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A GRU–CNN model for auditory 
attention detection using 
microstate and recurrence 
quantification analysis
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Hamidreza Najafi 4

Attention as a cognition ability plays a crucial role in perception which helps humans to concentrate 
on specific objects of the environment while discarding others. In this paper, auditory attention 
detection (AAD) is investigated using different dynamic features extracted from multichannel 
electroencephalography (EEG) signals when listeners attend to a target speaker in the presence of 
a competing talker. To this aim, microstate and recurrence quantification analysis are utilized to 
extract different types of features that reflect changes in the brain state during cognitive tasks. Then, 
an optimized feature set is determined by employing the processes of significant feature selection 
based on classification performance. The classifier model is developed by hybrid sequential learning 
that employs Gated Recurrent Units (GRU) and Convolutional Neural Network (CNN) into a unified 
framework for accurate attention detection. The proposed AAD method shows that the selected 
feature set achieves the most discriminative features for the classification process. Also, it yields the 
best performance as compared with state-of-the-art AAD approaches from the literature in terms 
of various measures. The current study is the first to validate the use of microstate and recurrence 
quantification parameters to differentiate auditory attention using reinforcement learning without 
access to stimuli.

Keywords  Auditory attention detection, GRU–CNN, EEG, Microstate analysis, Machine learning 
algorithms, Multivariate features, Recurrence quantification analysis

Humans are able to concentrate on a special speaker in a cocktail party environment. This phenomenon describes 
the auditory capability of the brain during the attention to a target among others which is known as auditory 
selective attention. Auditory attention plays a salient role in vision and auditory perception and also assists us in 
concentrating on a single speaker. It is yet unclear what happens in the brain to facilitate the attentional process 
and separate a specific voice or sound from the background. The research on auditory selective attention was 
introduced first by Cherry1. After that, other researchers presented several dichotic2 and binaural3 methods to 
examine the mechanism of auditory attention detection (AAD) in adverse real conditions4. There are numerous 
applications regarding AAD modeling such as brain-computer interface (BCI) systems5, robotics, controlling 
sound recording devices6, and neuro-steered hearing aids7. As a golden aim, the notion of AAD can also be 
employed in a neuro-steered hearing prosthesis, where the device can separate and amplify the attended speech 
of a hearing-impaired listener placed in a cocktail party scenario.

Auditory attention has been revealed as a neural unit that is involved with high-level cognitive processing in 
the cerebral cortex8. This process can be decoded from the recordings of brain activities such as electroencepha-
lography (EEG)9, magnetoencephalography (MEG)10, and functional magnetic resonance imaging (fMRI)11. 
EEG is a more popular tool in cognitive neuroscience studies because of its applicability and accessibility in 
real-time measurements. Recently, various methods have been developed to find selective auditory attention 
using EEG signals. Extracting informative features12, backward mapping13–16, and forward mapping17–20 are 
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three main techniques that are utilized to detect the attended speech/speaker. Backward and forward mapping 
methods detect the attended and unattended speech envelopes via designing speaker-specific decoders in the 
low-frequency range (1–8 Hz) where EEG corresponds to the spectrum of speech envelopes in this frequency 
range17–19,21. It is clear that for AAD, forward and backward mapping require clean speech to compute the cor-
relation between stimuli envelopes and EEG data; a condition that never happens in realistic acoustic environ-
ments. It has been also indicated that the accuracy of decoders in backward mapping procedures depends on 
the trial length or temporal resolution of stimuli (e.g., shorter trial lengths such as 10 s are preferred over the 
most reported 60 s trial length22). In contrast to these approaches, the informative features technique does not 
require clean auditory stimuli and this characteristic makes it applicable in real-life conditions suchlike a cocktail 
party. Many features derived from EEG were exploited for auditory attention classification23–27. Although many 
researchers have introduced various features for attention detection, such features could not resolve inconsisten-
cies or ambiguities in EEG interpretations. Furthermore, such features fail to utilize EEG in millisecond temporal 
resolution. So, it is essential to develop diagnostic features that can exploit it.

On the other hand, several studies have attempted to use EEG microstate analysis to develop diagnostic 
features that can exploit temporal resolution in milliseconds. For example, Lehmann et al.28–30 demonstrate that 
the existence of a quasi-stable microstate by segmenting spontaneous EEG at the sub-second level produces 
stable and evenly patterned results at 80–120 ms intervals. Many previous researchers have revealed microstates 
change in various diseases and mental states such as anxiety disorder31, neurodegenerative disorder32–34, sleep35, 
mood disorder36, schizophrenia37, and emotion revelation38, physical exercise39, insomnia40, hearing loss41. Since 
the EEG microstates provide different states of brain activity with high interpretability (i.e., A, B, C, and D are 
known to be associated with auditory, visual, default mode, and dorsal attention), it seems to be advantageous 
to use this feature in exploring the selective auditory attention detection. As regards, multivariate analysis can 
improve reliability and validity in multiple dependent and independent variables, therefore, it can utilize all 
microstate-feature information and determine new patterns to enhance the classification model. By applying the 
recurrence quantification analysis (RQA) approach to detect dynamic changes in microstates, we can create a 
more powerful model to reveal the listener’s auditory attention. Machine learning algorithms perform multivari-
ant analysis to distinguish between EEG recordings of subjects attending to a target speaker and those attending 
to another speaker and present a practical application. In summary, reinforcement learning-based microstate 
and recurrence quantification analysis is a novel approach to auditory attention detection.

The main problem of auditory attention detection in previous studies is that these methods do not have high 
performance online from only EEG signals without access to clean speech. The present work introduces a new 
dynamic method based on microstate and recurrence quantification analysis to detect auditory attention in each 
second and millisecond of EEG signals.

In this paper, first, we hypothesize that microstate features (MS) based on their archetypes are useful for 
AAD. Then, microstate features are obtained from the EEGs of the subjects during the auditory attentional task. 
Next, RQA is applied to investigate the dynamic changes of selected microstate features. Multivariant analysis by 
extracting dynamic characteristics from optimal features is performed to preserve the important information. 
Classification performance is obtained to differentiate between attended and unattended tasks using the extracted 
features. Finally, the best results of multi-level features are reported and compared with other researches.

The organization of the paper is as follows. In Section "Literature Review", a comprehensive literature review 
is presented. Section "Material and Methods" explains the material and the methodologies, including the descrip-
tion of EEG data and the proposed AAD model. Also, the details of feature extraction approaches and classi-
fiers are presented in this section. Section "Experiments and evaluations" presents the experimental setup and 
evaluation criteria. Section "Results and Discussion" discusses the findings of the experiments and compares the 
proposed method with recent baseline AAD algorithms from the literature. Finally, the concluding findings of 
the research work are given in Section "Conclusion".

Literature review
Various experiments have verified the feasibility of decoding selective auditory attention in multi-talker environ-
ments using EEG signals and speech stimuli12,27,42–50. This section comprehensively reviews the related works, 
showcasing the pivotal role of features and deep learning in auditory attention detection.

In 2012, Mesgarani and Chang21 showed that it is possible to decode auditory attention in multi-talker sce-
narios from brain signals. Here, speech spectrograms reconstructed based on cortical responses to the mixture 
of speakers reveal the salient temporal and spectral features of the attended speaker, as if subjects were listen-
ing to that speaker alone. Therefore, both attended words and speakers can be decoded by a simple classifier 
trained on an example of single speakers. O’Sullivan et al46. showed that single-trial unaveraged EEG data can be 
decoded to determine attentional selection in a naturalistic multi-speaker environment. They found that there 
is a significant correlation between the EEG measure of attention and performance on a high-level attention 
task. Also, neural processing at ~ 200 ms as being critical was identified for solving the cortical party problem 
to decode attention at individual latencies. Previous approaches in decoding the auditory attention have mainly 
focused on linear mappings between the sound stream cues and EEG responses51,52. More specifically, the map-
ping from auditory stimuli to cortical responses is typically referred to as the forward model or multivariate 
temporal response function (mTRF). It can be used to map in both the forward and backward direction to per-
form response function estimation and stimulus reconstruction, respectively. Fuglsang et al53. used the mapping 
from cortical responses to acoustic features as the backward model or stimulus reconstruction to decode the 
attentional selection of listeners in multi-talker scenarios. With reverberant speech, they observed a late corti-
cal response to the attended speech stream that encoded temporal modulation in the speech signal without its 
reverberation distortion. de Cheveigne et al54,55. proposed an alternative to both forward and backward mapping, 
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namely canonical correlation analysis (CCA). The performance of these linear decoding approaches decreases 
significantly when operated at low latency settings. Cai et al56. introduced an EEG-graph net that exploits the 
topology of the human brain to perform auditory spatial attention detection from EEGs. Their results showed 
that EEG-graph net significantly outperforms in terms of decoding performance.

These studies have two deficiencies: (1) the accuracy of AAD models is fairly low, approximately 60%, over a 
data window with a length of 1 s, and its mapping and correlation evaluation process are not jointly optimized 
for attention detection. This issue motivated the researchers to propose non-linear models to detect the attended 
speakers based on EEG signals to realize low-latency AAD. Hence, Deckers et al48., Ciccarelli et al57., and Van-
decappelle et al58. presented AAD models based on a convolutional neural network (CNN) to detect attended 
speakers. However, these non-linear AAD approaches disregarded valuable temporal information of EEG signals 
and more advanced decoding strategies are needed to realize robust real-time AAD.

Material and methods
Participants and EEG recording
In this study, all experiments are conducted on two publicly available databases, namely DTU59 and KUL 
databases60.

1)	 DTU database: This dataset was published in59 and acquired from 44 subjects (age 51–76) where 22 of 
them were hearing-impaired (19 right-handed, 9 females) and the rest were normal-hearing (16 females, 18 
right-handed) listeners. All the EEG signals were collected with a sampling frequency of 512 Hz from the 
subjects in two ways: ear-EEG with 6 electrodes (three for each ear) and 64-channel EEG scalp recorded by 
the BioSemi Active-Two system. During the EEG recording, the subjects listened to one of the two simulta-
neous speech streams or a single speech stream in the quiet condition. Two different audiobooks in Danish 
read by a female and a male speaker (denoted as ‘Spk1’ and ‘Spk2’ in further analysis) were taken as speech 
stimuli presented in 48 trials each with ∼ 50 s length and 65 dB SPL. The audio files were filtered by a low-
pass second-order Butterworth filter to avoid excessive high-frequency amplification for subjects with low 
audiometric thresholds. Each subject listened to either a single talker or two competing talkers during the 
48 trials (all recording time for a listener is 50 s × 48). Sixteen trials were presented with a single talker (8 
trials read by a female and 8 trials read by a male) and 32 trials were played with a multi-talker (one male 
and one female). In the multi-talker trials, the two speech streams were presented at the same loudness level 
to allow unbiased attention decoding. The audio files were presented at ±90◦ azimuthal positions by non-
individualized head-related transfer functions (HRTFs) and preprocessed. Listeners were prompted to answer 
4 questions with multiple-choice comprehension regarding the content of the attended speech stream (for 
details see59). It should be noted that one subject (number 24) was excluded from our analysis due to signal 
interruption during one of the trials.

2)	 KUL database: This dataset was published in60 and consists of 16 normal-hearing subjects (age 17–30) where 
8 of them were male and the rest were female. The speech stimuli include four Dutch stories, narrated by 
three male and female speakers. The audio files were presented dicotically at ±90◦ azimuthal positions by 
HRTF filtering. 64-channel EEG signals were recorded using a BioSemi ActiveTwo device at a sampling rate 
of 8192 Hz. A total of 72 min of EEG was recorded per subject, approximately 36 min per attended ear. All 
stimuli were normalized to have the same root-mean-square value and the attended stories were randomized 
across subjects. It is noted that the audio signals were filtered by a low pass filter at 4 kHz.

Proposed auditory attention detection method
In the present work, auditory attention activity is assayed during the concentration on a narrator in multi-talker 
scenarios. Figure 1 depicts the proposed AAD procedure in this research. Multivariate dynamic features based 
on EEG microstates are extracted in multi-step and classified from the EEG signals to model the AAD process 

Figure 1.   The proposed AAD method based on microstate and recurrence quantification analysis.
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in the presence of a competitive talker. Machine learning algorithms, which learn from input to make data-
driven decisions, are now widely used for the analysis of EEGs. These learning algorithms are employed to train 
a model and develop related models with the input high-level feature vectors and lend themselves to prediction. 
We exploit the K-nearest neighbor (KNN), support vector machine (SVM), long short-term memory (LSTM), 
bi-directional long short-term memory (Bi-LSTM), and Q-Learning to construct the AAD model.

EEG preprocessing
The sampling frequency of both EEG datasets is resampled to 256 Hz. EEG data is carefully checked for body 
movements, eyes blinking, muscle activity, and technical artifacts. A 0.5–70 Hz band-pass finite impulse response 
(FIR) Butterworth filter is used to eliminate the interference of high-frequency noises with the 2112th and 212th 
order, respectively. The digitized EEG signals are re-referenced to the average of electrodes TP7 and TP8.

EEG microstate analysis
EEG microstate analysis is a strong tool to study the temporal and spatial dynamics of human brain activity61. 
Microstate analysis reflects cortical activation for quasi-stable states in 60–120 ms which is important for inves-
tigating brain dynamics62. The pre-processed EEG data is analyzed by MNE63 to detect EEG microstates and 
compute the characterization. A standard procedure for EEG microstate analysis includes four stages: (1) candi-
date topography extraction, (2) EEG microstate detection, (3) EEG microstate segmentation, and (4) microstate 
feature extraction. In the first step, the Global field power (GFP) is used to characterize the global pattern of 
neuro-electrical and dynamic fluctuations of the brain which is defined as:

where xi(t) and x(t) are the instantaneous and mean potentials across N electrodes at time t.
In the second stage, topographies of each electric activity at the local GFP maximum point are recognized as 

a discrete EEG state and signal evolution is a series of such states. The successive microstates are derived from 
the EEG analyzed based on local maximum points of GFP in discrete states. In the next stage, using clustering 
methods, all microstates can be determined according to microstates patterns. The patterns have enabled many 
studies that uncovered their function and applied them to various disorders35,37,64–66. Most studies in this field 
have reported 4 patterns of microstate topographies to represent brain activity measured using recording EEG. 
These four topographies included type A (right-frontal left posterior), type B (left-frontal right-posterior), type 
C (midline frontal-occipital), and type D (midline frontal), respectively37. Single topography remained quasi-
stable for durations of about 80–120 ms before dynamically transitioning to another topography. Finally, when 
an EEG is considered to be a series of topographies of electric potentials that evolve, the entire recording can 
be studied using a set of topographies that dynamically fluctuate amongst themselves at discrete time points.

Figure 2 displays the microstate analysis for 2 s of attention task on EEG signal. At first, the GFP (depicted 
as a red line) is calculated at each given time duration as the spatial standard deviation (std). In the second step, 
the K-means clustering approach is executed on the scalp topographies of each input data. Several studies use 
the K-means clustering by the cross-validation (CV) metric to demonstrate that the optimal numeral of classes 
within subjects was four35,67. We set the numeral of clusters from 2 to 10 and the optimum set of classes is selected 
according to the maximum values of global explained variance (GEV). In the subsequent step, momentary maps 
of each group (group one: attending to ‘Speaker 1’ and group two: attending to ‘Speaker 2’) are separately cat-
egorized into 10 microstate clusters. Eventually, the generated class-labeled group maps are used as schema to 
allocate original individual successive EEG series of each listener to 10 microstate patterns shown in this figure.

In every microstate, four types of specification, namely, mean GPF, occurrence, duration, and coverage are 
computed. Mean GFP is determined as the middle GFP for a state. The occurrence is interpreted as the middle 
frequency of the detected states. Duration is explained as the middle length of states per unit. Coverage describes 
the percentage of each state appearing in every epoch. Figure 3 illustrates the occurrence values of EEG states 
which vary between subjects.

Since the clustering algorithm diminishes the complete set of spatial patterns, four methods derived from 
classical clustering algorithms, namely, independent component analysis (ICA)68, principal component analy-
sis (PCA)68, atomize and agglomerate hierarchical clustering (AAHC)69, and k-means70 algorithms. The GEV 
values for different numbers of EEG microstates are given in Table 1. Here, the optimal numeral of microstates 
is determined and then, their labels are sorted into a sequence by using four clustering algorithms and GEV 
criteria. GEV measures how similar each EEG sample is to the microstate prototype and it has been assigned 
to where the higher GEV is better. In the microstate analysis, the maximum value of GEV was selected after 10 
iterations of re-run.

Recurrence quantification analysis (RQA)
To derive some useful non-linear dynamic attributes from the various states of the EEG signal, an RQA is 
performed71. Several studies have used RQA parameters to analyze EEG signals and quantify the cortical 
function at sleep apnea syndrome72, different sleep stages73, epileptic identification74, and tactile roughness 
discrimination75. It has the capability to extract non-linear characteristics of signals and quantify the complex 
and deterministic behavior of EEG signals. Recurrence refers to the trajectory returning to the former state in 
the phase space, which is generally constructed from a time-series signal using a time-embedding method. A 
recurrent plot (RP) was used to visualize the amount of recurrence in a multi-dimensional dynamic system by 

(1)GFP(t) =

√

(
∑N

i
(xi(t)− x(t)2)/N),
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Figure 2.   Schematic flowchart of the EEG microstate analysis using MNE. The GFP of each sampling point 
is calculated and all topographic maps at the local GFP maxima are obtained. The K-means clustering analysis 
method is used to analyze topographic maps to obtain optimal microstate classes. At the bottom, microstate 
temporal sequences are obtained by fitting microstate classes back to complete EEG data.

Figure 3.   Changes in occurrence values of microstate features depend on each subject of DTU database and 
performance. Boxplots represent the first quantile, third quantile, and median values.
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simply illustrating a dot square matrix in a two-dimensional space (see Fig. 4). In Eq. (2), R is calculated for each 
sample, i, j of the time series x , under the predefined threshold distance ε76:

where �(.) is the Heaviside function, ‖.‖ is the maximum norm, and N is the number of samples in the phase space 
trajectory. The distance in the phase space between xi and xj falls within the ε , two samples are considered to be 
recurrences, indicated as Ri,j . Several features can be obtained to quantify the RP where each of them indicates 
a specific characteristic of the signal. In this work, the following features are extracted from the RP:

Recurrence Rate (RR): This index measures the percentage of recurrence points in the RP which is calculated as77:

Determinism (DET): This measure shows the percentage of recurrence points in the diagonal lines in the 
RP78. Higher values of this index indicate that the signal x has a deterministic nature with higher probability. It 
is computed by:

where l  and lmin are the length of the diagonal line and minimum value, respectively. P(l) is the frequency dis-
tribution of the length l .

Maximum line length (LMAX): The longest diagonal line on the RP is defined as LMAX:

Mean line length (LMEAN): The average length of the diagonal line on the RP is defined as LMEAN:

Entropy (ENTR): This index measures the entropy of the diagonal line lengths and is calculated using Eq. 6. 
It discloses the RP complexity of the system structure79.

Trapping Time (TT): The TT represents the length of time that the dynamics remain trapped in a certain state. 
TT is the average length of vertical lines in the RP, as below:

(2)Ri,j = �
(

ε −
∥

∥xi − xj
∥

∥

)

, i, j = 1, 2, . . . , N ,

(3)RR =
1

N2

∑N

i,j=1
Ri,j .

(4)DET =

∑N
l=lmin

l . P(l)
∑N

l=1 l . P(l)
,

(5)LMAX = max ({li; i = 1, . . . , N}).

(6)LMEAN =

∑N
l=lmin

l . P(l)
∑N

l=lmin
P(l)

.

(7)ENTR = −
∑N

l=lmin

P(l) . ln P(l).

Table 1.   GEV values using ICA, AAHC, PCA, and K-means clustering for different numbers of N. Significant 
values are in [bold].

Number of 
Microstates 
(N) ICA AAHC PCA K-Means (max iteration = 500) K-means (max iteration = 1000)

DTU

2 0.621 0.528 0.635 0.706 0.477

3 0.348 0.612 0.639 0.773 0.593

4 0.261 0.643 0.641 0.794 0.617

5 0.353 0.652 0.642 0.806 0.655

6 0.249 0.681 0.643 0.816 0.685

7 0.366 0.694 0.643 0.820 0.704

8 0.332 0.702 0.643 0.826 0.712

9 0.231 0.709 0.643 0.832 0.718

10 0.315 0.717 0.643 0.834 0.729

KUL

2 0.473 0.254 0.306 0.127 0.399

3 0.488 0.255 0.409 0.278 0.538

4 0.490 0.258 0.551 0.346 0.654

5 0.501 0.276 0.655 0.332 0.752

6 0.547 0.316 0.665 0.415 0.774

7 0.585 0.440 0.795 0.505 0.779

8 0.616 0.5381 0.714 0.613 0.794

9 0.646 0.638 0.823 0.758 0.800

10 0.653 0.745 0.847 0.865 0.801
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where P(v) is the distribution of the length of vertical lines.
Maximal vertical line length (Vmax): This feature indicates the maximal length of vertical lines in the RP 

structure and is computed as:

Recurrence time entropy (RPDE): This parameter has been successfully applied in biomedical testing. RPDE 
has advantages in detecting subtle changes in biological time series such as EEG and indicates the degree to 
which the time series repeat the same sequence. It is defined as:

Classification
To assess whether microstate features and recurrence quantification analysis are appropriate for auditory attention 
detection, several machine-learning algorithms are employed to compare classification performances.

•	 K-nearest neighbor (KNN): a non-parametric supervised learning algorithm that recognizes the class of testing 
samples according to the near class of K-nearest training samples80. In the train stage, KNN receives feature 

(8)TT =

∑N
v=vmin

v . P(v)
∑N

v=vmin
P(v)

.

(9)Vmax = max ({vi; i = 1, . . . ,N}).

(10)RPDE = − lnT−1
max

∑Tmax

t=1
P(t) ln P(t).

Figure 4.   Example of recurrence plots (RP) with 12 different scales for the GFP extracted from EEG of DTU 
database.
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vectors and class labels of the training dataset samples, whereas, in the testing stage, an unlabeled sample is 
categorized by assigning the label that is closest among the K training samples. The implementational details 
of the utilized KNN are shown in Table 2.

•	 Support vector machine (SVM): operates as a supervised learning algorithm in classification analysis. When 
this algorithm is utilized for training, it builds a model for a given set of binary-labeled features as train-
ing data by maximizing the distance of hyperplanes. SVM maps input data into multidimensional space 
by a function and then, categorized groups that have maximum margins, and the region boundary by the 
hyperplanes81. Test samples are mapped into that multidimensional space and forecasted to belong to a class 
based on which side of the margin they drop. There is a constraint to prevent data points from falling into 
the margin which is called box constraint. This algorithm is widely utilized for classification problems due 
to its ability to manage huge data. The values of box constraint and types of kernel function affect the results 
of classification (more details in Table 2).

•	 Long short-term memory (LSTM): shows great efficiency in feature sequence extraction and data classifica-
tion in many implementations82. A simple LSMT cell consists of an input gate, output gate, forget gate, and 
the candidate cell. Each gate has an activation function with two weighted inputs: (1) the previous hidden 
state of the LSTM cell which is weighted by a recurrent weight, and (2) the current input which is weighted 
by an input weight where forgotten. Input and output gates have a sigmoid activation function and the cell 
candidate gate has a tangent hyperbolic function with bias values b. Therefore, the LSTM cell has two outputs: 
(1) the memory cell state, and (2) the hidden state83.

•	 Bi-directional long short-term memory network (Bi-LSTM): as an extension of the traditional long-short term 
memory (LSTM)84, is trained on the input sequence with two LSTMs set up in reverse order. The LSTM layer 
reduces the vanishing gradient problem and allows the use of deeper networks as compared with recurrent 
neural networks (RNNs)85. The advantage of Bi-LSTM to CNN is its dependency on the sequence of inputs by 
taking the forward and backward paths into account. Table 2 shows the architecture of the utilized Bi-LSTM.

Table 2.   Implementation setup of KNN, SVM, LSTM, and Bi-LSTM classifiers.

Classifier Parameters Value

KNN

Distance weight equal

Distance metric Euclidean

Number of neighbors 1

Standardize data true

Solver SMO

Cross-validation 10

Classification runs 50

SVM

Box constraint level 1

Kernel function Gaussian

Kernel scale mode 1.1

Standardize data true

Solver SMO

Cross-validation 10

Activation function Tanh

LSTM

Number of LSTM layers 5

Number of max-pooling layers 1

Number of fully-connected layers 1

Number of SoftMax layers 1

Number of batch size 512

Dropout 0.2

Activation function Sigmoid

Optimizer Adam

Bi-LSTM

Number of LSTM layers 3

Number of max-pooling layers 1

Number of fully-connected layers 1

Number of SoftMax layers 1

Number of batch size 512

Dropout 0.2

Activation function Sigmoid

Optimizer Adam

Number of epochs: 100

Train-Test split: 70%-30%
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•	 GRU–CNN Q-Learning (GCQL): is one of the reinforcement learning (RL) methods which is a numerical 
and iterative algorithm42. Q-learning attempts to estimate a value function that is closely related to the policy 
or which policy can be derived. Therefore, most RL problems can be solved by the Markov decision process 
(MDP) as a discrete-time state transition. Here, the current state S and action A of a system is independent 
to all previous states and actions P(St+1|St , At) . P(...) is the probability of making a transition to the next 
state, St+1 when the model receives action At and state St86.

The behavior of the model is described by a reward function Rt−1 , which measures the success or failure 
of an agent’s action in the environment. Here, GCQL represents an extension of QL to approximate optimal 
action-value function based on a gated recurrent network (GRU) and convolutional neural network (CNN) as 
the reinforcement learning method in the agent (see Fig. 5). As shown in this figure, the environment learns the 
optimal policy using the interactions between GRU and CNN in the agent. In other words, the RL algorithm 
employs this structure of neural networks as a function approximator.

It is noticed that CNN can learn representations and is very suitable for processing image data and RNN has 
memory ability in learning the non-linear features of sequence data such as EEG signals. GRU is a variant of RNN 
that can effectively alleviate the gradient disappearance and gradient explosion problem in the traditional RNN 
during training. It considers both historical information and new information when calculating the current state 
value. Therefore, the combination of GRU and CNN could improve the robustness of deep learning to decode 
small-scale EEG datasets and alleviate the overfitting phenomenon caused by insufficient data.

Experiments and evaluations
Experimental setup
Two experiments are conducted to assess the performance of the proposed AAD method based on microstate and 
RP features. The first experiment concerns the evaluation of the AAD procedure using different features extracted 
by microstate and recurrence quantification analysis, separately. In the second experiment, the efficiency of the 
MS and RQA features are assessed in different combinations.

To conduct the first experiment, the EEG data of 43 subjects during the 48 trials were selected to analyze the 
efficiency of the AAD. The four types of microstates and eight types of RP features are obtained on the input 
EEG signals on non-overlap windows along 256 samples. The extracted features are given to the classifiers (i.e., 
KNN, SVM, LSTM, Bi-LSTM, and GCQL) for detecting attended/unattended speech, separately. Here, seventy 
percent of data (i.e., 34 trials of all 48 trials recorded from each subject) is used as a training set and the rest is 
considered as the test set. In other words, both training and test data originated the same subject. In the second 
experiment, the combinations of MS and RP features as multivariate feature analysis are fed to the classifiers. 
This is performed to find appropriate features with high performance in attention detection from EEG signals.

To evaluate the performance of the proposed method, the recently developed attention detection system 
introduced by O’Sullivan et al16., Lu et al25., Ciccarelli et al20., Geirnaert et al26., Zakeri et al27., Cai et al56., and 
Niu et al87., are simulated and used as baseline systems from the literature.

Evaluation criteria
The efficiency of the AAD algorithm is determined through three metrics: Accuracy, Sensitivity, and Specificity88. 
Accuracy (ACC) values show the overall detection correctness. Sensitivity (or true positive ratio: TPR) indicates 
the rate of correctly classified trials whereas Specificity (or true negative ratio: TNR) measures the rate of correctly 
rejected trials. Here, TP, TN, FP, and FN indicate true positive, true negative, false positive, and false negative 
predictions of the algorithm, respectively.

Figure 5.   The block diagram of the proposed GCQL to improve estimating the value function.
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Results and discussion
Here, two experiments are executed to specify the best procedure for auditory attention detection using dynamic 
state analysis of the brain. First, the statistical analysis is performed on all single and multi-variate features to 
find the significant features ( p_value < 0.05 ) between the two groups. Then, classical and modern approaches 
mentioned in section "Literature Review" are utilized to assess the best proficiency for each single and multivari-
ate feature set. Finally, the impact of the several durations of EEG segments is assayed on the performance of 
the proposed AAD method.

Statistical analysis
As a preliminary data analysis, Kolmogorov–Smirnov (KS) test89 is used to measure the normality of feature 
vectors. Here, the probability values ( p < 0.05 ) indicate that the data has non-normal distributions. Therefore, 
the Mann–Whitney U (Wilcoxon rank sum) test is selected to compare differences in extracted features between 
two independent groups when data is not distributed in normal form. KS test as s non-parametric test allows us 
to check whether the statistics at hand take different values from two different populations. p_value < 0.05 indi-
cates higher significance in terms of large differences in medians of the two groups. Tables 3 and Table 4 depict 
the significant p_values for every single microstate and RP features extracted from preprocessed EEG signals 
during the selective auditory attention task, respectively. According to these results, directly extracted features 
from EEG signals are not significant between the two cognitive tasks except Vmax. However, Table 5 shows the 
p_values of the multivariate features. Here, features including RR, DET, Vmax, and RPDE which are extracted 
from occurrence, duration, coverage, and mean GFP show significant differences between two auditory attention 
tasks, attending to ‘Spk 1’ vs attending to ‘Spk 2’.

AAD
Classification results acquired from microstate analysis are presented in Fig. 6 with occurrence, duration, cover-
age, and mean GFP parameters. These results include the ACC, TPR, and TNR on EEG signals divided into 1 s 
segments. It can be seen that these parameters fail in classification performance among two groups of attending to 
‘Spk1’ and attending to ‘Spk2’ with accuracy close to the chance level. However, the highest accuracy is achieved 
by the “Mean GFP feature + GCQL classifier” compared with the other microstate parameters and classifiers. Fig-
ure 7 illustrates the attention detection for classifying with only RP parameters extracted from each 1 s segment 
of EEG signals. According to the figure, the highest ACC is 91.5% achieved by the “RR feature + GCQL classifier”.

In order to obtain the highest performance of AAD, the best features of the microstates and RP analysis are 
selected from the point of view of classification accuracy. Therefore, the recurrence rate of the mean GFP feature 
is calculated as an optimal multivariate feature and fed to the GCQL classifier.

In the further experiment, the performance of the proposed method is examined for different segments of 
EEGs. To this aim, first, the mean GFP of EEG data is calculated by microstate analysis for different durations of 
EEG segments from 0.02 s to 50 s. Then, the recurrence rate (RR) is extracted from the mean GFP and given to 
the GCQL classifier. The average of the proposed AAD performances is shown in Fig. 8 for 100 epochs. It can be 

(11)ACC =
TP + TN

TP + TN + FP + FN
,

(12)TPR =
TP

TP + FN
,

(13)TNR =
TN

TN + FP
.

Table 3.   P-values of Mann–Whitney test for extracted microstate (MS) features directly from preprocessed 
EEGs. The symbol * indicates a significant difference ( p− value < 0.05). Significant values are in [bold].

Occurrence Duration Coverage Mean GFP

DTU Attending to ‘Spk1’ vs. Attending to ‘Spk2’ 0.056 0.147 0.892 0.223

KUL Attending to ‘Spk1’ vs. Attending to ‘Spk2’ 0.004* 0.054 0.084 0.078

Table 4.   P-values of Mann–Whitney test for extracted features of recurrence plot (RP) directly from EEGs. 
The symbol * indicates a significant difference ( p− value < 0.05). Significant values are in [bold].

RR DET LMEAN LMAX ENTR TT Vmax RPDE

DTU Attending to ‘Spk1’ vs. Attending to ‘Spk2’ 0.065 0.084 0.205 0.311 0.433 0.540 0.018* 0.220

KUL Attending to ‘Spk1’ vs. Attending to ‘Spk2’ 0.015* 0.043* 0.169 0.403 0.189 0.240 0.015* 0.431
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observed that the detection performance of the proposed algorithm decreases significantly as the duration of the 
EEG data increases. In addition, this figure illustrates that the measures of ACC, TPR, and TNR are increased 
as the data length is shortened, specifically, in the length of 0.1 s to 1 s. Moreover, the TPR and TNR values lie 
in acceptable ranges for all EEG segments. This achievement could be considered in online applications such as 
neuro-steered hearing aid devices.

Figure 9 compares the performances of the proposed AAD method based on the optimal feature set (i.e., 
mean GFP + RR”) and GCQL classifier beside the baseline systems in terms of ACC measures. According to the 
accuracy criteria, the introduced AAD algorithm has superior proficiency than the baseline systems including 
“O’Sullivan et al16., Lu et al. 25., Ciccarelli et al20., Geirnaert et al26., Zakeri et al27., Cai et al56., and Niu et al87., It 
is observed that the accuracy of the baseline systems is increased with the increasing length of EEG durations, 

Table 5.   P-values of Mann–Whitney test for multivariate features “MS + RP” extracted from EEG (note: 
eight RQA features are extracted from four microstates). The symbol * indicates a significant difference 
( p− value < 0.05). Significant values are in [bold].

Occurrence Duration Coverage Mean GFP

DTU

RR 0.011* 0.035* 0.030* 0.001*

DET 0.032* 0.019* 0.128 0.154

LMEAN 0.491 0.275 0.643 0.917

LMAX 0.241 0.356 0.698 0.151

ENTR 0.271 0.695 0.501 0.620

TT 0.382 0.192 0.685 0.522

Vmax 0.006* 0.040* 0.05 0.009*

RPDE 0.026* 0.050 0.074 0.008*

KUL

RR 0.012* 0.119 0.037* 0.005*

DET 0.094 0.120 0.189 0.019*

LMEAN 0.636 0.071 0.190 0.207

LMAX 0.068 0.106 0.520 0.198

ENTR 0.042* 0.422 0.479 0.644

TT 0.081 0.518 0.301 0.256

Vmax 0.017* 0.205 0.049 0.081

RPDE 0.001* 0.029* 0.123 0.005*

Figure 6.   AAD performance only with MS feature vectors on DTU and KUL databases.
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in general. In Table 6, the highest performances belong to the DTU database analysis for AAD. Here, the pro-
posed system introduced by “O’Sullivan et al16. achieved accuracies of 51.9%, 52.7%, 53.1%, 49.4%, 58.5%, and 
67.3% for window lengths 1 s, 5 s, 10 s, 20 s, 30 s, and 40 s, respectively. The proposed system introduced by Lu 
et al. 25. achieved accuracies of 44.7%, 45.0%, 46.6%, 47.1%, 55.6%, and 56.3% for window lengths 1 s, 5 s, 10 s, 
20 s, 30 s, and 40 s, respectively. The AAD model proposed by Ciccarelli et al20. obtained accuracies of 33.6%, 
46.5%, 55.7%, 62.2%, 83.0%, and 89.5% for EEG signals with window lengths 1 s, 5 s, 10 s, 20 s, 30 s, and 40 s, 
respectively. The AAD model introduced by Geirnaert et al26., achieved accuracies of 59.5%, 73.3%, 78.6%, 85.7%, 
89.8%, and 91.4% for EEG signals with window lengths 1 s, 5 s, 10 s, 20 s, 30 s, and 40 s, respectively. The Zakeri 
et al27., AAD model obtained accuracies of 48.6%, 51.5%, 66.4%, 75.5%, 80.5%, and 85.2% for EEG signals with 
window lengths 1 s, 5 s, 10 s, 20 s, 30 s, and 40 s, respectively. The AAD model proposed by Cai et al56., obtained 

Figure 7.   AAD performance only with RP feature vectors among all subjects on DTU and KUL databases.
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accuracies of 71.2%, 74.1%, 77.9%, 82.5%, 83.0%, and 88.6% for EEG signals with window lengths 1 s, 5 s, 10 s, 
20 s, 30 s, and 40 s, respectively. The Niu et al87., AAD model achieved accuracies of 68.3%, 69.8%, 71.2%, 74.9%, 
75.5%, and 76.9% for EEG signals with window lengths 1 s, 5 s, 10 s, 20 s, 30 s, and 40 s, respectively. However, the 
proposed method achieved ACC 98.9%, 93.5%, 89.4%, 85.6%, 82.3%, and 79.9% for EEG length 1 s, 5 s, 10 s, 20 s, 
30 s, and 40 s where the highest ACC is for the short length of EEG signals on DTU database (i.e., 1 s segment).

Although the exploratory analysis yielded significant results for the short length of EEG signals, 1 s, it was the 
one where differences in microstates analysis had a stronger impact on extracting differences of brain function 

Figure 8.   Performance of the proposed GCQL-AAD using multivariate feature (i.e., “mean GFP + RR”) and 
GCQL classifier for different EEG segments on DTU and KUL databases.
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during the milliseconds. In addition, extracting RQA from microstates as multivariate features emphasizes the 
dynamic behavior of the brain performance throughout the auditory attention task. As well as the ability of the 
GCQL-AAD model to categorize auditory attention and extract temporal features and real-time analysis is one 
of the other advantages of the proposed model that has not been included in previous studies.

However, the results of the present study should be viewed in light of some limitations. First, the study was 
not designed for multi-talker scenarios with more than two talkers, so the proposed model could be confounded 
by the other attended speaker in the presence of two or more talkers. Second, this algorithm has been performed 

Figure 9.   Comparison of the proposed AAD method (purple) with the others including “O’Sullivan et al16. 
(blue), Lu et al25. (light blue), Ciccarelli et al20. (orange), Geirnaert et al26. (red), Zakeri et al27. (yellow), Cai 
et al56. (neutral), and Niu et al87. (green) in terms of accuracy.
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by high-dense scalp EEG which is not portable for real application. Using the smaller number of electrodes which 
have more relationship with the auditory attention cortex could enhance the ability of the proposed method to 
utilize in BCI devices.

Conclusion
In the present work, a novel approach for auditory attention detection is presented based on the microstates 
and recurrence quantification analysis from EEG signals. Here, participants listen to the two talkers and focus 
on only one of them (during the half of trials, they attend to speaker number 1 and the rest attend to speaker 
number 2). In the first step, microstate analysis is performed to extract appropriate features from EEG states. 
Also, recurrence quantification analysis is utilized on the EEG signals to the emerging complex behavior of the 
brain. Then, the extracted features are given to the five types of classifiers (i.e., KNN, SVM, LSTM, Bi-LSTM, and 
GCQL) both individually and in combination to find the optimized AAD structure. Results of the experiments 
show that the extracting recurrence ratio (RR) from the mean of the global field power (mean GFB) with the 
GCQL classifier yields a higher performance, 98.9% in terms of accuracy.

The proposed AAD model has an important advantage over the forward and backward mapping algorithms, 
in the sense that attention recognition is performed from the EEG data of each listener without any access to 
auditory stimuli. Furthermore, the classification proficiency indicates that the proposed GCQL-AAD method 
performs higher than the recently published AAD approaches of O’Sullivan et al16., Lu et al25., Ciccarelli et al20., 
Geirnaert et al26., Zakeri et al27., Cai et al56., and Niu et al87., as the bassline systems. Additionally, the decision 
time window of EEG-based auditory attention detection is generally more than 1 s for previous research. Obtain-
ing the best decoding performance in a shorter time window is an urgent application requirement. The present 
work could capture AAD with high performance in a shorter window length of EEG. In20,26, methods based on 
deep learning, especially CNN, have dominated the field of EEG decoding in AAD. However, using only CNN 
has limitations in high global dependence on capturing long-term sequences and detecting auditory attention 
through dynamic EEG signals. Therefore, we proposed an AAD-GCQL model by capturing the dynamic behavior 
of the brain to address the problem of temporal and dynamic dependencies. The experimental results confirmed 
the effectiveness of the proposed AAD architecture, which outperformed the other baseline models.

In this research, EEG signals of all recording electrodes (i.e., 64 channels) are used in the AAD analysis. To 
alleviate the computational load and time cost of the AAD algorithm, the number of EEG recording channels 
could be reduced by electrode reduction methods. The current work uses an experimental configuration only 
with two competing talkers which limits the applicability of the proposed algorithm. It is necessary to examine 
AAD efficiency for more realistic scenarios such as the cocktail party with many speakers.

Data availability
Any data that support the findings of this study are included within the article.
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Table 6.   Comparison of the proposed AAD method with others including “O’Sullivan et al16., Lu et al. 25., 
Ciccarelli et al. 20., Geirnaert et al26., Zakeri et al27., Cai et al56., and Niu et al87. in terms of accuracy (%) for 
different length of EEG signals.

1 s 5 s 10 s 20 s 30 s 40 s

DTU

O’Sullivan et al. 16 51.9 52.7 53.1 49.4 58.5 67.3

Lu et al. 25 44.7 45.0 46.6 47.1 55.6 56.3

Ciccarelli et al. 20 33.6 46.5 55.7 62.2 83.0 89.5

Geirnaert et al. 26 59.5 73.3 78.6 85.7 89.8 91.4

Zakeri et al. 27 48.6 51.5 66.4 75.5 80.5 85.2

S. Cai et al. 56 71.2 74.1 77.9 82.5 83.0 88.6

Y. Niu et al. 87 68.3 69.8 71.2 74.9 75.5 76.9

Proposed GCQL-AAD 98.9 93.5 89.4 85.6 82.3 79.9

KUL

O’Sullivan et al. 16 53.5 54.7 54.9 58.0 60.7 61.4

Lu et al. 25 45.6 47.1 47.3 49.8 50.8 51.0

Ciccarelli et al. 20 36.6 38.6 41.8 42.4 44.5 49.2

Geirnaert et al. 26 60.2 63.1 64.5 67.8 67.9 68.3

Zakeri et al. 27 48.8 53.8 59.4 66.7 73.1 81.8

S. Cai et al. 56 86.1 87.5 88.4 88.6 89.2 89.7

Y. Niu et al. 87 80.0 81.4 86.4 86.6 87.0 87.5

Proposed GCQL-AAD 97.2 85.7 84.3 82.5 81.3 78.5
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