652 bp). The QTL on 
Chr 9 (qWilt_Gm9) was identified in the combined analysis, 
which explained 14% of the observed variance in the wilt-
ing score (Table 2). The peak of qWilt_Gm9 was at marker 
Gm09_36486860_T_C (39,047,264 bp) with a CI of 6.3 Mb 
(36,455,035–42,790,738 bp) (Fig. 2c, Table 2). From the 
combined analysis, QTLs on Chrs 2, 8, and 9 all had a posi-
tive allelic effect (Table 2). Positive additive effects indicate 
that the mean canopy wilting score for the RILs possessing 
the allele from PI 471938 was lower than those possessing 
the alleles from Hutcheson.

Discussion

Slow canopy wilting is one of indicators for drought toler-
ance, which could lead to less yield reduction during drought 
stress (Sloane et al. 1990). It has been extensively used for 
phenotyping for gene discovery and breeding selection 
(Abdel-Haleem et al. 2012; Carter et al. 2016; Kaler et al. 
2017; and Steketee et al. 2020). Additionally, traits such as 
root architecture and canopy temperature have also been 
evaluated for drought stress tolerance (Tuberosa 2012; Mace 
et al. 2012; Fenta et al. 2014; Zhou et al. 2020). Because it 

possesses a slow canopy wilting trait, PI 471938 has been 
used extensively in the southern breeding programs and is 
in the pedigree of over 30 lines that have been evaluated 
for potential commercial use. These lines were advanced 
to USDA Uniform Soybean Tests, indicating that they pos-
sessed potential as commercial cultivars for use in the South-
ern USA. An example is USDA-N8002, which was derived 
from both PI 471938 (25% by pedigree) and PI 416937 
(12.5% by pedigree) and possesses drought-tolerant traits 
with high yield potential (Carter et al. 2016). This culti-
var has become a valuable source for the slow wilting trait, 
which demonstrates that breeding for drought tolerance can 
succeed by incorporation of the slow canopy wilting trait 
from plant introductions.

Slow canopy wilting in soybean is potentially related to 
many possible physiological mechanisms, which are com-
plex. This study identified three QTLs on Chrs 2, 8, and 9 
using a combined analysis that each explains a relatively 
small portion of phenotypic variation (10–14%) that was 
observed in canopy wilting. In addition, six QTLs were iden-
tified only in a single environment. This indicated that the 
genetic architecture of the slow canopy wilting in PI 471938 
could be governed by many minor QTLs which are not sta-
ble across environments.

Although the genotype by environment interactions were 
significant (p < 0.05) (Supplementary Table S2), the sever-
ity of wilting experienced in the seven environments varied 
(Fig. 1). The correlations (r = 0.22 to 0.38) of wilting scores 
between locations in a given year were significant (p < 0.05), 
except for the 2016_GA and 2016_KS locations (r = 0.07), 
indicating that the genotypes tested wilted similarly across 
the locations for a given year (Table 1). However, four pairs 
of environments across years showed insignificant negative 
correlations in wilting scores. Using CIM, eight QTLs were 
identified for canopy wilting in six of the seven individual 
environments tested (Supplementary Table S3). No signifi-
cant QTL was detected in the 2018_NC environment at a 
LOD = 3.4. These QTLs accounted for 8 to 20% of the phe-
notypic variation that was observed in an individual environ-
ment (Supplementary Table S3). Heritability (0.29) for the 
canopy wilting trait on the entry-mean basis across environ-
ments was relatively low, suggesting the complexity of the 

Table 1  Pearson correlations of 
canopy wilting scores among 
the environments

 ***, **, and * indicate significance at < 0.0001, 0.01, and 0.05, respectively

2016_KS 2018_GA 2018_KS 2019_GA 2019_KS 2019_NC

2016_GA 0.07 0.20* 0.15 0.21* 0.25** 0.26**
2016_KS − 0.08 0.15 0.19* − 0.09 − 0.05
2018_GA 0.22* − 0.17 0.22* 0.13
2018_KS 0.44*** 0.38*** 0.25**
2019_GA 0.25** 0.29***
2019_KS 0.38***
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canopy wilting trait. However, it was comparable to those 
observed in previously canopy wilting QTL mapping and 
GWAS studies (Charlson et al. 2009; Abdel-Haleem et al. 
2012; Hwang et al. 2015; Kaler et al. 2017).

The QTLs qWilt_Gm2 and qWilt_Gm8 identified in the 
combined analysis were located in similar regions as QTLs 
identified in the individual environments (Table 2 and Sup-
plementary Table S3). The remaining six QTLs were iden-
tified in only one environment. This is most likely due to 
the highly complex nature of the slow canopy wilting and 
the environmental variance that affected these QTLs. The 
QTL qWilt_Gm2 is located approximately 1.9 Mb upstream 
of the peak of the meta-QTL mqCanopywilt-003 identi-
fied by Hwang et al. (2016). It is also located in a similar 
genomic region to the significant QTL qSW-Gm02 that was 
identified by Abdel-Haleem et al. (2012) in a RIL popula-
tion derived from Benning × PI 416937. The peak of qWilt_
Gm8 on Chr 8 was located 199 kb from the significant SNP 
Gm08_44751317_C_T identified in a GWAS for canopy 
wilting (Kaler et al. 2017). The Chr 9 QTL, qWilt_Gm9, 
was located 2.3 Mb from a reported significant SNP identi-
fied in the GWAS for canopy wilting done by Kaler et al. 
(2017) and 2.1 Mb from the GWAS performed by Steketee 
et al. (2020). The QTLs identified in this study are in similar 
genomic regions reported in previous mapping and associa-
tion studies (Abdel-Haleem et al. 2012; Hwang et al. 2016; 
Kaler et al. 2017). However, these QTLs only provide a 
small portion of the genetic control of the slow canopy wilt-
ing trait from PI 471938 and this is most likely due to the 
highly complex nature of the slow canopy wilting trait. It 
is noted that the size of RIL population is relatively small, 
which may affect the detection of some minor QTLs.

Genomic regions significantly associated with slow can-
opy wilting QTLs were searched for candidate genes within 
the QTL confidence intervals (Table 2) based on the peak 
markers, Gm02_15067760_G_A, Gm08_44368268_A_G 
and Gm09_36486860_T_C, respectively. A total of 235 can-
didate genes were found in the qWilt_Gm2 region on Chr 
2. Of these genes, 16 candidate genes were reported in the 
literature, which were related to the drought tolerance (Sup-
plementary Table S4). This included candidate genes for 
calmodulin-like 11, protein phosphatase 2C family protein, 
lipid transfer protein, zinc finger protein, and aluminum-acti-
vated malate transporters that plays a role in cell signaling of 
abiotic stress (Shelp et al. 2012; Yang et al. 2012; Shinozaki 
et al. 2007, Scholz et al. 2015; Ramesh et al. 2018; Zhang 
et al. 2021). For the QTL qWilt_Gm8 on Chr 8, a total of 
193 genes were in the confidence interval and 34 candidate 
genes were found to be related to drought tolerance (Supple-
mentary Table S4) based on the published information (Shi-
nozaki et al. 2007; Shao et al. 2008; Cho et al. 2009; Guan 
et al. 2013; Luo et al. 2019; Ao et al. 2022). They included 
one chaperone Dnaj-domain superfamily protein gene, two Ta
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RNA-binding KH domain-containing protein genes, six clus-
tered UDP-glycosyltransferase superfamily protein genes, 
and one calcium ion transport, transmembrane transport, 
and protein binding gene. Glyma.08g337000 encodes  Ca2+ 
exchange proteins in Arabidopsis, which helps regulate sto-
matal movements (Cho et al. 2009). The Glyma.08g337100 
gene encodes a chaperone DnaJ-domain superfamily protein. 
In rice grown under drought stress, proteins in this fam-
ily showed elevated transcription under drought stress (Luo 
et al. 2019). Fifty-six candidate genes were reported in the 
literature related to the drought tolerance from a list of 567 
candidate genes found in the interval of qWilt_Gm9 QTL 
(Supplementary Table S4), including nucleotide-diphospho-
sugar transferase family protein, sucrose synthase 6, and 
NAC domain-containing protein 57 (González et al. 1995; 
Shinozaki et al. 2007; and Zhang et al. 2021). The candi-
date gene, Glyma.09g166400, encodes an organic cation/
carnitine transporter. In Arabidopsis, organic cation/carni-
tine transporters were involved in lateral root formation, and 
plants containing knockouts of this gene exhibited increased 
root growth (Lelandais-Brière et al. 2007). The candidate 
genes that were identified around each of three QTLs that 
were present in the combined analysis are related to stress 
tolerance in soybean or other crops. These candidate genes 
could provide targets for further studies to identify the mech-
anism that underlies drought tolerance in PI 471938.

Breeding for drought tolerance is a complex process. 
It requires adequate, repeatable drought stress every year 
to effectively evaluate large numbers of genotypes in field 
environments. As shown in this experiment, relying on 
natural drought can be difficult. In two out of four years 

during this study, at least one location did not experience 
any drought stress. Lack of consistent phenotyping, com-
bined with the labor and resources needed to evaluate large 
numbers of soybean breeding lines, makes conducting 
drought field experiments challenging. The results from 
this study could allow for the use of QTLs and marker 
information to aid in the selection of lines for the slow 
canopy wilting trait in lieu of field phenotyping experi-
ments. Based on this and previous research, it is obvious 
that drought tolerance is a highly quantitative trait with 
many underlying mechanisms that lead to the slow canopy 
wilting phenotype. Slow canopy wilting only is one of the 
indicators for screening drought tolerance in the field (Ye 
et al. 2020). Selection of QTLs with small effects that are 
not consistent across environments could prove difficult. 
Genomic selection has become a useful tool to select quan-
titative traits in breeding programs (Miller et al. 2023a 
and 2023b). These QTLs from PI 471938 for slow canopy 
wilting could be incorporated into the genomic selection 
models to help predict the performance of lines derived 
from PI 471938 for drought tolerance without having to 
phenotype them under drought stress in the early genera-
tions. This would relieve the need to have consistent envi-
ronmental conditions to effectively phenotype breeding 
populations and would allow for the deployment of these 
QTLs in new cultivars more efficiently where the slow 
wilting trait could help soybean producers limit the sig-
nificant effects of drought in soybean production.

Fig. 2  Composite interval mapping for canopy wilting in the recom-
binant inbred line population derived from Hutcheson × PI 471938 
in the combined environments. Genetic maps with cM positions for 
chromosomes with QTLs meeting logarithm of odds (LOD) signifi-

cance thresholds of 3.3 which is indicated by the dotted black lines. A 
Segment of chromosome 2 harboring the qWilt_Gm2; B Segment of 
chromosome 8 harboring the qWilt_Gm8; C Segment of chromosome 
9 harboring the qWilt_Gm9 
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Conclusions

Using an RIL population derived from Hutcheson × PI 
471938, three QTLs on Chrs 2, 8, and 9 for slow canopy 
wilting were identified through a combined analysis across 
environments with each accounting for 10—14% of the 
phenotypic variation in wilting response. Six QTLs were 
identified in only one environment. This showed that the 
complex nature of the slow canopy wilting and the environ-
mental effects on the trait. The genomic locations of these 
three QTLs identified in this study are in proximity to those 
previously reported in the mapping and GWAS results. The 
candidate genes located near all three QTLs are targets for 
further studies to understand the functions of these genes 
that control slow canopy wilting in PI 471938. The QTLs 
discovered in this study will allow for improved efficiency in 
breeding drought-tolerant soybeans, through marker-assisted 
selection or genomic selection. These improved drought-
tolerant cultivars can then be used by soybean producers to 
meet the climate challenges that they face due to drought.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00122- 024- 04609-w.
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