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LETTER TO TH E EDITOR

Single-cell and bulk transcriptomics identifies a
tumor-specific CD36+ cancer-associated fibroblast
subpopulation in colorectal cancer

Dear Editor,
Cancer-associated fibroblasts (CAFs) are highly ver-

satile and plastic cells in the tumor microenvironment.
They have been identified as actively involved in can-
cer progression and metastasis through their various roles
in remodeling the extracellular matrix, suppressing the
immune response and reprogramming tumor metabolism
[1]. However, many challenges exist in revealing the func-
tional phenotypes and mechanisms of CAFs in different
cancers due to limited understanding of CAF hetero-
geneity [2]. Recent advances in single-cell transcriptome
technology have enabled the identification of distinct CAF
subpopulations by using unique gene signatures in multi-
ple tumor types [2]. In this study, we successfully identified
a tumor-specific CD36+ CAF subpopulation in colorectal
cancer (CRC), which was found to be correlated with the
number of tumor-infiltrated immune cells.
Primary CAFs and normal fibroblasts (NFs) were iso-

lated from 5 fresh CRC tissues and paired normal colon
tissues. Isolation methods and descriptions of other assays
are shown in the Supplementary Methods. Immunoflu-
orescence and Western blotting assays showed that the
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mesenchymalmarker Vimentinwas expressed in bothNFs
and CAFs, while alpha smooth muscle actin (αSMA) and
fibroblast-specific protein 1 (FSP1) were overexpressed in
CAFs (Supplementary Figure S1A-D). To further investi-
gate gene expression profiles in these fibroblasts, primary
NFs and CAFs were subjected to RNA sequencing. The
results showed that CD36 was significantly upregulated in
CAFs (Supplementary Figure S1E), whichwas further vali-
dated by immunofluorescence andWestern blotting assays
(Supplementary Figure S1F-G). Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) anal-
yses of differentially expressed genes between NFs and
CAFs indicated significant enrichment in the mitogen-
activated protein kinase (MAPK) signaling pathway,
phosphatidylinositol 3-kinase (PI3K)-Akt signaling path-
way and receptor-ligand activity (Supplementary Figure
S1H-I), suggesting that CAFs may play a critical role in
intracellular and extracellular signal transduction.
Previous studies have demonstrated that CAFs achieve

high heterogeneity and plasticity across different cancer
types [1, 2]. To further reveal the characteristics of CAFs in
CRC, we performed single-cell RNA-sequencing (scRNA-
seq) using isolated NFs and CAFs and detected 21,248
NFs and 18,097 CAFs (Figure 1A). A total of 7 clusters
were identified in these fibroblasts by using sample
integration analysis based on distinct gene expression
signatures. Interestingly, we found that Clusters 3, 5, and
7 were mainly distributed in the CAF group, accounting
for 34.5%, 7.7%, and 2.3% of total CAFs, respectively
(Figure 1B-E). Cluster gene signature analysis showed
that CD36 was expressed in CAF-specific subgroups, such
as Clusters 3 and 5; inhibin subunit beta A (INHBA) was
mainly expressed in Clusters 3, 5 and 7; whereas fibroblast
growth factor 7 (FGF7) and alcohol dehydrogenase 1B
(ADH1B) weremainly expressed in Clusters 1 and 2, which
made up the majority of NFs (Figure 1F). To further visu-
alize the marker genes of CAFs, we presented single gene
expression data by uniform manifold approximation and
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F IGURE 1 scRNA-seq identifies a tumor-specific CAF subpopulation in CRC. (A) Sample preparation diagram of scRNA-seq. (B, C)
UMAP of distinct samples and fibroblast clusters. (D) Proportion of clusters in different samples. (E) Bubble plot depicting significant gene
signatures in different clusters. (F) Violin plot of CD36, INHBA, FGF7, ADH1B in all fibroblast clusters. (G) UMAPs of single gene expression.
(H) Representative immunofluorescence images of CD36 in 15 paired CRC tissues and adjacent normal tissues. The quantitative analysis of
MFI was calculated by using Image J. (I) mIHC staining of CD36 and αSMA in 10 paired CRC tissues and adjacent normal tissues. The
quantitative analysis of MFI was calculated using Image J.
Abbreviations: ACTA2, actin alpha 2; ADH1B, alcohol dehydrogenase 1B; aSMA, alpha smooth muscle actin; CAFs, cancer-associated
fibroblasts; CXCL1, C-X-C motif chemokine ligand 12; DCN, decorin; FAP, fibroblast activation protein; FDF7, fibroblast growth factor 7; FN1,
fibronectin 1; FOXS1, forkhead box S1; INHBA, inhibin subunit beta A; KAT18, keratin 18; LTBP1, latent transforming growth factor β binding
protein 1; MFI, mean fluorescence intensity; mIHC, multiplex immunohistochemistry; NFs, normal fibroblasts; ROI, region of interest;
scRNA-seq, single-cell RNA-sequencing; UMAP, uniform manifold approximation and projection.

projection (UMAP) and found that classical CAFmarkers,
such as fibronectin 1 (FN1), fibroblast activation protein
(FAP) and actin alpha 2 (ACTA2), cannot differentiate
NFs and CAFs well, whereas a gene expression panel
composed of CD36, INHBA, forkhead box S1 (FOXS1),
keratin 18 (KRT18) and latent transforming growth factor
β-binding protein 1 (LTBP1) was specifically expressed in
CAFs (Figure 1G), suggesting the possibility that these
genes could serve as new CAF markers in CRC.
To confirm the scRNA-seq results, we conducted

multiplex immunohistochemistry (mIHC) staining and
found that CD36 was overexpressed in both tumor
cells and tumor stroma, especially in αSMA+ fibroblasts
(Figure 1H-I). CD36 staining using a CRC tissue microar-
ray showed similar results (Supplementary Figure S2A-B).
Survival analysis showed that higher expression of CD36
in tumor cells and stromal cells indicated poorer prognosis
in CRC patients (Supplementary Figure S2C). In addition,
we also performed survival analyses using gene expression
data from The Cancer Genome Atlas-Colon Adenocarci-
noma (TCGA-COAD) cohort and found that a panel of
CAF marker genes [INHBA, FOXS1, periostin (POSTN),
thrombospondin 2 (THBS2)] also indicated a poor progno-
sis in CRC patients (Supplementary Figure S2D-E).
Overall, we identified a CD36+ CAF subpopulation in

CRC and suggested the potential of CD36 as a specific CAF
marker.Moreover, the survival analysis indicated that CAF
marker genes (CD36, INHBA, FOXS1, POSTN, THBS2)
may be promising prognostic indicators for CRC patients.
Similarly, some previous studies have also indicated that
CD36+ CAFs and INHBA+ CAFs may be predictors of
a poor prognosis for hepatocellular carcinoma (HCC) [3]
and gastric cancer patients [4], respectively. Mechanically,
CD36+ CAFs promote the formation of an immunosup-
pressive microenvironment in HCC [3]. To further inves-
tigate whether CD36 and INHBA are involved in immune
microenvironment modulation in CRC, we analyzed gene
expression data from the TCGA-COAD cohort and found
that the expression of CD36 and INHBA was positively
correlated with the expression of immunosuppressive fac-
tors and protumorigenic immune cell markers, such as

C-X-C motif chemokine ligand 12 (CXCL12), tumor necro-
sis factor ligand superfamily member 4 (TNFSF4), T-cell
immunoglobulin domain and mucin domain-3 (TIM-3)
and CD163 (Supplementary Figure S3A-B). In agreement,
estimation of the immune cell infiltration using the
CIBERSORT method showed a significant positive cor-
relation between M2 macrophage infiltration and CD36
expression as well as a significant negative correlation
between CD8+ T cell infiltration and INHBA expression
(Supplementary Figure S3C-H). Based on these findings,
we performedmIHC staining using CRC tissues and found
that the infiltration of CD8+ T cells in CD36+ CAF-
rich regions was significantly reduced (Supplementary
Figure S4A-B), while the infiltration of CD68+ CD163+
macrophages in CD36+ CAF-rich regions was increased
(Supplementary Figure S4C-D).
CD36, a scavenger receptor expressed in tumor cells

[5], regulatory T cells [6], CD8+ T cells [7], and cancer-
associated macrophages [8], promotes tumor metastasis
and induces an immunosuppressive phenotype in different
cancer types [5–8]. Tumor cells with elevated CD36 expres-
sion exhibit a unique ability to initiate metastasis, and the
presence of CD36+ metastasis-initiating cells associates
with a poor prognosis of numerous cancers [9]. However,
a previous study demonstrated that CD36 repressed col-
orectal tumorigenesis by inhibiting glycolysis and that its
expression was gradually reduced from adenomas to car-
cinomas [10]. In our study, we identified that CD36 was
overexpressed both in CRC cells and tumor stroma by
usingmultiple methods, and we revealed that high expres-
sion of CD36 in CRC indicated poor patient outcomes.
In addition, we found that the presence of CD36+ CAFs
was associated with decreased CD8+ T cell infiltration and
increased CD68+ CD163+macrophage infiltration in CRC,
suggesting that CD36+ CAFs were associated with the
suppressive immune phenotype. However, whether and
how CD36+ CAFs affect these immune cells remains to be
further investigated.
Overall, CD36+ CAFs are a poor prognostic factor

in CRC and are associated with immune cell infiltra-
tion. Our work highlights the importance of identifying
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tumor-specific CAF subpopulations in understanding the
heterogeneous tumor microenvironment.
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