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Abstract
Asthma is a chronic, heterogeneous disease of the airways, often characterised by structural changes known
collectively as airway remodelling. In response to environmental insults, including pathogens, allergens
and pollutants, the epithelium can initiate remodelling via an inflammatory cascade involving a variety of
mediators that have downstream effects on both structural and immune cells. These mediators include the
epithelial cytokines thymic stromal lymphopoietin, interleukin (IL)-33 and IL-25, which facilitate airway
remodelling through cross-talk between epithelial cells and fibroblasts, and between mast cells and airway
smooth muscle cells, as well as through signalling with immune cells such as macrophages. The
epithelium can also initiate airway remodelling independently of inflammation in response to the
mechanical stress present during bronchoconstriction. Furthermore, genetic and epigenetic alterations to
epithelial components are believed to influence remodelling. Here, we review recent advances in our
understanding of the roles of the epithelium and epithelial cytokines in driving airway remodelling,
facilitated by developments in genetic sequencing and imaging techniques. We also explore how new and
existing therapeutics that target the epithelium and epithelial cytokines could modify airway remodelling.

Introduction
Asthma is a chronic, inflammatory disease of the airways, characterised by variable symptoms of
wheezing, chest tightness, cough, shortness of breath and varying expiratory airflow limitation [1]. The
disease is phenotypically heterogeneous, with differing clinical characteristics such as age at onset, degree
of severity and response to treatment [2]. Heterogeneity in the biological and immunological mechanisms
that contribute to asthma led to the conception of “endotypes” to define groups of patients with similar
disease characteristics at the cellular and molecular levels, such as features of inflammation [3]. The most
common inflammatory endotype is type 2 (T2)-high asthma, characterised by high levels of T2
inflammatory biomarkers including eosinophils, exhaled nitric oxide, IgE, interleukin (IL)-5 and IL-13 [4].
Patients with T2-low asthma exhibit lower levels of T2 inflammation; instead, the dominant inflammatory
cell types may include neutrophils or there might be very few inflammatory cells, termed
paucigranulocytic inflammation [5, 6]. Neutrophilic inflammation can coexist with eosinophilic
inflammation in patients with severe asthma with a mixed phenotype [5, 7]. Endotypes and phenotypes are
dynamic, and diverse environmental stimuli may induce modifications resulting in mixed molecular
pathways and phenotypes that overlap over a patient’s lifetime [8].
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The airway epithelium plays a critical role in the pathophysiology of asthma, acting as a structural and
immunological barrier to the external environment [9]. Airborne pathogens, pollutants and, in sensitised
people, allergens can damage airway epithelial cells and trigger the release of epithelial cytokines that
drive downstream inflammatory processes [10–12]. In the healthy state, resolution of acute inflammation
can repair and restore normal airway structure and function, avoiding epithelial damage. However, in
patients with asthma, aberrant immune responses and repair processes lead to recurrent or chronic
inflammation and damage to the airway epithelium, which can result in structural changes in the large and
small airways [13]. These structural changes, collectively referred to as airway remodelling, include
epithelial dysfunction, goblet cell hyperplasia and metaplasia, thickening and fibrosis of the subepithelial
matrix, increased airway smooth muscle (ASM) mass and enhanced angiogenesis. These features
contribute to narrowing and stiffening of the airways, resulting clinically in airflow limitations with
subsequent worsening of respiratory symptoms [14].

Airway remodelling is a near-universal feature of asthma. It is present in patients with mild disease [15]
but tends to worsen with increasing disease severity [16, 17], and is associated with a higher exacerbation
risk, lung function decline and disease chronicity [9, 14, 18]. Airway remodelling was once considered a
secondary phenomenon, developing in late-stage asthma as a consequence of chronic inflammation.
However, biopsy studies in young children indicate that airway remodelling can be an early event in
asthma development, initiating before symptoms occur [19–21] and potentially even predisposing
individuals to developing asthma by affecting lung development [9]. Structural changes to the airways are
believed to persist through adulthood [22].

Developments in genetic sequencing and imaging techniques have advanced our understanding of the roles
of the epithelium and epithelial cytokines in driving airway remodelling, taking us to the edge of a new era
of scientific discovery and potential therapeutic development. Here, we review the emerging data in this
growing area of research, their clinical relevance, and how new and existing therapeutics that target the
epithelium and epithelial cytokines could modify airway remodelling in asthma.

How the epithelium orchestrates airway remodelling
The epithelial cells of the airways act as an initiation point for airway remodelling in asthma [14].
Epithelial cells express pattern recognition receptors, which detect pathogen-associated molecular patterns
and damage-associated molecular patterns derived from pathogens, allergens and injured cells resulting
from environmental insults such as pollutants and toxins [23]. The triggering of pattern recognition
receptors results in the epithelial release of chemokines and cytokines (primarily epithelial cytokines and
ILs) and a downstream inflammatory cascade involving various immune and structural cells [23–25].
Pro-inflammatory stimuli and cytokines also trigger epithelial inducible nitric oxide synthase expression,
producing an increase in nitric oxide levels. This induces chronic inflammatory responses and nitration of
proteins involved in proliferation, apoptosis or migration, triggering epithelial tissue injury [26].
Environmental insults may also induce apoptosis of the epithelium, accompanied by the release of
mediators such as transforming growth factor (TGF)-β [27], which can initiate the tissue regeneration
process in an attempt to restore homeostasis. However, persistent inflammation and damage to the
epithelium can lead to aberrant tissue repair and pathological remodelling of the airways [9, 28, 29].

Multiple mechanical forces, including compression (cells being pushed together), stretch (of cells at the
apex of the epithelial folds) and shear stress (increase in air velocity together with a reduction in airway
diameter), affect the epithelium as the airway wall folds [30, 31]. A variety of experimental models have
been used to show that mechanical forces can initiate airway remodelling independently of inflammation [32].
The mechanical forces present during regular respiration are balanced; however, during bronchoconstriction
experienced by patients with asthma, airway epithelial cells are exposed to excessive mechanical
forces [14]. This compressive stress results in mechanical stimulation, which elicits a pro-remodelling
response in the absence of inflammation [33, 34]. This response causes subepithelial thickening via
increased production of fibronectin and collagen III and V, and an increase in the ratio of matrix
metalloproteinase (MMP)-9 to tissue inhibitor of metalloproteinase-1 [33]. Goblet cell hyperplasia and
metaplasia, and subsequent mucus overproduction, may also occur as a result of epithelial compression
during bronchoconstriction [34].

Airway remodelling may be self-perpetuating. Epithelial disruption can result in an abnormal
epithelium-mediated immune response, potentially promoting the persistence of microbes such as bacteria
and fungi in the airways [35]. Meanwhile, stiffening of the airway walls alters the local biomechanical
environment. Both of these abnormalities can drive a positive feedback loop that perpetuates airway
remodelling [14, 36].
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Role of epithelial cytokines in airway remodelling
Three epithelial cytokines, i.e. thymic stromal lymphopoietin (TSLP), IL-33 and IL-25, known as
“alarmins”, are central in asthma pathophysiology. They act as master regulators that mediate both innate
and adaptive immune responses, including both T2 and non-T2 inflammation, as well as structural changes
in the airways [25, 37]. Airway levels of both TSLP and IL-33 are elevated in patients with asthma
compared with healthy individuals and correlate with disease severity [38–42]. IL-25 concentrations in
sputum may also correlate with disease severity [43].

The three epithelial cytokines have diverse, yet often overlapping, effects on mesenchymal cells such as lung
fibroblasts and ASM cells (figure 1). TSLP activates lung fibroblasts, which produce extracellular matrix
(ECM) molecules such as collagen I and MMP-1 [44–46]. There is also evidence that human endothelial
cells express the TSLP receptor and that TSLP induces their proliferation [47, 48]. Moreover, TSLP
promotes the release of vascular endothelial growth factor (VEGF)-A from human lung macrophages [49].
IL-33 promotes the expression of collagen and fibronectin-1 in lung fibroblasts [50, 51], and IL-25 promotes
lung fibroblast proliferation [52] and collagen secretion by these cells [53]. In turn, asthmatic lung
fibroblasts contribute to inflammation by secreting cytokines, including TSLP and IL-33 [54, 55].

During epithelial-to-mesenchymal transition (EMT), epithelial cells lose their epithelial markers, migrate to
the lamina propria and gain mesenchymal markers. These mesenchymal cells now synthesise ECM, which
provides a framework for basal cells to replace damaged epithelium in wound healing [56]. In vitro studies
have shown that TSLP- and IL-33-mediated signalling between the epithelium and fibroblast-like
mesenchymal cells may drive remodelling in response to recurring injury, potentially (for TSLP) through
upregulating the expression of TGF-β [14, 57, 58]. However, there is a lack of in vivo evidence regarding
the role of EMT in the pathogenesis of asthma.

Both TSLP and IL-33 mediate cross-talk between ASM and mast cells, with subsequent effects on airway
structure and function [40, 59]. TSLP promotes the proliferation and migration of ASM cells and the
release of inflammatory cytokines, including TSLP itself, from these cells [60–62]. TSLP also acts upon
mast cells, which in turn can trigger bronchoconstriction and increased ASM mass [63]. IL-33 directs
ASM wound repair and drives airway hyperresponsiveness (AHR) through IL-13-based signalling between
ASM and mast cells [40]. Mast cells play a key role in asthma pathophysiology and airway remodelling
through the release of a plethora of cytokines (e.g. TSLP, IL-33, IL-25, IL-4, IL-13 and TGF-β) and
angiogenic factors (e.g. VEGF-A), as well as other inflammatory mediators and bronchoconstrictors
[64, 65]. IL-25 contributes to airway remodelling via the induction of airway angiogenesis in murine
asthma models [53, 66].

Downstream immune cell actions influence airway remodelling
Epithelial cytokines activate several immune cells that can drive airway remodelling, including dendritic
cells, T-helper type 2 (Th2) cells, group 2 innate lymphoid cells (ILC2s), eosinophils and macrophages
(figure 2) [67, 68].

During T2 inflammatory responses, TSLP activates dendritic cells, which in turn prime naive T-helper
cells to produce Th2-like cytokines such as IL-4, IL-5 and IL-13 [69]. IL-33 acts as a positive regulator of
TSLP–dendritic cell signalling, initiating and maintaining Th2 cell-mediated inflammatory responses [70].
Moreover, TSLP, IL-33 and IL-25 activate ILC2s, which also produce IL-4, IL-5 and IL-13 [71–73]. The
IL-5 secreted from polarised Th2 cells and ILC2s stimulates eosinophilic inflammation via effects on
eosinophil recruitment, maturation and survival [74]. Activated eosinophils and mast cells release cysteinyl
leukotrienes, which are potent bronchoconstrictors and induce airway remodelling through ASM cell
proliferation and the release of mediators such as TGF-β, cationic proteins and cytokines [75, 76]. Both the
MET gene, encoding the hepatocyte growth factor receptor, and the MMP10 gene, encoding MMP-10, are
implicated in airway remodelling and cellular inflammation associated with submucosal eosinophils [77].
IL-4 and IL-13 enhance subepithelial fibrosis, mucus production via goblet cell proliferation and collagen
deposition [14].

TSLP may also play a role in non-T2 inflammation-mediated airway remodelling. Dendritic cells activated
by TSLP can induce the polarisation of naive T-cells towards a T-helper type 17 (Th17) phenotype [78].
The synergistic effect of dendritic cells together with Th17 cytokines promotes neutrophilic inflammation
and accumulation of fibrotic matrix components that correlate with TGF-β expression [79, 80].

All three epithelial cytokines can activate human lung macrophages [25, 49]. Macrophages influence
inflammatory responses in the airways through phagocytosis, cytokine and angiogenic factor production,
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FIGURE 1 Multiple pathogenic factors trigger structural alterations of a) healthy airways resulting in b) airway remodelling. Epithelial cytokines can
play diverse, yet often overlapping, roles in airway remodelling in asthma. ASM: airway smooth muscle; EMT: epithelial-to-mesenchymal transition;
IL: interleukin; MMP: matrix metalloproteinase; TGF: transforming growth factor; TSLP: thymic stromal lymphopoietin.
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and regulation of tissue repair in the lungs [81, 82]. Alveolar macrophages are activated by TGF-β and
release MMPs that alter the ECM and airway structure [14, 49]. Two distinct populations of resident
macrophages have been identified in the lungs [83–85]. One macrophage population (Lyve1loMHCIIhi) is
mostly located adjacent to nerves and primarily presents antigens. The other (Lyve1hiMHCIIlo) resides
alongside blood vessels; in a mouse model, Lyve1hiMHCIIlo macrophages were shown to have a critical
role in suppressing inflammation and fibrosis [83–85].

Influence of genetic and epigenetic changes in the airway epithelium on remodelling
Genetic variations in the airway epithelium can initiate or worsen asthma and influence remodelling
[86–88]. In the largest genome-wide association study to date in moderate-to-severe asthma, SHRINE
et al. [89] reported that variants in MUC5AC, GATA3 and KIAA1109 were associated with an increased
susceptibility to developing moderate-to-severe asthma. MUC5AC gene variants are associated with
increased mucus plugging, whereas GATA3 is a transcription factor regulating T2 immunity and allergy.
The function of KIAA1109 is not fully understood [89].

HEIJINK et al. [90] selected 12 genes identified in asthma genetic studies that are implicated in epithelial
function. These include genes related to the inflammatory environment (IL33, TSLP and IL1RL1), the
response to pathogens (CDHR3), mucociliary clearance (MUC5AC, KIF3A and EFHC1), and cell
homeostasis and epithelial integrity, including proliferation, migration, cell–cell adhesion, apoptosis and
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FIGURE 2 Epithelial cytokines activate immune cells that drive pathogenic airway remodelling processes in patients with severe asthma. Biologic
therapies for severe asthma (approved or recently in development) that target epithelial cytokines and downstream mediators may ameliorate
features of airway remodelling. EGFR: epidermal growth factor receptor; IL: interleukin; ILC2: group 2 innate lymphoid cell; R: receptor; RAGE:
receptor for advanced glycation end-products; ST2: serum stimulation-2; TSLP: thymic stromal lymphopoietin.
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repair (PCDH1, SMAD3, GSDMB, ORMDL3 and PLAUR). Relevant to the latter group of genes, the
17q21 gene locus, which is linked to GSDMB and ORMDL3, is an important susceptibility locus for
childhood-onset asthma [91]. Gasdermin B (GSDMB) is highly expressed in the epithelium in asthma, and
increased GSDMB expression in transgenic mice leads to spontaneous remodelling and AHR in the
absence of airway inflammation [92]. Orosomucoid-like protein isoform 3 (ORMDL3) is expressed in
epithelial cells and regulates endoplasmic reticulum stress and sphingolipid homeostasis [93]. Transgenic
mice overexpressing ORMDL3 exhibit increased ASM mass, subepithelial fibrosis and mucus [94].
Plasminogen activator urokinase receptor (PLAUR) is expressed in the epithelium and regulates the
activation of urokinase plasminogen activator, triggering the plasminogen/plasmin activation cycle.
PLAUR is also involved in epithelial repair, proliferation and remodelling [95]. In patients with asthma,
PLAUR variants are associated with a rapid decline in lung function and with airway remodelling through
effects on reticular basement membrane (RBM) thickness, collagen III deposition and basal epithelial
proliferation [96].

Lastly, although its function is unclear, elevated serum levels of YKL-40, a chitin-binding glycoprotein
expressed in the airway epithelium, correlate with asthma severity, airway remodelling and increased
thickness of the RBM [97]. Variations in the expression of the CHI3L1 gene, which encodes YKL-40, are
also associated with asthma severity, airflow obstruction and airway remodelling [98].

Epigenetic changes, such as DNA methylation or acetylation, histone modifications and microRNA
modifications, in the airway epithelium are associated with asthma [10, 12, 99, 100]. The DNA methylation
pattern of epithelial cells is different for children with asthma compared with healthy children or those with
atopic asthma [101]. School-aged children with asthma also have differential methylation of genes relevant to
epithelial barrier function, airway epithelial integrity and immune regulation [102]. Of note, overexpression of
TSLP in asthmatic airway epithelial cells may be regulated by DNA demethylation [103]. Increased histone
deacetylase activity could be responsible for tight junction dysfunction in asthma, and inhibiting this activity
is a promising target for improved barrier integrity [104, 105]. Lastly, epigenetic “training” from repetitive
activation of innate signalling pathways can induce adaptive epithelial responses [106]. Oxidative stress
resulting from the innate immune response can cause conformational changes in DNA that trigger
inflammation, EMT and ECM remodelling. Targeting inducible epigenetic guanine oxidation reprogramming
pathways reduced airway inflammation in pre-clinical models [106].

Structural and clinical consequences of airway remodelling
The ultrastructural changes associated with airway remodelling result in altered airway geometry, including
airway wall thickening and luminal narrowing, and in ventilation defects, including mucus plugging and
airway obstruction. Some of these phenomena can be assessed using imaging techniques such as computed
tomography (CT) [107, 108].

Goblet cell hyperplasia and submucosal gland hypertrophy lead to increased sputum production, airway
narrowing due to sputum secretion and increased airway wall thickness [109]. These changes can
ultimately result in the formation of mucus plugs, which are associated with severe airflow limitation and
death [110, 111]. Subepithelial fibrosis resulting from increased ECM deposition leads to airway wall
thickening, which correlates with asthma severity and AHR [109, 112, 113]. Increased ASM mass is
associated with asthma severity [114], and ASM cells migrating towards the epithelium and subsequent
increased ECM deposition within the ASM may contribute to airflow obstruction [109, 115]. Changes in
airway wall microvasculature resulting from inflammatory angiogenesis can contribute to the development
of airway wall oedema, leading to luminal narrowing [109]. Lastly, decreased cartilage volume and
increased cartilage proteoglycan degradation in the airways can contribute to chronic airway obstruction
and enable more powerful bronchoconstriction for a given degree of ASM contraction [109].

Although the qualitative assessment of chest radiographs and CT scans is part of the standard of care for
asthma, other lung imaging platforms and software algorithms can quantify regional airway structure and
function, as well as airway inflammation. In addition to CT imaging, new approaches such as
hyperpolarised gas magnetic resonance imaging and single-photon emission CT are helping us to
understand the heterogeneity of severe asthma and are likely to advance clinical management towards
precision medicine [116].

Measuring the geometry of the airways provides a measure of the impact of remodelling at an individual
airway level, whereas lung function tests measure remodelling at an organ level. However, the
ultrastructural/cellular changes that lead to remodelling do not happen on the same timescale as the
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development of clinical symptoms (e.g. breathlessness). Access to and combining information from
different modalities will provide insight into the mechanisms underlying airway remodelling [35].

Identification of airway remodelling phenotypes in asthma
Bronchial biopsy and post-mortem tissue section studies show differences in airway structural characteristics
between patients with different asthma phenotypes. Patients with severe asthma and high levels of
eosinophilic inflammation have greater RBM thickness than those with nearly absent eosinophils [117].
In a subsequent study, no difference in RBM thickness was found between patients with early-onset
(childhood) and late-onset (adulthood) asthma, despite those with adult-onset asthma having inferior forced
expiratory volume in 1 s (FEV1) and forced vital capacity and a shorter duration of disease [118]. Among
patients with late-onset asthma, those with eosinophilic inflammation had greater RBM thickening than
those without eosinophilic inflammation. Patients with paucigranulocytic asthma had increased thicknesses
of the ASM layer and RBM compared with healthy individuals [119]. Meanwhile, patients with
granulocytic asthma also had increased airway wall thickness and narrowing of the airway lumen due to
ASM shortening and mucus obstruction [119]. This finding suggested that some components of
remodelling are dependent on inflammation whereas others are not. In the paucigranulocytic endotype,
airway remodelling is thought to occur in a manner “uncoupled” from inflammation, potentially through
mechanotransduction-related pathways [6].

Attempts have also been made to identify airway remodelling phenotypes using quantitative CT imaging
[120, 121]. Cluster analysis of wall and lumen volumes of the large airways in an adult asthma cohort
identified three phenotypes, all of which demonstrated air trapping: one cluster with increased airway wall
and lumen volumes and another cluster with luminal narrowing, both with poor lung function, and a third
cluster lacking airway remodelling that had clinically mild disease [121]. A second analysis of remodelling
across the small and large airways in a cohort of patients with severe asthma identified three phenotypes:
one characterised by large-to-medium bronchial wall thickening, mucus plugging and bronchiectasis,
associated with systemic eosinophilic inflammation; one characterised by small airway remodelling and
fixed airflow obstruction, associated with male sex, smoking and more frequent use of controller
medication; and one lacking both eosinophilic inflammation and airway remodelling [120].

Successful identification of remodelling phenotypes may enable the development of targeted approaches to
treat traits specifically related to airway remodelling, with the aim of preventing lung function decline. The
combination of clinical, inflammatory and remodelling phenotypes within a patient could determine the
optimal personalised approach to their treatment [22].

Targeting the epithelium and epithelial cytokines to modify airway remodelling
Various therapies for asthma target the epithelium either directly or indirectly and, as well as improving
clinical symptoms, may ameliorate features of airway remodelling and lung function decline as measured
by FEV1 and other spirometric parameters.

Glucocorticoids
First-line therapy for asthma typically includes inhaled corticosteroids (ICS), targeting glucocorticoid
receptors that are expressed almost ubiquitously, including in epithelial cells. Maintenance use of ICS
(⩾1 year) is associated with modest improvements in FEV1 [122]. Glucocorticoids mitigate chronic
inflammation, which indirectly contributes to airway remodelling. However, evidence for a direct beneficial
impact of ICS or oral corticosteroids on airway remodelling has been contradictory. High-dose ICS
reduced both submucosal vascularity and RBM thickness in patients with mild-to-moderate asthma [64].
Glucocorticoid treatment also restored the integrity of epithelial cell monolayers through the redistribution
of tight junction proteins [123]. Furthermore, studies in epithelial cells suggest that glucocorticoid exposure
may reduce goblet cell hyperplasia [124, 125], but ICS treatment in patients with mild asthma did not
confirm this [126]. Glucocorticoid treatment may in fact contribute to airway remodelling, potentially by
inducing caspase-mediated epithelial cell apoptosis [127].

Biologics targeting T2 inflammation
Biologic therapies may be prescribed as add-on maintenance treatments to improve disease control in
patients with moderate-to-severe asthma [1]. Monoclonal antibodies (mAbs) that target IgE or Th2
cytokines (IL-5, IL-4 and IL-13) and their receptors have secondary effects on the epithelium through their
actions on these immune cell mediators (figure 2 and table 1) [128, 129]. The possible effects of these
biologics on airway remodelling have been reviewed in detail elsewhere [128–130] and are summarised
briefly here.
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TABLE 1 Effects of biologics for severe asthma on airway remodelling and clinical outcomes [129, 130]

Biologic Target GINA eligibility criteria (in
addition to having severe asthma)

Biological effects Effects on airway remodelling Expected clinical outcomes

Omalizumab IgE Severe exacerbations within past
year, sensitisation to inhaled
allergens, total serum IgE and

weight within local dosing range

↓ Circulating total IgE
Downregulation of FcεRI receptors

on basophils, mast cells and
dendritic cells

↓ RBM thickness
↓ Airway wall thickness on CT

↓ Fibronectin deposition
Prevents IgE-mediated ECM

deposition in vitro

↑ Lung function (FEV1)
↓ Severe exacerbations
↑ Health-related QoL
↑ Symptom control

↓ OCS (possible benefit)
Mepolizumab IL-5 Severe exacerbations within past

year, BEC ⩾150 or ⩾300 cells·µL−1
(locally specified)

Blockage of IL-5/IL-5R binding ↓ Airway eosinophils and TGF-β1+

eosinophils
↓ Tenascin, lumican and
procollagen III expression

↓ RBM thickness
↓ Airway wall thickness on CT

↓ ASM mass

↑ Lung function (FEV1)
↓↓ Severe exacerbations

↑ QoL
↑ Symptom control

↓ OCS

Reslizumab IL-5 Severe exacerbations within past
year, BEC ⩾150 or ⩾300 cells·µL−1

(locally specified)

Blockage of IL-5/IL-5R binding Not reported ↑ Lung function (FEV1)
↓↓ Severe exacerbations

↑ QoL
↑ Symptom control

Benralizumab IL-5Rα Severe exacerbations within past
year, BEC ⩾150 or ⩾300 cells·µL−1

(locally specified)

↓ Eosinophils and basophils via
antibody-dependent cell-mediated

cytotoxicity

↓ Airway eosinophils
↓ ASM mass

↑ Lung function (FEV1)
↓↓ Severe exacerbations
↑ Health-related QoL
↑ Symptom control

↓ OCS
Dupilumab IL-4Rα Severe exacerbations within past

year, BEC ⩾150 and
⩽1500 cells·µL−1, or FENO ⩾25 ppb,

or maintenance OCS

Blockage of IL-4/IL-4Rα binding
Blockage of IL-13/IL-4Rα binding

Prevents eosinophil infiltration into
lung tissue in a mouse model of

asthma

↑ Lung function (FEV1)
↓↓ Severe exacerbations
↑ Health-related QoL
↑ Symptom control

↓ OCS
Tezepelumab TSLP Severe exacerbations within

past year
Blockage of TSLP/TSLPR binding ↓ Airway eosinophils

↓ AHR to mannitol
↓ Airway inflammation

↓ TGF-β1
↑ CT scan-determined lumen area

↑ Lung function (FEV1)
↓↓ Severe exacerbations
↑ Health-related QoL
↑ Symptom control

↓ OCS (possible benefit)

AHR: airway hyperresponsiveness; ASM: airway smooth muscle; BEC: blood eosinophil count; CT: computed tomography; ECM: extracellular matrix; FENO: fractional exhaled nitric oxide; FEV1:
forced expiratory volume in 1 s; GINA: Global Initiative for Asthma; IL: interleukin; OCS: oral corticosteroids; QoL: quality of life; R: receptor; RBM: reticular basement membrane; TGF: transforming
growth factor; TSLP: thymic stromal lymphopoietin.
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Omalizumab binds to free IgE, inhibiting its binding to the high-affinity IgE receptor FcεRI on mast cells,
basophils and dendritic cells [131]. Although omalizumab did not improve FEV1 in randomised controlled
trials (RCTs) [132, 133], there is some evidence for FEV1 improvement and reduction in severe
exacerbations with omalizumab in real-world settings [134, 135]. Omalizumab reduced RBM thickness
[136, 137] and fibronectin deposits in asthmatic airways [138] and prevented ASM remodelling
in vitro [139].

Mepolizumab and reslizumab bind to IL-5, preventing it from binding to the IL-5 receptor α subunit
(IL-5Rα) on eosinophils, thereby reducing eosinophil activation and maturation [140, 141]. Benralizumab
has a similar mechanism of action, targeting IL-5Rα [142]. These biologics improved FEV1 in RCTs in
patients with severe eosinophilic asthma [143–147] and in real-world settings [148–150]. Mepolizumab
treatment reduced levels of the ECM proteins tenascin, lumican and procollagen III and airway eosinophils
expressing TGF-β1 in the bronchial biopsies of patients with mild atopic asthma, as well as TGF-β1 levels
in bronchoalveolar lavage [151]. In patients with refractory eosinophilic asthma, a reduction in
CT-measured airway wall area was observed with mepolizumab [152]. Preliminary results from the
MESILICO study showed that mepolizumab significantly reduced basement membrane thickness, ASM
area, the extent of epithelial damage and tissue eosinophil numbers in patients with late-onset, severe
eosinophilic asthma and fixed airflow obstruction [153]. Benralizumab reduced both eosinophil numbers in
the bronchial lamina propria and ASM mass in patients with severe eosinophilic asthma, with no
significant change in myofibroblast numbers. The effects of benralizumab on ASM mass were attributed to
an indirect effect mediated by the depletion of TGF-β1+ eosinophils [154]. The effects of reslizumab on
airway remodelling have not yet been reported.

Dupilumab binds to the IL-4 receptor α subunit found on lymphocytes, including B- and T-cells, as well
as on epithelial cells, blocking both IL-4 and IL-13 signalling [155]. This may be expected to reduce
mucus production, goblet cell hyperplasia, subepithelial fibrosis and collagen deposition [14, 156]. In
patients with severe asthma, dupilumab improved FEV1 and other lung function measures both in RCTs
[157, 158] and a real-world study [159]. An ongoing RCT is evaluating the effects of dupilumab on lung
function and airway remodelling using functional respiratory imaging, a novel technology that uses
high-resolution CT scans to quantify airway structure and function [160].

Although not currently an approved therapy for asthma, treatment with the anti-IL-13 mAb lebrikizumab
reduced subepithelial collagen thickness in patients with uncontrolled asthma, providing further evidence
of a role for IL-13 in airway remodelling [161].

In a proof-of-concept study, combined vaccination against IL-4 and IL-13 showed both prophylactic and
therapeutic efficacy in a mouse model of asthma [162]. This opens the path for clinical development of a
vaccine against asthma that would be a cost-effective alternative to therapeutic antibodies.

Biologics targeting epithelial cytokines
Targeting the epithelium more directly by inhibiting the epithelial cytokines TSLP, IL-33 and IL-25 may
be a promising approach to improving airway remodelling (figure 2). Tezepelumab, a human mAb that
binds TSLP, has recently been approved for the treatment of patients with severe asthma, with no
phenotype or biomarker limitations (table 1) [163]. In phase 2 and 3 RCTs in patients with severe,
uncontrolled asthma, there were rapid and sustained improvements in FEV1 and other lung function
measures with tezepelumab compared with placebo [164, 165]. Tezepelumab also reduced serum levels of
MMP-3 and MMP-10 [166]. In an exploratory, mechanistic study in patients with moderate-to-severe
asthma, tezepelumab significantly reduced submucosal eosinophil counts in bronchial biopsies compared
with placebo, irrespective of baseline blood eosinophil count [167]. There were no significant differences
between treatment groups in RBM thickness and epithelial integrity, although there were greater increases
in the CT-measured lumen area across airway generations with tezepelumab than with placebo [167]. The
increases in lumen area were potentially related to reductions in occlusive mucus plugs, which correlated
with improvements in FEV1 and eosinophilic inflammation [168]; this was the first demonstration that an
asthma biologic could reduce mucus plugs. AHR to mannitol was also reduced with tezepelumab
compared with placebo in CASCADE [167], a finding confirmed in an independent study [169], indicating
that tezepelumab has effects independent of T2 inflammation. Further evidence for the benefits of TSLP
blockade on remodelling comes from the use of anti-TSLP antibodies in animal studies. Blocking TSLP
reduced airway inflammation and hyperresponsiveness, together with TGF-β1 levels and airway
remodelling, in a mouse model of allergic asthma [170] and attenuated airway inflammation and
remodelling in asthmatic rats [171]. Furthermore, TSLP blockade suppressed airway remodelling in a
mouse model of asthma via reduced MMP, TGF-β and connective tissue growth factor levels [172].
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Several biologic therapies targeting IL-33 signalling are, or have recently been, in development for asthma
[173, 174]. Itepekimab is an anti-IL-33 mAb that improved FEV1 compared with placebo after 12 weeks
of treatment in patients with moderate-to-severe asthma [173]. By contrast, astegolimab, a human mAb that
inhibits the IL-33 receptor serum stimulation-2 (ST2), did not significantly improve FEV1 after 54 weeks
of treatment in patients with severe asthma, although exacerbations were reduced [174]. However, neither
itepekimab nor astegolimab are currently being pursued in asthma [175, 176]. Lastly, tozorakimab is a
novel dual-pharmacology mAb that inhibits IL-33 activity via both the ST2 and receptor for advanced
glycation end-products–epidermal growth factor receptor complex signalling pathways [177]. Tozorakimab
reduced biomarkers of inflammation, including serum IL-5, IL-13 and blood eosinophils, in a phase 1
study [178] and is being evaluated in a phase 2 study in patients with asthma (ClinicalTrials.gov:
NCT04570657). Although the impact of these mAbs on airway remodelling has not yet been assessed in
clinical studies, IL-33 blockade prevented exacerbations in a mouse model of chronic airway inflammation
by blunting persistent inflammation and remodelling [179]. Furthermore, in a mouse model of asthma, ST2
knockout reduced airway inflammation, Th2 cytokine expression and fibrosis-related protein deposition, all
of which were further reduced by additional blockade with anti-TSLP and anti-IL-25 antibodies [180].

No biologics targeting IL-25 or its receptor are approved or known to be in late-stage development for the
treatment of asthma. However, in a mouse model of allergen-induced airway remodelling, IL-25 blockade
reduced airway eosinophils and levels of Th2 cytokines, and abrogated peribronchial collagen deposition,
ASM hyperplasia and airway hyperreactivity [53].

Future perspectives
Airway remodelling is a composite term used to describe the changes observed at the cell-to-tissue level
within the airways of patients with asthma. Although imaging and physiology are highly predictive of the
presence of remodelling, they do not provide insight into the underlying mechanisms. Our understanding
of how airway remodelling mechanisms impact asthma development is limited by the lack of consensus on
which airway remodelling parameters to study and a lack of appropriate tissue samples or longitudinal
sampling approaches for this slowly progressing process [181]. Other fundamental limitations in airway
remodelling research include a lack of relevant model systems and difficulty in accurately measuring
critical indices (including biomarkers) that encompass genetic, molecular, biochemical, anatomical and
functional aspects of airway remodelling. Research is also limited by the costs of the sensitive and specific
techniques necessary to identify and quantify longitudinal changes in airway remodelling [181].

Multidisciplinary efforts are needed to identify accessible and valid biomarkers of airway remodelling
induction, maintenance, progression and responsiveness to therapy [181, 182]. The most relevant
biomarkers are likely to be those linked to pathways that can be successfully targeted by interventions and
have consequent benefits at an organ level, with associated improvements in asthma control and
exacerbations. Integrating data from multiple disease aspects (structural and inflammatory cell interactions,
genetic background, environmental exposure to allergens, pollutants and pathogens, as well as omics) can
also be used to develop statistical models of the future risk of developing frequent exacerbations or lung
function decline, or the likelihood of responding to therapy [35].

To date, asthma therapies have shown limited effects on airway remodelling [181]. However, the effects of
newer therapies, such as those directed against TSLP and IL-33, are yet to be fully elucidated.
Nevertheless, it is important to improve the targeting of biological treatments to the most suitable patients.
The 3TR (Taxonomy, Treatment, Target and Remission) consortium, involving European academic
researchers, patients and the pharmaceutical industry, has set out a plan to increase the clinical impact of
targeted immune-mediated therapies for asthma and other immune diseases [183]. Their key aim is to
define outcome measures for documenting the therapeutic response to enable comparisons across different
studies. The 3TR consortium will then study biomarkers and immunological mechanisms related to
different responder profiles and will use advanced omics and systems biology analyses to identify
biomarkers for predicting response. Their goal is to uncover future treatment targets and to move towards
more ambitious treatment goals for patients with asthma using precision medicine [183].

Conclusion
Evidence shows that airway remodelling can result from the combination of two major components. The
inflammatory component is associated with persistent airway infiltration and activation of a wide spectrum
of cells of the innate and adaptive immune systems [88, 129]. The structural component is characterised by
changes involving goblet cell metaplasia, ASM hypertrophy/hyperplasia, RBM thickening, increased
sensory nerve endings and increased angiogenesis [64, 129, 184, 185]. The combination of inflammatory
and structural changes in airway remodelling provides the basis of what is canonically referred to as fixed
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airway obstruction. T2 inflammation, involving eosinophils, mast cells, ILC2s, Th2 cells and basophils,
contributes to airway remodelling in most patients with severe asthma [128, 186, 187]. The contribution of
non-T2 inflammation to airway remodelling, presumably involving mast cells, macrophages and
neutrophils [49, 63], remains to be fully clarified [186, 188, 189].

Increasing evidence indicates that biological therapies targeting IgE, IL-5/IL-5Rα, TSLP and IL-33/ST2
can improve not only clinical symptoms but also certain features of airway remodelling in asthma
[128, 129]. With continuing development of new therapies, the achievement of asthma remission and the
prevention of airway remodelling could become realistic possibilities in the treatment of severe asthma.
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