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A cfDNA methylation-based tissue-of-origin
classifier for cancers of unknown primary
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Steven M. Hill 3, Francesca Chemi1, Dan Slane-Tan1, Saba Ferdous3,
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Claire Mitchell4, Alastair Kerr 3, Matthew G. Krebs2, Gerard Brady1,
Caroline Dive 1,3 , Natalie Cook 2 & Dominic G. Rothwell 1

Cancers of Unknown Primary (CUP) remains a diagnostic and therapeutic
challenge due to biological heterogeneity and poor responses to standard
chemotherapy. Predicting tissue-of-origin (TOO)molecularly could help refine
this diagnosis, with tissue acquisition barriers mitigated via liquid biopsies.
However, TOO liquid biopsies are unexplored in CUP cohorts. Here we
describe CUPiD, a machine learning classifier for accurate TOO predictions
across 29 tumour classes using circulating cell-free DNA (cfDNA) methylation
patterns. We tested CUPiD on 143 cfDNA samples from patients with 13 cancer
types alongside 27 non-cancer controls, with overall sensitivity of 84.6% and
TOO accuracy of 96.8%. In an additional cohort of 41 patients with CUP CUPiD
predictions were made in 32/41 (78.0%) cases, with 88.5% of the predictions
clinically consistent with a subsequent or suspected primary tumour diag-
nosis, when available (23/26 patients). Combining CUPiDwith cfDNAmutation
data demonstrated potential diagnosis re-classification and/or treatment
change in this hard-to-treat cancer group.

The diagnostic and therapeutic challenges in Cancers of Unknown Pri-
mary (CUP) are an increasingly important unmet clinical need, recently
exemplified by several large studies and updated ESMO CUP
guidelines1–4. Improvedmanagement pathways attempt to aid diagnosis
of otherwise ‘diagnostically challenging’ primary tumours often mis-
classified as CUP3. These pathways also seek to simplify and expand
classification of ‘favourable’ CUP subsets defined as tumours clinically
aligned to known tumour types3. Patients within the ‘favourable’ subset
(~20%) canaccess the aligned tumour site-directed therapies andachieve
better clinical outcomes5. However, for these patients arriving at a pri-
mary tumour diagnosis usually involves a lengthy diagnostic journey,
comprising multiple investigations and pathology reviews, from a very
limited quantity of tissue obtained via an invasive tumour biopsy.

For patients within the ‘unfavourable’ CUP subset, treatment is
limited to ‘one-size-fits-all’ chemotherapy despite a wealth of clinical,
pathological and molecular heterogeneity. The role of biomarker-
driven precision oncology and advent of immunotherapies is rapidly
changing standard-of-care (SOC) treatment and improving overall
survival across numerous tumour types. However, most of these
approaches remain out-of-reach for patients with ‘unfavourable’ CUP
as currently only a handful of treatments are approved irrespective of
tumour type (tumour agnostic). Most targeted therapies demonstrate
tumour-type dependent efficacy, exemplified by the activity of tar-
geted inhibitors in B-RAF mutant melanoma versus inactivity in col-
orectal cancers6. Additionally, immunotherapy is increasingly
indicated by biomarker presence validated by tumour type.
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Molecular characterisation approaches to predict CUP Tissue-of-
Origin (TOO) are considered a gateway to better treatment stratifica-
tion although debate remains as to whether treatment based on TOO
predictions improves outcomes. Two large prospective randomised
controlled trials reported to date have showed no improvement in
overall survival in CUP cohorts as a whole using gene expression based
molecularprofiling from tumour tissue7,8. These trials are hamperedby
the heterogeneity and diversity of tumour types predicted and sub-
optimal treatments for many of the cancer types at the time of
recruitment. However, there is evidence in patients with tumours
predicted to be more responsive to available therapies (for example
breast, colorectal, renal clear cell, ovarian ormelanoma) this approach
improves survival9,10 and this is likely to increase over time as more
novel immunotherapy and targeted therapies are approved in the
metastatic setting. Indeed, in a recent study4 evaluating TOO predic-
tions based on targeted Next Generation Sequencing (NGS) from tis-
sue in a large cohort of patients with CUP (n= 978), high confidence
TOO predictions were made in 41.2% of cases. Those patients that had
therapy appropriate for their prediction had improved clinical out-
comes and TOO predictions increased the likelihood of patient
receiving targeted therapy by >2 fold4.

A significant challenge to performing molecular profiling in
patients with CUP is the lack of good quality tumour tissue for analysis.
Diagnostic tissue biopsies are often small, hampered by necrosis or
limited tumour content andoftendegradedquality due to the formalin
and fixation process. Multiple rounds of investigative immunohis-
tochemistry staining performed to give a primary tumour diagnosis
exhausts tissue, and molecular profiling can often only be undertaken
with a repeat invasive biopsy. Several recent CUP based molecular
profiling studies report up to 60% failure rate due to inadequate tissue
quantity or quality2,11, and other CUP trials prefer or mandate repeat
fresh frozen biopsies for this reason7 (CUPCOMP trial NCT:
NCT04750109, SUPERNEXT study, Australia) but this is not without
potential harm to patients as well as introducing a delay in performing
the biopsy. To overcome this, we developed a liquid biopsy approach
with potential to combine TOO predictions with mutation analysis to
stratify patients within a swifter turnaround time. We previously
described a robust and sensitive genome-wide circulating-free DNA
(cfDNA) methylation profiling workflow (T7-MBD-seq) that detects
circulating tumour DNA (ctDNA) from patients with early stage small
cell lung cancer and discriminates molecular subtypes12. In addition,
several cancer early detection studies have demonstrated cfDNA
methylation patterns predict TOO with high accuracy13–16.

In this work we develop and test a highly-accurate TOO classifier
derived frommethylation profiles and apply it to a pilot CUP cohort in
this proof-of-concept study. We demonstrate potential utility from a
single blood draw of cfDNA analysis to facilitate diagnosis and treat-
ment stratification, combining mutation detection with TOO
predictions.

Results and discussion
Development of a cfDNA methylation TOO classifier, CUPiD
To build a robust multi-class TOO classifier applicable to cfDNA sam-
ples, we had to address the significant challenge of high variability in
ctDNA content within cfDNA (tumour fraction, TF) that results in
predominant non-cancerous cfDNA dilution of tumour-specific signal,
even in metastatic cancers. To overcome this without profiling thou-
sands of cfDNA samples, we applied a bioinformatic approach to
mimic cfDNA samples of varying TF12 (Fig. 1a). Firstly, we used publicly
available DNA methylation data from tumour tissue using Infinium
450Kmethylationmicroarrays,mainly fromTheCancer GenomeAtlas
(TCGA), representing 29 tumour classes (9,017 tumours17, Supple-
mentary Fig. 1a, Supplementary Data 1) and converted methylation
beta-values for each array probe into estimated T7-MBD-seq read
counts. Then we created in silico mixtures by mixing these estimated

counts with previously sequenced cfDNA samples from individuals
without cancer (Non-Cancer Control (NCC)) (n = 79, Supplementary
Data 2) (Fig. 1a). Each tumour class was present across a range of TFs
(0.5–10%) and NCC clinical features (age, sex, ethnicity, smoking sta-
tus, comorbidities) (Fig. 1a and Methods). Preliminary classifier
development demonstrated the normal liver tissue component pre-
sent in NCC cfDNA could erroneously result in a liver cancer class
prediction, this was remedied by the addition of non-cancerous liver
tissue arrays (n = 49) to the non-cancer class. In total 276,108mixtures
were created across 30 classes.

Tumour-specific genomic regions were calculated using differ-
entially methylated regions (DMRs), comparing each of the 30 classes
(non-mixed samples) and selecting the 250 DMRs with greatest dif-
ferences between each pairwise comparison (22,179 unique regions,
Supplementary Fig. 1b). A Uniform Manifold Approximation and Pro-
jection (UMAP) dimensionality reduction using these DMRs applied to
9017 tumour samples, recapitulated class clustering seen using all
regions (Fig. 1b, Supplementary Fig. 1c). An ensemble classifier, termed
CUPiD, was built comprising of 100 individual gradient-boosted tree
sub-classifiers with each sub-classifier trained on in silico mixtures
from80%of the arrays andNCCs (Fig. 1a). The sub-classifierswere then
each tested on ‘held-out’ data sets comprised ofmixtures of the 20%of
the arrays and NCCs excluded from the training set. These sub-
classifiers performed accurately across the 30 classes (Supplementary
Fig. 2) with a mean multi-class area under the receiver operator curve
(AUROC) of 0.980 (standard deviation 0.00521, Supplementary
Fig. 1d). The resulting ensemble classifier, taking the mean prediction
score across sub-classifiers for each class, had a multi-class AUROC of
0.984 (Fig. 1c).When applied to cfDNA, a tumour predictionwas called
when the score for a single class was >0.5, ensuring the assigned class
score was higher than all remaining classes combined. An unclassified
prediction was reported where all scores were <0.5 or the non-cancer
class was predicted.

CUPiD performance across multiple cancer types
We testedCUPiDon an independent test cohort of 170 cfDNA samples,
including 143 cancer patient samples from 13 different tumour types,
and 27 NCC samples, profiled using T7-MBD-seq (Supplementary
Figs. 3a, b, SupplementaryData 3). In the cancer cfDNA samples,CUPiD
predicted a correct tumour type for 121/143 patients (overall sensitiv-
ity, 84.6%), an unclassifiedprediction for 18/143 patients (12.6%) and an
incorrect prediction for 4/143 patients (2.8%) (Fig. 2a, Supplementary
Data 4). None of the 27 NCC samples were predicted as a tumour class
(Fig. 2a). In the 125 samples with a tumour prediction, the correct
prediction was made in 121/125 of cases (TOO accuracy, 96.8%). These
results compare favourably to other cfDNA TOO classifiers in devel-
opment for early cancer detection, e.g., TOO accuracy using DNA
methylation was recently reported between 87.0 and 90.2% in
1393 samples with a ‘cancer-like’methylation signal across 21 different
tumour classes14,16. However, as a direct technical comparison of these
different methodologies has not been made, interpretation of com-
parative performance should be taken with caution.

The TF for each cfDNA sample in the test cohort was estimated
using ichorCNA18 from shallow whole genome sequencing and varied
by tumour type, ranging between 0–60.3% (Supplementary Fig. 3c,
Supplementary Fig. 4). For 54 cancer cfDNA samples, the estimated TF
was below the 3% limit of ichorCNA detection18. A correct prediction
was made in 37 of these cases (67.9%), 16 (30%) were unclassified and
one had an incorrect prediction (Fig. 2b, Supplementary Fig. 3d). This
demonstrates, despite low estimated TF, methylation profiling detects
tumour signal and accurately predicts TOO; only 2 samples with esti-
mated TF > 3% were unclassified (Fig. 2b).

For the 4 cases where CUPiD predicted an incorrect tumour type,
3 were patients with lung adenocarcinoma, of which 2/3 were pre-
dicted as lung squamous carcinoma and 1/3 predicted breast cancer.
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The remaining incorrect prediction was a patient with cholangio-
carcinoma predicted as pancreatic adenocarcinoma. For 3/4 of these
misclassified patients the errors made were within the same or adja-
cent tissues, andwe plan to overcome this with further optimisation of
the classifier to improve discrimination between tumours arising from
the same or neighbouring tissues, focusing on tumour types com-
monly predicted in CUP cohorts.

Determining TOO from cfDNA in a CUP cohort
This study assessed the feasibility of combining cfDNA methylation
and mutation profiling with TOO predictions in a 41 patient CUP pilot
study (Supplementary Data 5). Most cases were adenocarcinomas (25/
41, 61.0%) or poorly differentiated carcinomas (11/41, 26.8%). Unsur-
prisingly, verifying TOO predictions is challenging given the intrinsic
nature of CUP. Retrospectively, we reviewed clinical data including
clinical history, pathology, radiology and discussions from CUP-
dedicated multi-disciplinary team (MDT) meetings, including addi-
tional investigations after initial diagnosis (Supplementary Fig. 5a,
SupplementaryData 5). In 15/41 (36.6%)patients, a subsequent primary
tumour diagnosis was made and patients received treatment for that
tumour type (‘clinically resolved’). For the patients who remained

confirmed CUP (cCUP) throughout their cancer journey (n = 26), 18/26
had tumour diagnoses suspected based on their clinical data; either
one highly-suspected primary tumour diagnosis was made (n = 11,
‘highly suspected’) or multiple primary tumour diagnoses were sus-
pected (n = 7, ‘differential diagnosis’). A further 8/41 patients had no
clinical or radiological clues for potential primary tumour diagnosis
(‘no clinical suspicion’), (Supplementary Fig. 5a).

Initially, cfDNA mutational profiles were evaluated using a
comprehensive 641 gene panel (see “Methods”). In the 40/41
patients where cfDNA mutation profiling was successful (Supple-
mentary Data 6), we found 345 mutations across 33 patients (82.5%
with at least one mutation, Supplementary Data 7). Per patient, the
median number of mutations was 5 (range 0–77) andmedian variant
allele frequency (VAF) was 10.4% (range 0–61.3%) (Supplementary
Fig. 5b). OncoKB analysis predicted 60 alterations across 26 patients
as oncogenic or likely oncogenic (Supplementary Fig. 5b) with 7/26
patients harbouring alterations that are potentially actionable with
level 3 or above evidence19. This included 3 patients with PIK3CA
mutations, 1 non-V600E BRAF mutation and 1 IDH1 mutation, all
targetable with FDA approved drugs in specified tumour types
(Supplementary Data 7).
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Fig. 1 | CUPiD, an accurate tissue-of-origin classifier applicable to cfDNA.
a Schematic of CUPiD development (DMR=Differentially Methylated Region).
b Two-dimensional Uniform Manifold Approximation and Projection for Dimen-
sion Reduction (UMAP) using 22,179 DMRs selected by tumour class by class
comparison, applied to 9,017 converted methylation arrays. Class labels super-
imposed over centroid of members of that class. c Per-class Receiver Operator

Characteristic (ROC) curves for CUPiD, each using 276,108mixture sets. Tissue-of-
origin predictions for each mixture set are averaged over predictions made by
those sub-classifiers not using that mixture set for training. Colours represent 30
individual classes as in Fig. 1b. Class abbreviations are defined in Table 1. Source
Data are provided as a Source Data file.
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To determine if any identified alterations could inform tumour
type in the CUP cohort, we considered gene alterations previously
described as significantly enriched in particular tumour types1 and
asked whether any of these tumour type-enriched alterations (TTEAs)
supported the clinical features (see Methods). In no cases were TTEAs
found that were supportive of only one tumour type, showing the
limitations of mutation analysis. In 14/40 cases (35.0%) at least one
TTEA was present and supportive (Fig. 3a and Supplementary Data 5).
In 14 (35.0%) cases TTEAs were present but not supportive, or they
were ambiguously supportive of several tumour types in cases of dif-
ferential diagnosis. The remaining cases hadnoTTEAs (n = 12) (Fig. 3a).

cfDNA methylation profiling was successful across our entire
cohort (41/41 passed QC, Supplementary Fig. 6a, Supplementary
Data 8). The estimated ichorCNA TF ranged between 0 and 53.4% with
27/41 samples (65.8%) >3%, correlating well with the median VAF cal-
culated through mutation analysis (r=0.73, p <0.00001; Supple-
mentary Figs. 6b, c). When applied to this cohort, CUPiD yielded a
tumour prediction in 32/41 of cases (78.0%) (Fig. 3a, Supplementary
Data 9). For 9/41 patients (22.0%), anunclassifiedpredictionwasmade,
with 7/9 patients demonstrating no copy number changes (estimated
TF < 3%) and 5/7 patients also had no detectable mutations suggesting
low ctDNA content (Supplementary Fig. 6d). Of the 32 tumour pre-
dictions, 26 patients (81.3%) had predicted classes within 5 broad
cancer categories (Fig. 3b). The most common predictions were
hepato-pancreatobiliary (7/32, 21.9%, with 6 predicted cholangio-
carcinomas) and female genital tract (6/32, 18.75%) (Fig. 3b). Although
cholangiocarcinoma is rare, it is increasingly recognised within CUP
cohorts and diagnostic biomarkers are limited2,20,21. Upper and lower
gastrointestinal (4/32, 12.5%), lung (5/32, 15.6%) and urological cancers
(4/32, 12.5%) were also frequently predicted by CUPiD. These tumour
type predictions are consistent with historical data of primary tumour
types found at autopsy in patients with CUP22,23 and are commonly
predicted in other large TOO studies based on tumour tissue
profiling1,7–10,24–26. Interestingly, all of the CUPiD predicted tumour
types have radically different treatment strategies compared to SOC

chemotherapy for CUP and almost all predictions would warrant
consideration for immunotherapy or targeted therapies as SOC
treatment options in first- or second-line setting, exemplifying the
potential of our approach.

For the 33 patients that were ‘clinically resolved’ (n = 15) or sus-
pected diagnoses (n = 18), 26 had a CUPiD tumour type prediction and
23/26 (88.5%) of these predictions aligned with confirmed primary
tumour type or one of the suspected diagnoses (‘Clinically consistent’,
Fig. 3a, c). Three CUPiDpredictionswere inconsistentwith clinical data
and are termedmisclassified, ofwhich2were ‘clinically resolved’ cases:
the first, predicted as bladder cancer, was a rare yolk sac tumour not
existing within the training data of the CUPiD classifier; the second,
predicted as cholangiocarcioma, was a patient eventually determined
to have gastric cancer; the final patient, predicted as an upper GI
malignancy, remained as cCUP with clinical features suspicious of a
breast primary (Fig. 3c). CUPiD predictions were also made in 6/8
patients where no primary was suspected or confirmed, exemplifying
the potential of TOO molecular profiling in the most uncertain cases.

Potential clinical utility for CUPiD
The 15 patients with ‘clinically resolved’ primary tumours suffered a
protracted period of diagnostic uncertainty and most had treatment
with suboptimal empiric chemotherapy prior to primary tumour
determination (Fig. 4). Themedian time to diagnosis for this cohort of
patients was 7.1 months (range 0.4–47.2 months) and an invasive
repeat biopsy was performed in 6 patients to make a final diagnosis.
With adequate TF, a liquid biopsy-based TOO classifier measured at
suspected cancer diagnosis, even before tissue biopsy, could have
dramatically accelerated a confirmeddiagnosis in a large proportionof
patients and potentially negated need for repeat, invasive biopsies. In
addition, precious tumour tissuematerial canbe reserved for potential
further tissue-based biomarker testing; currently a requirement for
initiation of most targeted therapies and some immunotherapies. The
experimental turnaround time for CUPiD is currently 3 weeks with
potential to reduce via assay optimisation.
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Fig. 2 | CUPiD performance testing in cfDNA from cohort of patients with
known tumour types. a Alluvial plot showing CUPiD performance in test cohort
(170 cfDNA samples; 143 known primary tumour types, 27 NCCs). b Estimated
Tumour Fraction (TF) of 143 cfDNA samples from known primary tumour types,
grouped by concordance of CUPiD predictions, coloured by correct class. Dotted

line denotes limit of detection of ichorCNA (3%). Boxes mark the 25th percentile
(bottom), median (central bar) and 75th percentile (top); whiskers extend to 1.5
times the interquartile range. Class abbreviations are defined in Table 1. Source
Data are provided as a Source Data file.
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In summary, we have developed CUPiD, an accurate TOO liquid
biopsy with encouraging sensitivity and accuracy in known tumour
types and clinically consistent predictions for patients with CUPwhose
cfDNA contains adequate TF. As cfDNA mutation and methylation
profiling can be performed from the same blood draw, this approach
enables identification of potentially actionable alterations alongside
TOO predictions to aid treatment stratification. Applying CUPiD to a
pilot cohort of CUP patients resulted in predicted tumour types in 32/
41, with all 32 patients having the potential to benefit from radically
different, tumour-specific treatment strategies compared to CUP SOC
chemotherapy. Next steps are further validation of CUPiD in larger
cohorts of known tumour cfDNA samples and in a statistically powered
prospective CUP clinical trial.

Methods
Patient recruitment and sample collection
Patients with cancer were recruited through the TARGET (Tumour
Characterisation to Guide Experimental Targeted Therapy) trial. Ethi-
cal approval obtained from the North-West (Preston) National
Research Ethics Service in February 2015 (reference 15/NW/0078) and
the trial was registered on the NIHR Central Portfolio Management
System (reference CPMS ID 39172). Additional patients with CUP were
recruited via theManchester Cancer Research Centre (MCRC) Biobank

CUP Project (application number 18_ALCO_01); ethically approved
through the MCRC Biobank Research Tissue Bank Ethics (ref: 07/
H1003/161 + 5, ethics code 18/NW/0092). All patients were recruited at
The Christie NHS Foundation Trust, a UK tertiary cancer centre.

Non-cancer-control (NCC) samples were collected, with informed
consent, from three sources: 1. The Community Lung Health Study
(ethically approved study London – West London & GTAC Research
Ethics Committee REC reference: 17/LO415); 2. The University of
Manchester healthy normal volunteer study (University ofManchester
Research Ethics Committee 4 (UREC4) approval no. 2017-2761-4606);
or 3. Purchased fromCambridge Bioscience (University of Manchester
Research Ethics Committee approval no. 2019-7920-11797).

All patients and individuals provided fully informed written con-
sent and research was undertaken according to Good Clinical Practice
guidelines and in accordance with declaration of Helsinki.

CUP clinical, radiological, and pathological review and data
collection
Clinical data for the entire CUP cohort was retrospectively obtained
and anonymised. All patients were discussed at a CUP dedicatedMulti-
Disciplinary Team (MDT) meeting within a tertiary cancer centre (The
Christie NHS Foundation Trust) in accordance with National Institute
for Health and Care Excellence (NICE) guidelines27. Patients therefore
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confirmed Cancer of Unknown Primary). Class abbreviations are defined in Table 1.
Source Data are provided as a Source Data file.
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had histopathological and radiological review to confirm the initial
diagnosis of CUP. All clinical, pathological, and radiological investiga-
tionswere reviewed alongside anyMDTmeetings. Subsequentprimary
tumourdiagnosis statuswasdetermined as follows: ‘clinically resolved’
tumour diagnosis was determined if at any point from referral to death
or data lock (August 2022) a primary tumour diagnosis was docu-
mented and the patient had subsequent ‘site-specific’ treatment based
on that diagnosis. A ‘highly suspected’ tumour diagnosis was cate-
gorised for patients where a single primary tumour diagnosis was
suspected either prospectively or retrospectively, but patient was not
treated based on this suspicion as uncertainty remained. A ‘differential
diagnosis’ category comprised patients where clinicopathological
features could narrow potential diagnoses to two or more different
tumour types, with all remaining patients categorised as ‘no clinical
suspicion’.

Blood sample collection
Blood samples were collected in up to 4 × 10mL Cell-Free DNA BCT
tubes (Streck, Omaha, NE), for cfDNA analysis. Plasma was separated
from whole blood within 96 h of blood draw by two sequential cen-
trifugations (2,000 g, 10min) and stored at −80 °C before cfDNA
processing. In addition, 1 × 10mL BD Vacutainer K2 ethylenediamine-
tetraacetic acid (K2EDTA) sample was taken for germline DNA
extraction according to study protocols.

Circulating cell-free DNA extraction and quantification
cfDNA was isolated from up to 20mL of plasma by using one of three
isolation techniques according to the manufacturer’s instructions:
1. QIAmpMinElute ccfDNAMIDI Kit (Qiagen, catalogue number 55284)
2. Using the QIAsymphony with the Circulating DNA Kit (Qiagen, cat-
alogue number 1091063); or 3. QIAmp Circulating Nucleic Acid Kit
(Qiagen, catalogue number 55154). cfDNA yields were quantified by
using the TaqMan Rnase P Detection Reagents Kit (Life Technologies,
catalogue number 4316831) according to manufacturer’s instructions.

Germline DNA extraction
Germline DNA was isolated from whole blood samples using the
QIAmp Blood Mini Kit (Qiagen, catalogue number 51104) and sheared
to 200–300 bp on the Bioruptor® Pico device (Diagenode). Sheared

germline DNA was quantified using the TaqMan RNase P Detection
Reagents Kit (Life Technologies, catalogue number 4316831).

T7-MBD-seq library preparation and next generation
sequencing (NGS)
For all cfDNA samples between 1 and 35 ng of cfDNAwas processed via
the T7-MBD-seqmethod12. Firstly cfDNAwas end-repaired and A-tailed
(New England Biolabs, NEB, catalogue no. E7595), dephosphorylated
(FastAP Thermosensitive Alkaline Phosphatase, catalogue no. EF0654)
and ligated (Roche, catalogue no. 07962355001) to custom oligonu-
cleotides (Integrated DNA Technologies). Custom oligonucleotides
(consisting of T7 RNA polymerase promoter sequence, Illumina read
1 sequencing primer-compatible sequence, a 10-bp sample barcode
and a 6-bp unique molecular identifier (UMI)) were intially pre-
annealed to formahairpin loop (patent PCT/GB2020/050635). Ligated
DNA was pooled (to a minimum of 75 ng in total) and spiked with
0.3 ng each of control methylated and unmethylated Arabidopsis
thaliana DNA (Diagenode, catalogue no. C02040012). Ten percent of
pooled ligated DNA was stored as a non-enriched control (NEC) sam-
ple, while the remaining 90% underwent methylation enrichment with
the EpiMark Methylated DNA Enrichment kit (NEB, catalogue no.
E2600S) following the manufacturer’s instructions. Methylation
enrichment efficiency was assessed by qPCR detection of methylated
(recovery expected to be >20%) and unmethylated control DNA
(recovery expected to be <1%) in enriched samples (methylation
enriched; MeCap) relative to NEC samples. For both MeCap and NEC
samples, amplified RNA was then generated by in vitro transcription
(IVT) using a complementary T7promoter oligonucleotide andT7RNA
polymerase (NEB, catalogue no. E2040S) as per manufacturer’s
instructions. After IVT, 1/3rd of the amplified RNA underwent single-
strand ligation of an oligonucleotide adaptor which contained an
Illumina read 2 sequencing primer-compatible sequence (NEB, cata-
logue no. M0373L). Subsequent reverse transcription (Thermo Scien-
tific, catalogue no. 18-090-050) and indexing PCR library amplification
(Roche, catalogue no. 07958897001) was then undertaken. Libraries
were paired-end sequenced on an Illumina NextSeq 500 or NovaSeq
6000. For each sample both a MeCap fraction and NEC fraction were
sequenced for genome-wide methylation profiling and copy number
analysis, respectively.

0 5 10 15 20 25 30 35 40 45
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Fig. 4 | Swimmers plot of the 15 ‘clinically resolved’ patients. Timeline of diag-
nostic investigations from point of CUP diagnosis to death or data lock. Time of
final primary tumour diagnosis colour coded. Annotated by final diagnosis, CUPiD

prediction and concordance. MDTmultidisciplinary teammeeting, AFP alpha feto-
protein, TARC thymus and activation-regulated chemokine. Class abbreviations are
defined in Table 1. Source Data are provided as a Source Data file.
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Bioinformatic data analysis software
Unless otherwise stated all data analysis was performed in R (v4.2.0)
using RStudioWorkbench (v.1.4.1717-3) using the following Rpackages:
BiocParallel (v1.30.3); BSgenome.Hsapiens.NCBI.GRCh38 (v1.3.1000);
butcher (v0.3.1); dplyr(v1.0.0); GEOquery (v2.66.0); ggbeeswarm
(v0.7.1); ggplot2 (v3.4.1); ggpubr (v0.4.0); glue (v1.6.2); hmmcopy
(v1.32); ichorCNA (v0.3.2); janitor (v2.1.0); maftools (v2.14.0); mesa
(v0.2.2); parsnip (v.1.0.0); pheatmap (v1.0.12); plyranges (v1.16.0);
purrr (v1.0.1); qsea (v1.22.0); readr (v2.1.4); recipes(v1.0.3); Rsamtools
(v2.12.0); stringr (v1.4.0); swimplot (v1.2.0); tibble (v3.1.8); tidyr
(v1.2.0); uwot (v0.1.14); vcfR (v1.13.0); workflows (v1.1.0); xgboost
(v1.6.0.1); yardstick (v1.0.0)

T7-MBD-seq read alignment
A Nextflow (v22.04.5) DSL2 pipeline, built using the tools and
modules provided by the nf-core community organisation28 was
used to process FASTQ files and produce QSEA objects as detailed.
All reads were trimmed to have the same initial length of 91/61
basepairs (bp) for R1s/R2s respectively (including the 26 bp T7-MBD-
seq construct at the start of R1), the unique molecular identifier
(UMI) extracted using umitools29 (v1.1.2) and the samples demulti-
plexed and adapter-trimmed using cutadapt30 (v3.4). Reads were
then aligned to the GRCh38 reference genome using bwa mem31

(v0.7.17), deduplicated by the combination of R1 start position and
UMI using umi-tools29 (v.1.1.2) and mate quality scores assigned
using samtools fixmate32 (v1.15.1), to produce final bam files. Tools to
quality check sequencing data were used throughout pipeline
including: FastQC (v.0.11.9), Qualimap (v2.2.2d) and Mul-
tiQC (v.1.13).

Methylation enrichment analysis
The QSEA package33 (v1.16) was used to analyse bam files, with a
custom R (v4.2.0) package (MESA, Methylation Enrichment
Sequencing Analysis, v0.2.1, available from www.github.com/cruk-
mi/mesa) to extend QSEA. The genome was tiled into 300 bp non-
overlapping windows, with the removal of over-represented win-
dows. Over-represented windows were identified from analysis of
168 non-enriched NCC fractions if the number of fragment counts
within that window were in the top 0.1% of fragment counts, as well
as adjacent windows with counts in the top 1%, following themethod
used by the ENCODE consortium34. Here and elsewhere a fragment
represents the genomic position within the two paired ends of the
sequencing read.

Fragments were filtered to only paired readswhere either end of
the pair mapped with aMapping Quality (MAPQ) score of at least 10,
had a fragment length between 90 and 1000 bp and a distance along
the reference genome of at least 30 bp. Fragments were then
uniquely assigned into windows according to the location of their
midpoint. For use within QSEA, Copy Number Variations (CNV) were
calculated for each sample from the non-enriched fraction, using
HMMcopy35 (v1.32) with base parameters over 1 Mbp windows.
Normalised reads per million (NRPM) were generated using the CNV
and the number of valid fragments in the sample, without applying
trimmed mean of M values (TMM) normalisation. Beta-values (a
scaled measure of methylation between 0 and 1) for each window in
each sample were calculated within QSEA using the blind calibration
method33.

IchorCNA
An estimate of Tumour Fraction (TF) for each sample was made using
the non-enriched cfDNA fractions processed through IchorCNA18

(v0.32). The 79 NCC cfDNA samples used in the generation of CUPiD
were used as a panel of non-cancer samples and a 1Mbp window size
applied without estimating subclonal populations. Estimated TF below
3% are considered below the limit of detection18.

Quality controls
NGSCheckMate36 (v1.0.0) was applied to verify that all samples from
the same individual matched as expected in the tool output. All four
modalities for each patient (targeted sequencing of cfDNA and
germline, T7-MBD-seq enriched and non-enriched fractions) were
checked, where available.

To calculate the relative enrichment scores (relH) for the T7-MBD-
seq samples, the method of the MEDIPS R package37 (v1.42) was used.
This calculates the total density of CGs contained within the mapped
DNA positions on the reference sequence and divides by the total
density of CGs across the whole genome. An additional QC metric for
adequatemethylation capture was calculated, termed the ‘hyperstable
fraction’. Using 805windows that correspond toCpG sites shown to be
consistently hypermethylated38 in methylation array data from cancer
and non-cancer samples, the fraction of these windows with a beta-
value of 0.8 or above was calculated. This beta-value-based metric
takes into account both the number of valid fragments and the global
enrichment profile. For the validation set, samples with relH below 2.5
or hyperstable fraction below 0.4 are excluded. This process removed
5 patient samples and 3 non-cancer control samples from the test set,
and none of the samples from the CUP cohort.

Publicly available methylation array data
A pre-processed table of beta-values from the TCGA Pan-Cancer
methylation array dataset was downloaded from https://tcga-
pancan-atlas-hub.s3.us-east-1.amazonaws.com/download/jhu-usc.
edu_PANCAN_HumanMethylation450.betaValue_whitelisted.tsv.
synapse_download_5096262.xena.gz. This consists of 9,639 arrays
(including 721 adjacent normal tissues) across 33 tumour types. Addi-
tional array data for the cholangiocarcinoma were obtained due to
underrepresentation in the TCGA dataset. Using GEOquery39 (v2.66.0)
we downloaded additional pre-processed beta-values from the Gene
Expression Omnibus40–42 (accession numbers GSE89803, GSE32079,
GSE49656), resulting in 256 cholangiocarcinoma arrays in total.

Filtering and grouping of tumour samples
The TCGA Pan-Cancer methylation array dataset was filtered to exclude
samples that were categorised as recurrent, redacted, metastatic, addi-
tional tumour or adjacent normal tissue (apart from liver, see below); for
pancreatic ductal adenocarcinoma we removed 28 samples potentially
misclassified43. This resulted in8797 tumour samples and49normal liver
tissue samples. Arrays from all of the 33 TCGA categories, and the
additional cholangiocarcinomasamples fromGEO,were re-grouped into
classes distinguished by both anatomical location and histological sub-
type (Table 1, Supplementary Data 1). This enabled the classifier to be
trainedonmorehistologically distinct classes andcombinedclasseswith
low numbers of samples but high similarity. For example, the TCGA
oesophageal carcinoma class (ESCA) was separated by histological
subtype: the oesophagus adenocarcinoma (n =88) samples were com-
bined into an upper gastro-intestinal (UpperGI) class with the stomach
adenocarcinomas (STAD, n =393), while the oesophagus squamous cell
carcinoma (n=96)was combinedwith the head and neck squamous cell
carcinomas (HNSC,n= 525) to formanupper squamousclass (UpperSq).
Wheremixedhistological tumour typesexistedwithin a class, thesewere
excluded from the training: the seven liver hepatocellular carcinoma
arrays marked as “Hepatocholangiocarcinoma (Mixed)” were excluded,
as were the seven cervical/endocervical arrays denoted as “Adenosqua-
mous” (detailed in Supplementary Data 1). Table 1 summarises the
classes and tumour subtypes grouped within them. This process resul-
ted in 30 total classes, including a non-cancer class, which was included
to give the classifier building process a neutral class to assign samples
with low tumour fraction, rather than forcing a potentially incorrect
prediction.

We then convertedmethylation array probe level data (beta-values)
to window-based read format compatible with T7-MBD-seq read-based
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enrichment sequencing as previously described12. First, all 79 NCC
cfDNA samples were combined to calculate an average enrichment
profile typical of our T7-MBD-seq method, to generate a lookup table
that determines how many counts are required for each beta-value and
each CG density and can be used to convert from array beta-values to
estimated T7-MBD-seq counts. The maximum beta-value was used
where multiple probes lie within a single window. The resulting qseaSet
estimates the counts we might expect from performing T7-MBD-seq on
the sample, in the windows overlapping the array probes.

Uniform manifold approximation and projection
A Uniform manifold approximation and projection (UMAP44) was cal-
culated on the converted tumour arrays, using the uwot R package45

(v0.1.14) with parameters n_neighbors = 15, min_dist = 1.

Classifier building
To train the classifier, in silico synthetic mixture qseaSets were gen-
erated by mixing processed fragment counts between samples, either
between an array sample (converted into qseaSets as detailed above)
with an NCC cfDNA T7-MBD-seq sample at proportions between 0.5
and 10%, or between mixtures of two NCC T7-MBD-seq samples at
proportions between 15 and 50%, all at varying numbers of fragments
(between 1 million and either the number of NCC fragments or 10
million, whichever was lower). This was performed repeatedly, mixing
every array sample (or NCC) once with each NCC, at a random pro-
portion and random number of fragments. Early iterations of classifier
development revealed some NCC mixtures were predicted to be liver
cancer. It was hypothesised this was due to potential high levels of
normal liver tissue signal within the cfDNA component for these

Table 1 | List of classes used within CUPiD, with the number of methylation arrays for each class and regrouping

CUPiD class Class details Total
number

Source (TCGA abbreviation or
GEO accession)

Number

ACC Adrenocortical carcinoma 79 TCGA (ACC) 79

BLCA Bladder urothelial carcinoma 409 TCGA (BLCA) 409

BRCA Breast invasive carcinoma 777 TCGA (BRCA) 777

CervSq Cervical squamous cell carcinoma 254 TCGA (CESC) 254

CHOL Cholangiocarcinoma 256 TCGA (CHOL) 36

GEO (GSE32079) 50

GEO (GSE49656) 32

GEO (GSE89803) 138

DLBC Diffuse large B-cell lymphoma 48 TCGA (DLBC) 48

GBM Glioblastoma multiforme 139 TCGA (GBM) 139

Gynae Non-squamous gynaelogical carcinomas (endocervical adenocarcinoma, ovarian
cystadenocarcinoma, endometrial carcinoma, uterine carcinosarcomas)

531 TCGA (CESC) 46

TCGA (OV) 10

TCGA (UCEC) 418

TCGA (UCS) 57

KICH Kidney chromophobe 65 TCGA (KICH) 65

KIRC Kidney renal clear cell carcinoma 312 TCGA (KIRC) 312

KIRP Kidney renal papillary cell carcinoma 271 TCGA (KIRP) 271

LAML Acute myeloid leukaemia 194 TCGA (LAML) 194

LGG Brain lower grade glioma 514 TCGA (LGG) 514

LIHC Liver hepatocellular carcinoma 366 TCGA (LIHC) 366

LowerGI Colon and rectum adenocarcinomas 382 TCGA (COAD) 288

TCGA (READ) 94

LUAD Lung adenocarcinoma 456 TCGA (LUAD) 456

LUSC Lung squamous cell carcinoma 364 TCGA (LUSC) 364

MESO Mesothelioma 87 TCGA (MESO) 87

PAAD Pancreatic adenocarcinoma 156 TCGA (PAAD) 156

PCPG Pheochromocytoma and Paraganglioma 178 TCGA (PCPG) 178

PRAD Prostate adenocarcinoma 495 TCGA (PRAD) 495

SARC Sarcoma 257 TCGA (SARC) 257

SKCM Skin cutaneous melanoma 472 TCGA (SKCM) 472

TGCT Testicular germ cell tumours 149 TCGA (TGCT) 149

THCA Thyroid carcinoma 503 TCGA (THCA) 503

THYM Thymoma 124 TCGA (THYM) 124

UpperGI Stomach and oesophageal adenocarcinoma 481 TCGA (ESCA) 88

TCGA (STAD) 393

UpperSq Head and neck and oesophageal squamous cell carcinoma 618 TCGA (ESCA) 95

TCGA (HNSC) 523

UVM Uveal melanoma 80 TCGA (UVM) 80

NCC Non-cancer controls (patient matched adjacent normal liver) 49 TCGA (LIHC) 49

All array samples come from The Cancer Genome Atlas (TCGA) or Gene Expression Omnibus (GEO). Further details are included in Supplementary Data 1.
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samples. To overcome this, we included 49 adjacent normal liver
arrays from TCGA into the NCC mixture sets for training, these mix-
tures were assigned the NCC class.

Differentially Methylated Regions (DMRs) were calculated pair-
wise between classes using QSEA33 on the converted array qseaSets (at
100% tumour fraction), and a false discovery rate (FDR) of 0.001 was
applied. The difference between the average beta-values for each pair
of classes, Δβ, was calculated and used to sort DMRs by effect mag-
nitude. The top and bottom 250 DMRs between each pairwise com-
parison were selected. After reduction of DMRs occurring in multiple
comparisons, 22,179 distinct regions were taken forward in classifier
development. For each class, we sampled up to 10,000 mixture
qseaSets for classifier training, resulting in 276,108 unique samples in
total, resulting in an approximately equal class distribution
(3460–10,000 samples per group, depending on the number of arrays
available). For each sample, the number of normalised reads per mil-
lion (NRPM) were calculated for each of the 22,179 regions; this was
used as the input data for each sub-classifier.

An ensemble comprising of 100 sub-classifierswas thenbuilt, with
each individual sub-classifier including only the mixtures built from
80% of the array samples and 80% of the NCC samples. These sub-
classifierswerebuilt using ExtremeGradient BoostingTrees46 (xgboost
R package, v1.6.0.1) within the R tidymodels47 (v0.2.0) framework, with
default parameters except for trees = 200, sample_size = 0.5, mtry =
2135. These parameter choices resulted in 200 sequential trees built,
with each tree using a randomly selected 50% of the mixtures (within
the 80% stratification) and 10% of the regions. These parameters pro-
vide a large amount of variation across the population of trees in each
sub-classifier, as well as the variation between sub-classifiers based on
the mixtures used in training.

Model performance
Each individual sub-classifier was tested on the remaining mixture
sets comprising of samples not seen by that sub-classifier during
model training (comprising 4% (20% * 20%) of the total mixture sets).
Applying a sub-classifer to a held-out mixture set resulted in a pre-
diction score for each of the 30 classes. These class-specific pre-
diction scores for all the held-out mixture sets were compared
against the ground truth to determine a one-vs-all multi-class area
under the receiver operating curve (AUROC) value for each sub-
classifier. To do this, we used themulticlass roc_auc function in the R
package yardstick48 (v1.0.0), which is based on the method of Hand
and Till49.

For the ensemble classifier performance, we took each individual
mixture set and applied all the sub-classifiers that did not use either
component of that mixture set for training. We then calculated the
mean prediction score for each of the 30 classes (averaging over the
relevant sub-classifer outputs). An overall multi-class AUROC value for
the ensemble was again calculated using the multiclass Hand-Till
method49.

Application of CUPiD to cfDNA samples processed through
T7-MBD-seq
The ensemble of trained classifiers (CUPiD) was then applied to the
143 cfDNA samples from patients with known tumour types, 27 NCC
samples not used in the generation of CUPiD and 41 samples from
patients with CUP. The mean of the class-specific prediction scores
across the 100 sub-classifiers was used as the final prediction score
for each of the 30 classes. When applying CUPiD, a mean prediction
score above 0.5 for a single class was required for a prediction of
that class. This threshold ensures that the prediction value for
the assigned class was higher than the remaining classes combined,
as they sum to one. An unclassified prediction was reported where
the mean prediction values were all <0.5 or the NCC class was
predicted.

Targeted library preparation and sequencing
cfDNA and germline DNA from all CUP samples were processed in
accordance with TARGET trial laboratory protocol50 (TARGET patients
up to TAR00286) or by the following updated method (TAR00287
onward and Biobank samples). DNA repair and dA-tailing were per-
formed using the NEBNext® UltraTM II End Repair/dA-tailing Module
(New England Biolabs, catalogue number E7546L). Adapter ligation
and indexing was carried out using KAPA HyperPrep Kit (Roche, cat-
alogue number 07962355001) with NEBNext® Multiplex Oligos for
Illumina (New England Biolabs, catalogue number E7335L). Targeted
NGS for whole genome libraries from cfDNA and corresponding
germline DNA was carried out using SureSelect Custom DNA Target
Enrichment Probes (Agilent, catalogue number 5190-4822). Target
enrichment of 0.5–1.0 µg of each DNA library (paired cfDNA and gDNA
libraries from the same patient pooled per pull down) was performed
using SureSelect XT HS Target Enrichment System (Agilent, catalogue
number G9703A) with a 641 gene hybridisation panel. Captured
libraries were amplified using KAPA HiFi HotStart PCR Kits (Roche,
catalogue number 07958897001) and quantified using the KAPA
Library Quantification qPCR Kit (Roche, catalogue number
07960140001). Librarieswere paired end sequenced at 2 ×150 bps on a
NextSeq 500 or NovaSeq 6000 (Illumina).

Targeted library alignment and mutation calling
FASTQ files were aligned to GRCh38 using bwa mem31 (v0.7.17) and
deduplicated using samtools32 (v1.9). Mutations were called using
GATK Mutect2 (v4.2.5.0, following GATK best-practices51 with default
parameters apart from a f-score beta of 5, log 10 odds threshold of 1.0
and a minimum variant allele fraction of 1%) as well as QIAGEN CLC
Genomics Workbench (v20.0.2 build 200002), calling variants
between the cfDNA sample and a matched germline control derived
fromwhole blood. Thosemutations called by both tools were denoted
as high confidence, and annotated by VEP52 (v193.1) and oncoKB19

(v3.17). VCF files were converted to MAF files using vcf2maf53 (v1.6.21),
and restricted to those whose Variant_Classification field was one of
Frame_Shift_Del, Frame_Shift_Ins, Splice_Site, Translation_Start_Site,
Nonsense_Mutation, Nonstop_Mutation, In_Frame_Del, In_Frame_Ins or
Missense_Mutation, aswell asfiltering out anymutations present in the
gnomAD database54 (v2.1.1) at a population frequency above 1%. The
oncoplot was generated using maftools55 (v2.8.05), selecting for those
genes noted as being oncogenic by OncoKB19.

Mutation analysis for oncogenicity and actionability
Each high confidence genomic alteration that passed mutation filter-
ing steps was annotated using OncoKB19 to determine likelihood of
being oncogenic and potential actionability. Only alterations action-
able to Level 3 evidence and above were reported.

Annotation of mutated genes based on enrichment for genomic
alterations in individual tumour types
Genes were annotated according to tumour type enrichment using a
previously described set of genes that show statistically significant
enrichment for genomic alterations in individual tumour types when
compared to all other cancer, based on AACR Project GENIE mutation
data1. For patientswhichwere ‘clinically resolved’or ‘highly suspected’,
these were considered as supported if at least one gene was noted as
statistically enriched in that tumour type. For patients with a ‘differ-
ential diagnosis’, mutations were considered supportive if only one of
the potential differential diagnoses was present; those with mutations
which are enriched for more than one potential diagnosis were not
considered supportive.

Statistics and Reproducibility
Statistical analyses performed are detailed throughout the text and
in figure legends with source data provided. Unless otherwise
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stated, all statistical tests were two-sided and a significant result
determined by a P value threshold of 0.05. For DMR analysis, mul-
tiple testing (FDR) correction was applied to P values as detailed
above. For Pearson correlation hypothesis testing, data distribu-
tions were assumed to be normal but this was not formally tested.
No statistical method was used to predetermine sample size and
samples were chosen and processed based on the availability of
plasma/cfDNA samples at the time of data generation. The experi-
ments were not randomized. Data failing the quality control metrics
were excluded as described above. In addition, NCCs with a later
known cancer diagnosis were excluded. The investigators were not
blinded to allocation during experiments and outcome assessment,
nor to the cancer type of any of the samples. None of the NCC
samples used for training and testing of classifier were used in the
independent test cohort.

Figure generation
Figure generation was performed using R (v4.2.0), using ggplot2
(v3.3.6), ggpubr (v0.4.0) and Excel (Microsoft 365). Alluvial plots were
made using SankeyMATIC (https://sankeymatic.com/).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The T7-MBD-seq and shallow whole genome sequencing data gener-
ated in this study have been deposited under controlled access in the
European Genome-Phenome Archive (EGA) with accession code
EGAS00001007445. Access may be requested through the EGA
request form at https://ega-archive.org/datasets/EGAD00001011178,
for non-commercial purposes; a Data Access Agreement will be pro-
vided for institutional completion within two weeks.

Pre-normalised TCGA data was downloaded from Xena Browser
(https://tcga-pancan-atlas-hub.s3.us-east-1.amazonaws.com/
download/jhu-usc.edu_PANCAN_HumanMethylation450.betaValue_
whitelisted.tsv.synapse_download_5096262.xena.gz). Previously pub-
lished cholangiocarcinomamethylation arrays were downloaded from
the (Gene Expression Omnibus under accession numbers GSE32079,
GSE49656, GSE89803). Processed data (counts per 300bp window)
for each sample is available upon request from Zenodo (https://doi.
org/10.5281/zenodo.10678015). Data from applying the classifier to
each sample is available fromZenodo (https://doi.org/10.5281/zenodo.
10684337). Source data are provided with this paper, except the
AUROC data which is available from Zenodo due to large file size
(https://doi.org/10.5281/zenodo.10684337).

Code availability
The R package for analysis (mesa) is available from https://www.
github.com/cruk-mi/mesa. The Nextflow pipeline and classifier build-
ing code is available upon request from Zenodo (https://doi.org/10.
5281/zenodo.10678015). Code to analyse the output of the classifiers
and generate all figures is available from Zenodo (https://doi.org/10.
5281/zenodo.10684337).
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