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Abstract
Objective: Neuronal precursor cells expressed developmentally down-regulated 4 
(Nedd4) are believed to play a critical role in promoting the degradation of substrate 
proteins and are involved in numerous biological processes. However, the role of 
Nedd4 in intracerebral hemorrhage (ICH) remains unknown. This study aims to inves-
tigate the regulatory role of Nedd4 in the ICH model.
Methods: Male C57BL/6J mice were induced with ICH. Subsequently, the levels of 
glutathione peroxidase 4 (GPX4), malondialdehyde (MDA) concentration, iron content, 
mitochondrial morphology, as well as the expression of divalent metal transporter 
1 (DMT1) and Nedd4 were assessed after ICH. Furthermore, the impact of Nedd4 
overexpression was evaluated through analyses of hematoma area, ferroptosis, and 
neurobehavioral function. The mechanism underlying Nedd4-mediated degradation 
of DMT1 was elecidated using immunoprecipitation (IP) after ICH.
Results: Upon ICH, the level of DMT1 in the brain increased, but decreased when 
Nedd4 was overexpressed using Lentivirus, suggesting a negative correlation be-
tween Nedd4 and DMT1. Additionally, the degradation of DMT1 was inhibited after 
ICH. Furthermore, it was found that Nedd4 can interact with and ubiquitinate DMT1 
at lysine residues 6, 69, and 277, facilitating the degradation of DMT1. Functional 
analysis indicated that overexpression of Nedd4 can alleviate ferroptosis and promote 
recovery following ICH.
Conclusion: The results demonstrated that ferroptosis occurs via the Nedd4/DMT1 
pathway during ICH, suggesting it potential as a valuable target to inhibit ferroptosis 
for the treatment of ICH.
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1  |  INTRODUC TION

Intracerebral hemorrhage (ICH) accounts for 10% to 15% of all 
strokes and carries a high morbidity and mortality rate.1 It is char-
acterized by non-traumatic intracranial bleeding resulting from the 
rupture of blood vessels in the brain tissues, leading to primary in-
jury.2 The release of toxic blood components from the hematoma 
after ICH can induce secondary injury. Currently, many treatment 
strategies for secondary injury with ICH have not met expectations, 
leading to an unsatisfactory prognosis for patients.3 Secondary brain 
injury following ICH includes neuronal death, ROS accumulation, 
and DNA damage. At present, neuronal death and ROS accumula-
tion are two critical aspects requiring of comprehensive investiga-
tion after ICH.3,4 Hence, further research is necessary to understand 
how hematomas and their decomposition products cause these two 
events following ICH.

Ferroptosis, a novel form of cell death, is characterized by iron-
dependent accumulation of lipid peroxide, leading to cell death.5,6 
It has been implicated in traumatic brain injury, Parkinsonism, 
stroke, and other degenerative diseases.7–10 Recent studies have 
demonstrated that mice after ICH exhibit increased levels of ROS 
and reduced expression of glutathione peroxidase 4 (GPX4).10–13 
Furthermore, the administration of the ferroptosis inhibitor, fer-
rostatin-1, has been shown to attenuate brain injury after ICH.14 
However, the specific regulatory mechanism of ferroptosis in ICH 
remains unclear.

Iron deposition surrounding the hematoma can lead to oxidative 
damage and neurotoxicity after ICH.11,15,16 Excessive iron increases 
the production of ROS through the Fenton reaction, causing an im-
balance between ROS clearance and generation that upregulates 
hydroxyl free radicals and ultimately leads to ferroptosis.17 In ad-
dition, inhibiting iron overload has recently emerged as an effective 
approach to reduce ferroptosis, based on the unique iron transport 
mechanism.18,19 DMT1, the first transmembrane iron transporter 
discovered in mammals, plays a crucial role in the transportation of 
Fe2+ and serves as a vital gateway for intracellular Fe2+.20,21 These 
findings support a close association between DMT1 and intracellular 
Fe2+,22,23 emphasizing the essential role of regulating DMT1 in pre-
venting ferroptosis. A study on Parkinson's disease has revealed a 
correlation between ferroptosis and DMT1.24 In a myocardial infarc-
tion mouse model, upregulation of DMT1 promotes cell ferroptosis 
induced by hypoxia/reoxygenation (H/R), while DMT1 knockdown 
effectively inhibits H/R-induced cell ferroptosis.25 Currently, in-
creased DMT1 expression has been observed in an ICH model.26,27 
Consequently, targeting DMT1 will be an efficient method for inhib-
iting ferroptosis after ICH.

Nedd4 is a pivotal member of the HECT domain E3 ligase fam-
ily present in eukaryotes and conserved throughout its evolution. 
It consists of a catalytic C-terminal HECT domain, an N-terminal 
calcium/lipid-binding domain (C2 domain), and four WW domains 
responsible for cellular localization and substrate recognition.28 
Nedd4 plays a critical role in promoting the degradation of substrate 
proteins and is involved in numerous biological processes. Nedd4 is 

widely found in various tissues and cells.29 As a member of the E3 
ligase Nedd4 family, Nedd4 has been implicated in processes such as 
autophagy,30–32 apoptosis,33–36 and necroptosis.37,38 Recently, one 
study demonstrated that Nedd4 can inhibit ferroptosis in melanoma 
by stimulating the ubiquitination of VDAC2/3.39 Another study has 
found that robustaflavone. A strikingly induced ferroptosis by re-
ducing the expression of Nedd4, leading to lipid peroxidation and 
ROS production.40 These studies suggest that Nedd4 acts as a neg-
ative regulator of ferroptosis.

In the present study, we observed an increase in DMT1 levels 
following ICH. Additionally, the binding of Nedd4 and DMT1 was 
decreased both in vivo and in vitro after ICH. Knockdown of DMT1 
and overexpression of Nedd4 respectively attenuated ICH-induced 
ferroptosis. Nedd4 inhibited neuronal death by promoting the deg-
radation of DMT1. Furthermore, DMT1 with mutation in lysine res-
idues 6, 69, and 277 showed inefficient degradation upon Nedd4 
overexpression after ICH. In summary, our findings highlight the role 
of Nedd4 in mediating DMT1 ubiquitination, regulating ferroptosis, 
and potentially serving as a significant treatment target for ICH.

2  |  MATERIAL S AND METHODS

2.1  |  Animals

Male C57BL/6J mice aged 8–12 weeks were housed in cages with 
a temperature of 23 ± 1°C, humidity of 40%–60%, and a 12-h light–
dark cycle (12 h of light and 12 h of darkness). Mice were housed 
3–5 per cage with free access to food and water. All mice used in 
the study were purchased from the Animal Experimental Center 
of Xuzhou Medical University. The Ethical approval number is 
20230T001.

2.2  |  Cell culture

HT22 cell line, BV2 cell line, C8-D1A cell line, and HEK293T cell line 
were cultured in DMEM high glucose solution containing 10% fetal 
bovine serum and 1% penicillin–streptomycin. The cells were main-
tained in an incubator of 37°C containing 5% CO2 and 95% O2.

2.3  |  Induction of ICH mouse model and vitro 
ICH model

The ICH mouse model was constructed based on a previous study.41 
Briefly, male mice were anesthetized with sodium pentobarbital 
(50 mg/kg). Then, using the stereotaxic instrument, Collagenase VII 
(0.045 U in 1 μL sterile saline, Sigma-Aldrich) was injected into the 
striatum (AP 0.2, ML 2.5, DV −3.5) at a rate of 0.15 μL/min. After 
injection, 5 minutes of rest was allowed to prevent reflux. The sham 
group was injected with saline without collagenase. The total num-
ber of animals used in this study and mortality rates are listed in 
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Table S1. For the ICH model in vitro, we stimulated the HT22 cell 
line with hemin (Sigma-Aldrich, Germany) for 24 h to simulate in vitro 
stroke conditions according to our previous studies.42

2.4  |  Transfection of expression 
vectors and plasmids

HA-tagged Ub, Ub K48, and Ub K63 were generously provided by Dr. 
Hengliang Shi from the Xuzhou Medical University. Other plasmids 
were purchased from Sangon Biotech (Shanghai, China): Flag-tagged 
Nedd4 and myc-tagged DMT1 vectors were constructed using 
wild-type Nedd4 and DMT1 full-length sequences. Construction of 
Flag-tagged Nedd4ΔC2, Nedd4ΔWW, and Nedd4ΔHECT mutants 
was achieved by generating truncated mutants. Myc-DMT1 K6R, 
Myc-DMT1 K8R, Myc-DMT1 K54R, Myc-DMT1 K69R, Myc-DMT1 
K103R, Myc-DMT1 K143R, Myc-DMT1 K201R, Myc-DMT1 K206R, 
Myc-DMT1 K230R, Myc-DMT1 K277R, Myc-DMT1 K286R, Myc-
DMT1 K294R, Myc-DMT1 K325R, Myc-DMT1 K328R, Myc-DMT1 
K335R, Myc-DMT1 K358R, and Myc-DMT1 K405R mutant vectors 
were created by individually substituting the lysine residues at posi-
tions K6, K8, K54, K69, K103, K143, K201, K206, K230, K277, K286, 
K294, K325, K328, K335, K358, and K405 with arginine residues. 
Myc-DMT1 3KR mutant was generated by simultaneous replace-
ment of lysine residues at positions K6, K69, and K277 with arginine 
residues. Plasmids were transiently transfected into cells by using 
Polyplus (jetPRIME) reagent. Primers used for mutant plasmids are 
listed in Table S2 (capital letters indicate the mutation sites).

2.5  |  Mass spectrometry

Using the DMT1 antibody as bait, proteins bound to it were enriched 
and separated by the SDS–PAGE gel electrophoresis, followed by 
analysis using mass spectrometry (provided by Hangzhou Lc-Bio 
Technologies).

2.6  |  AAV9, lentiviral, and administration

AAV-hsyn-p2a-GFP and AAV-hsyn-nedd4-p2a-GFP were pack-
aged into AAV9 by WZ Biosciences Inc (Jinan, China). Flag-Nedd4 
WT and DMT1 knockdown lentivirus were provided by Genechem 
(Shanghai, China). Primers used for DMT1 shRNA and Nedd4 shRNA 
are listed in Table S2. The injection sites (AP 0.1, ML 1.0, DV -3.0) for 
AAV9 and lentivirus.

2.7  |  Cerebral blood flow (CBF) measurement

The RWD Laser Speckle Imaging System (RFLSI III) was used to mon-
itor changes in cerebral blood flow (CBF), as described previously.43 
Experimental mice were anesthetized with 5% isoflurane, and the 

skull was surgically exposed and cleaned with hydrogen peroxide. 
The laser was placed 10 cm above the surface of the skull. CBF meas-
urements were taken 1 h after ICH. The RWD LSCI software was 
used to calculate and analyze local CBF.

2.8  |  Hematoma area

Mice were euthanized under deep (5%) isoflurane anesthesia for 
quantification of hematoma volume. Coronal brain slices, 2 mm 
thick, were prepared using a vibratome. The brain slices were im-
aged using a high-resolution imaging system. Hematoma size was 
calculated using Image J version 2.9.0 software.

2.9  |  Behavioral analysis

A series of neurobehavioral tests were conducted to evaluate brain 
damage after intracerebral hemorrhage. As previously described,44 
the Rotarod test involved placing experimental mice in a rotating 
drum (ZH-600B, Zhenghua Bio) that accelerated from 5 to 40 rpm 
within 5 min. Each mouse underwent three consecutive tests for 
3 days before surgery and then again on the third day after surgery, 
with a 15-minute interval between each test. In the Cylinder test, 
the experimental mice were placed in a transparent glass cylinder 
(15 × 9 cm). The number of contacts made by the left forelimb, right 
forelimb, or both with the wall of the cylinder was counted. Forelimb 
use asymmetry was calculated using the following formula: con-
tralateral forelimb use (%) = 100 × left/(left + right). The Corner Test 
involved using two opaque hard plastic boards (30 × 20 × 1 cm) to 
create a 30° angle in a small corner. Before surgery, the mice were 
placed in the corner ten times a day for 3 days to familiarize them 
with the turning motion and then again on the third day after surgery. 
After entering the corner, the mice would stand up and then turn 
around. The frequency of left turns and right turns was recorded.

2.10  |  Immunohistochemistry

The mice were euthanized under deep anesthesia with 5% isoflu-
rane, and the retrieved mouse brain tissue was fixed in 4% para-
formaldehyde and embedded in paraffin. Brain tissue sections 
of 3 μm were deparaffinized in xylene and dehydrated in alcohol. 
Immunohistochemical experiments were performed using an immu-
nohistochemistry kit (PV-9000, ZSGB-BIO) following the manufac-
turer's instructions. After antigen retrieval, the sections were placed 
in a 5% hydrogen peroxide solution to block endogenous peroxidase 
activity. Then, the sections were incubated overnight at 4°C with 
primary antibodies listed in Table S3, followed by secondary anti-
bodies corresponding to the species of the primary antibodies. The 
antibody binding was detected using DAB. Finally, the cell nuclei 
were stained with hematoxylin, and images were acquired using a 
Leica microscope (DM1000, LEICA).
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2.11  |  Immunofluorescence

After perfusion, the mouse brains were removed and fixed in 4% 
paraformaldehyde for 6 h. The brains were then sectioned into 40 μm 
slices using a vibrating microtome (VT1000S, LEICA). After drying, 
the brain slices were blocked with 10% BSA at room temperature 
for 1 h. Following a wash with PBS, the appropriate primary antibod-
ies (listed in Table S3) were added to the slices, which were then 
stored overnight at 4°C. On the next day, the slices were incubated 
with secondary antibodies at room temperature for 2 h, followed 
by a wash with PBS. Finally, the slices were mounted with a DAPI-
containing mounting medium and observed and photographed using 
a fluorescence microscope.

2.12  |  Protein immunoblot analysis

Tissues were extracted from cell lines or brain tissue according 
to experimental requirements. After adding RIPA lysis buffer 
(P0013B, Beyotime Biotechnology), the tissues were sonicated 
and then centrifuged to obtain the supernatant. The obtained su-
pernatant was subjected to BCA protein concentration measure-
ment. The solution was then balanced using a 5× loading buffer, 
boiled, and stored at −20°C. Based on the molecular weight of the 
protein, appropriate concentrations of upper and lower gel were 
selected, and the samples were added to the sample wells. The 
gel was run under constant pressure for 2 h, followed by electro-
transfer. Subsequently, the obtained bands were incubated in skim 
milk at room temperature for 2 h for blocking. After washing the 
bands with PBST, primary antibodies were added and incubated 
overnight at 4°C. On the second day, after washing the bands with 
PBST, the bands were incubated by the secondary antibodies at 
room temperature for 2 h. Finally, imaging and data analysis were 
performed.

2.13  |  Immunoprecipitation

The brain tissue and cells were lysed for 15 minutes using Cell lysis 
buffer for Western and IP (P0013, Beyotime Biotechnology), fol-
lowed by centrifugation at 13,000 g for 15 min at 4°C to collect 
the supernatant. The total protein concentration was determined 
using a BCA assay kit (P0010, Beyotime Biotechnology) to obtain 
1 mg of protein in total. The specified primary antibody (1 μg) was 
added to the protein sample, and the mixture was incubated over-
night at 4°C with rotation. After that, 40 μL of Protein A/G PLUS-
Agarose (sc-2003, Santa) was added and incubated for 8 h at 4°C. 
IgG from the same species as the primary antibody was used as a 
control. The agarose beads were then pelleted by centrifugation at 
4°C and washed three times with cold PBS. Finally, the beads were 
eluted and heated to boiling in 40 μL of 2× SDS–PAGE Sample 
Loading Buffer (P0015, Beyotime Biotechnology) for immunoblot 
analysis.

2.14  |  Quantitative PCR

According to our previous research,45 total RNA was extracted from 
each group of cells using Trizol. After quantification, the mRNA 
was reverse transcribed into stable cDNA using a cDNA synthesis 
kit (HiScript III All-in-one RT SuperMix Perfect for qPCR, Vazyme). 
According to the instructions of the qPCR kit (ChamQ Universal 
SYBR qPCR Master Mix, Vazyme), reagents were added and 1 μL 
of cDNA was added. After running 40 cycles on a PCR instrument, 
the data were collected for analysis. The primers used are listed in 
Table S4.

2.15  |  Ubiquitination analysis

After co-transfection of the indicated plasmids and HA-ubiquitin 
for 48 h, the cells were treated with a proteasome inhibitor, MG132 
(20 μM), for 8 h before protein extraction. Immunoprecipitation of cell 
lysates was performed using primary antibodies listed in Table S3, 
followed by immunoblot analysis using an anti-HA antibody.

2.16  |  Ferrous iron, MDA, GSSG, and GSH

The Ferrous Iron Colorimetric Assay Kit (E-BC-K773-M, Elabscience), 
MDA Assay kit (KTB1050, Abbkine), GSSG Assay Kit (KTB1610, 
Abbkine), and GSH Assay Kit (KTB1600, Abbkine) were used for de-
termination following the manufacturer's instructions.

2.17  |  FerroOrange

According to the manufacturer's instructions, 1 mL of diluted 
FerroOrange (F374, DOJINDO) solution (1 μmol/L) was added to 
HT22 cells in a laser confocal dish, and the cells were incubated at 
37°C with 5% CO2 for 30 min. Images were captured using a confo-
cal microscope (Leica STELLARIS 5, Germany).

2.18  |  Transmission Electron Microscopy

Mouse brain tissue was fixed overnight in 2.5% glutaraldehyde. Thin 
sections were prepared using the Leica-EM-UC7 ultramicrotome. 
The sections were then stained with 1% uranyl acetate and 0.4% 
lead citrate. Images were captured using the FEI Tecnai G2 Spirit 
TWIN transmission electron microscope.

2.19  |  ROS and lipid ROS analysis

ROS and lipid ROS levels were analyzed using the DCFH-DA probe 
(S0033S, Beyotime Biotechnology) and BODIPY-C11 dye (HY-
D1301, MCE) with flow cytometry. Following the manufacturer's 
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instructions, the fluorescence intensity of each sample was meas-
ured using the BD Facs Canto II flow cytometer (BD Biosciences).

2.20  |  Statistical analysis

All the statistical analyses were conducted utilizing GraphPad Prism 
9.5.0 (GraphPad Software, USA) and SPSS 26.0 (IBM Corporation, 
USA). Descriptive statistics were employed, presenting data as 
mean ± SD. The assumption of normality in data distribution was 
verified through the Shapiro–Wilk test. Two-group comparisons in-
volved the Student's t test for normally distributed continuous vari-
ables and the Mann–Whitney U test for non-normally distributed 
variables. Multiple-group comparisons were executed using one-
way analysis of variance (anova). Significance was determined at a 
two-sided p < 0.05, indicating statistical significance.

3  |  RESULTS

3.1  |  DMT1 exacerbates ferroptosis after ICH

Given that iron was transferred into the cells by the transferrin 
receptor 1 (TFR1) and DMT1.46 In our study, we established an 
ICH mouse model using collagenase VII (Figure 1A) and assessed 
the expression level of DMT1 and TFR1 at 3 days after ICH. The 
expression of DMT1 was significantly increased after ICH com-
pared with the sham group, while there was no significance in 
TFR1 between the two groups (Figure 1B). We also observed that 
the number of DMT1-positive neurons increased in 3 days after 
ICH (Figure 1C). These results indicated that ICH promoted DMT1 
expression.

To elucidate the role of DMT1 after ICH, we constructed a DMT1 
knockdown shRNA-expressing lentivirus and administered it to the 
striatum of mice for 2 weeks (Figure 1D). We observed a significant 
decrease in DMT1 protein levels after lentivirus injection, indicat-
ing that genetic knockdown of DMT1 lentivirus was constructed 
successfully (Figure  1E). Previous studies have demonstrated that 
decreased DMT1 could ameliorate ferroptosis.47,48 Knockdown of 
DMT1 reduced the level of Fe2+, MDA, and GSSG when compared 
to the vehicle group after ICH. Conversely, GSH levels and the pro-
tein level of GPX4 were increased in the DMT1 knockdown group 
compared with the vehicle group (Figure  1F,G). All of these data 
suggested that downregulating DMT1 reduced the level of Fe2+ and 
lipid hydroperoxides after ICH.

Protein post-translational modification is a crucial way for pro-
tein degradation. To find the degradation way of DMT1, we exam-
ined whether DMT1 is regulated at the post-transcriptional level. 
Using an in  vitro ICH model induced by Hemin in HT22 cells, we 
treated the cells with either the proteasome inhibitor MG132 or 
the lysosome inhibitor NH4Cl. We found that DMT1 proteins were 
increased when treated with MG132 but not NH4Cl (Figure 1H,I), 
indicating that DMT1 degraded through the proteasomal pathway.

3.2  |  Nedd4 ubiquitinates and degrades DMT1

Next, we investigate the degradation mechanism of DMT1. First, 
using affinity purification and mass spectrometry techniques, we 
found proteins that interact with DMT1. Then, combined with the 
UbiBrowser database (http://​ubibr​owser.​bio-​it.​cn/​ubibr​owser_​v3), 
we discovered that Nedd4, involved in the ubiquitination process, 
could interact with DMT1. (Figure 2A, Figure S1A,B). We then ob-
served positive Nedd4 neurons in the brain (Figure S2A,B), and in the 
HT22 cell line (Figure S2C). Importantly, Nedd4 was found to colo-
calize with DMT1 in the primary neurons (Figure 2B). Performing co-
immunoprecipitation to validate the interaction between Nedd4 and 
DMT1, we found that the binding of Nedd4 and DMT1 decreased 
after ICH (Figure 2C). Notably, the protein level of DMT1 decreased 
while the mRNA levels of DMT1 had no change when Nedd4 overex-
pression after ICH (Figure 2D), suggesting that Nedd4 may directly 
regulate post-translational instead of transcription.

Using Nedd4 overexpression lentivirus, we further elucidated 
the regulatory relationship between Nedd4 and DMT1. Our find-
ings showed that the DMT1 protein declined in the Nedd4 over-
expression group when compared to the vehicle group in  vitro 
and in vivo after ICH (Figure 2E,F). Next, we co-transfected the 
Myc-DMT1 plasmid with Flag-Nedd4 (Nedd4 overexpression) 
or Nedd4KD plasmids (Nedd4 knockdown). We subsequently 
found that Nedd4 overexpression improved DMT ubiquitination, 
while Nedd4 knockdown reduced the ubiquitination of DMT1 
(Figure 2G). Our findings suggested that DMT1 was ubiquitinated 
by Nedd4.

3.3  |  Nedd4 overexpression alleviates brain 
damage after ICH

Currently, the role of Nedd4 in ferroptosis is unclear after ICH. To 
discover the role of Nedd4 on neural ferroptosis after ICH. We con-
structed a Nedd4 overexpression mouse by injecting the rAAV9 
virus of Nedd4 with the corresponding green fluorescent protein 
(GFP) into the brain. Following 4 weeks of injection of rAAV9, we 
assessed relevant markers of brain damage (Figure 3A). After a 28-
day post-virus injection period, we verified that Nedd4 adenovirus 
was expressed on neurons and overexpressed Nedd4 in the pro-
tein level successfully (Figure 3B,C). Subsequently, upon induction 
of the ICH model, we observed that injury volume caused by ICH 
was significantly reduced in Nedd4 overexpression mice compared 
to the vehicle group (Figure 3D). Moreover, the intracerebral blood 
flow was augmented in the Nedd4 overexpression group compared 
with the vehicle group (Figure 3E). In addition, in comparison to the 
vehicle group with ICH, the Nedd4 overexpression group demon-
strated prolonged durations in the fatigue test (Figure 3F), increased 
touches with the contralateral limb in the cylinder test (Figure 3G), 
and more turns towards the contralateral side in the corner test 
(Figure 3H). These results suggest that Nedd4 alleviates brain dam-
age in mice with ICH.

http://ubibrowser.bio-it.cn/ubibrowser_v3
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3.4  |  Nedd4 overexpression protects against 
ferroptosis after ICH

We explore the involvement of Nedd4 in ferroptosis after ICH. 
Administering rAAV9 carrying Nedd4 overexpression to the stria-
tum for 4 weeks before ICH, we observed that Nedd4 overex-
pression decreased Fe2+, MDA, and GSSG levels, while GSH and 
GPX4 levels were increased compared to the vehicle group after 
ICH (Figure 4A,B). Furthermore, the Nedd4 overexpression group 
exhibited reduced mitochondrial membrane density, increased 
volume, and clearer cristae compared with the vehicle group after 

ICH (Figure 4C). Using a hemin-treated HT22 cell line that over-
expressed Nedd4, we found that the fluorescent intensity of iron 
staining was lower in the Nedd4 overexpression group compared 
with the vehicle group (Figure 4D). In addition, the Nedd4 over-
expression group showed decreased levels of MDA and GSSG, 
while the levels of GSH and GPX4 increased compared to the ve-
hicle group induced by hemin (Figure 4E,F). Moreover, the levels 
of ROS and lipid ROS were lower in the Nedd4 overexpression 
group than in the vehicle group (Figure  4G,H). These findings 
demonstrated the importance of Nedd4 in decreasing ferroptosis 
after ICH.

F I G U R E  1 DMT1 exacerbates ferroptosis after ICH. (A) An experimental design for results is presented in (B, C). (B, C) The protein 
expression level of DMT1 and TFR1, and the number of DMT1-positive cells in mice 3 days after ICH (n = 3/group). (D) An experimental 
design for results is presented in (E–G). (E) Validating the knockdown effect of DMT1 lentivirus using the western blot (n = 3/group). (F) 
Detecting the expression levels of Fe2+, MDA, GSSG, and GSH before and after ICH using assay kits (n = 6/group). (G) The protein expression 
level of GPX4 after ICH (n = 6/group). (H, I) HT22 cells were treated with Hemin (40 μM) for 24 h, followed by the addition of MG132 (20 μM) 
or NH4Cl (50 mM) in the culture medium for an additional 8 h. Western blot analysis was performed to detect the protein level of DMT1 
(n = 3/group). No significance was marked by ns. *p < 0.05, **p < 0.01, ***p < 0.001.
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3.5  |  Nedd4 ubiquitinates DMT1 in a 
site-specific manner

We transfected HEK293T cells with Flag-Nedd4, Myc-DMT1, HA-
Ub, HA-Ub K48, and HA-Ub K63 to investigate the influence of 

Nedd4 on ubiquitination of DMT1 induced by hemin. Treatment 
with hemin resulted in increased ubiquitination of Myc-DMT1 on 
the K48-linked chain, while it did no effect the ubiquitination of 
the K63-linked chain (Figure 5A). Moreover, to probe the domains 
responsible for ubiquitination by Nedd4, we created plasmids 

F I G U R E  2 Nedd4 ubiquitinates and degrades DMT1. (A) Perform mass spectrometry analysis on the immunoprecipitation of DMT1 
and intersect the results with the UbiBrowser database. (B) Immunofluorescence co-localization image of DMT1 (green) and Nedd4 (red) 
in primary neurons. (C) Interactions between endogenous DMT1 and Nedd4 under basal conditions and Hemin treatment. HT22 cells 
were treated with either DMSO or Hemin (40 μM) for 24 h. Immunoprecipitation (IP) was performed using whole cell lysate (WCL) with 
control serum (IgG), anti-Nedd4 antibody, or anti-DMT1 antibody for detection. (D) Quantitative real-time PCR (qRT-PCR) was performed 
to detect the mRNA expression level of DMT1 in the HT22 cell line with Hemin-induced overexpression of Nedd4 (n = 6/group). (E) The 
protein expression level of DMT1 after overexpression of Nedd4 in wild-type (WT) mice (n = 6/group). (F) The protein expression levels 
of DMT1 in WCL after overexpression of Nedd4 in HT22 cell line (n = 6/group). (G) HT22 cells were transfected with the designated DNA 
constructs for 48 h. Prior to protein harvesting, 20 μM MG132 was added to the cells for 8 h. Cell lysates were collected and subjected to 
immunoprecipitation using an anti-myc antibody. Immunoblot analysis was then performed using the specified antibodies. No significance 
was marked by ns. *p < 0.05, **p < 0.01, ***p < 0.001.
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expressing wild-type Nedd4 with a Flag tag, as well as Nedd4 
knockout constructs lacking the C2, WW, and HECT domains, re-
spectively (Figure  5B). Co-transfection of these mutated Nedd4 
plasmids with Myc-DMT1 plasmids into HEK293T cells, followed 
by immunoprecipitation using an anti-Flag antibody, revealed that 
the Vec group and WW domain knockout group of Nedd4 did not 
interact with DMT1, whereas the WT, C2, and HECT domain knock-
out groups were capable of binding with DMT1 (Figure 5C). These 
results suggest that Nedd4 interacts with DMT1 through its WW 
domain.

Nedd4 was predicted as a major E3 ligase for mediating the deg-
radation of DMT1 (Figure S1). As expected, co-transfecting arginine 
substitution of individual lysine residues of DMT1 along with Nedd4 
and HA-Ub into HEK293T cells, we found that DMT1 ubiquitination 
decreased when mutations were substituted by the K6, K69, and 
K277 sites when compared to the WT group (Figure S3A). Moreover, 

the substitution of the three lysine residuals (K6, K69, and K277) of 
DMT1 was resistant to being ubiquitinated by Nedd4. (Figure  5D). 
Consistently, the half-life of the DMT13KR mutant was significantly 
extended in HEK293T cells transfected with Flag-Nedd4 and treated 
with hemin (Figure  5E), indicating that Nedd4 ubiquitinated DMT1 
through the three lysine residuals. Therefore, our results identified 
that these three lysine residuals in DMT1 play an essential role in 
Nedd4-mediated ubiquitination.

3.6  |  Nedd4 overexpression alleviates ferroptosis 
through the ubiquitination of DMT1

We investigated the biological function of the three lysine residuals 
in brain iron metabolism by injecting DMT1WT and DMT13KR virus 
with Nedd4 after ICH. We found that the level of Fe2+, MDA, and 

F I G U R E  3 Nedd4 alleviates brain damage in mice with ICH. (A) An experimental design for results is presented in (B–H). (B) 
Immunofluorescence co-localization detection of neurons (Red) and recombination adeno-associated virus (rAAV9)-positive cells (Green). 
(C) Immunoblot analysis was performed to evaluate the protein expression levels of Nedd4 in the rAAV9 injection area (n = 3/group). (D) 
Three days after ICH, the quantification of the hematoma area was performed on consecutive 2 mm coronal sections (n = 6/group). (E) The 
representative Cerebral blood flow (CBF) image was obtained 3 days after ICH. The black circle highlights the region of interest (n = 6/group). 
(F) Time to fall in the rotarod test (n = 6/group). (G) Contralateral forepaw use in the cylinder test (n = 6/group). (H) Right turns in the corner 
test (n = 6/group). *p < 0.05, **p < 0.01, ***p < 0.001.
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GSSG in the DMT13KR group was higher than that in the DMT1WT 
group after ICH, whereas GSH and GPX4 levels were decreased 
(Figure 6A,B). Subsequently, we cotransfected Nedd4WT plasmids 
with DMT1WT plasmids and DMT13KR plasmids into the Hemin-
induced HT22 cell line and found that the iron orange staining 
fluorescence intensity was higher in the DMT13KR group than in 
the DMT1WT group (Figure  6C). Additionally, the DMT13KR group 
exhibited increased levels of MDA and GSSG compared to the 
DMT1WT group, while the levels of GSH and GPX4 were diminished 
(Figure  6D,E). Furthermore, the DMT13KR group displayed higher 
levels of ROS and lipid ROS than the DMT1WT group (Figure 6F,G). 
These results indicate that Nedd4 regulates hemin-induced ferrop-
tosis by ubiquitinating DMT1 through the K6, K69, and K277 sites, 
both in vivo and in vitro.

4  |  DISCUSSION

Ferroptosis, a recently recognized form of regulated cell death, con-
tributes to neuronal death after ICH.49,50 However, the molecular 
mechanism of ferroptosis after ICH is largely unknown. Here, we 
found that ICH stimulated DMT1 expression. Injection of the DMT1 
knockdown virus reduced ferroptosis via decreasing Fe2+ level and 
reducing lipid peroxidation, markers of ferroptosis. In addition, 
Nedd4 can interact with and ubiquitinate DMT1 at lysine residues 
6, 69, and 277. The level of DMT1 in the brain decreased when over-
expression of Nedd4 after ICH, suggesting the negative correlation 
between Nedd4 and DMT1. Further study found that overexpres-
sion of Nedd4 can alleviate ferroptosis and promote recovery after 
ICH. Mechanistically, Nedd4 protects against ferroptosis through 

F I G U R E  4 Nedd4 reduces neuronal 
ferroptosis after ICH. (A) The expression 
levels of Fe2+, MDA, GSSG, and GSH 
before and after ICH in mice injected with 
Nedd4 recombination adeno-associated 
virus overexpression can be measured 
using specific assay kits (n = 6/group). (B) 
Detection of GPX4 protein expression 
level in mouse brain tissue using western 
blot (n = 6/group). (C) Observation of 
mitochondrial morphological changes 
using transmission electron microscopy 
(TEM). (D) Representative images of 
FerroOrange staining in HT22 cells. (E) 
The expression levels of Fe2+, MDA, 
GSSG, and GSH before and after Hemin 
treatment in the HT22 cell line can be 
measured using specific assay kits (n = 6/
group). (F) Detection of GPX4 protein 
expression level in HT22 cell line using 
western blot (n = 6/group). (G) Flow 
cytometry was performed to measure 
ROS. (H) Flow cytometry was performed 
to measure lipid ROS. *p < 0.05, **p < 0.01, 
***p < 0.001.
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the degradation of DMT1 ubiquitination after ICH. Thus, targeting 
Nedd4 could be a valuable strategy to inhibit ferroptosis for the 
treatment of ICH.

Previously, there were pharmacological alterations and mo-
lecular characteristics of ferroptosis in neurons following ICH.11 
Besides, ICH-induced ferroptosis is evidenced by iron deposition, 
GPX4, ROS, as well as lipid peroxidation.10,50,51 Systemic admin-
istration of ferroptosis inhibitors can prevent brain injury after 

ICH.10,14,52 Combined with our research, these results showed 
that ferroptosis plays a significant role in brain injury and neuro-
nal death after ICH.2,53 To our knowledge, red blood cell lysis is 
followed by the release of large amounts of potentially neurotoxic 
iron into the brain parenchyma that leads to cytotoxicity, inflam-
mation, and oxidative damage after ICH.54 As one of the most 
vital degradation products of a hematoma, iron contributes to 
neurotoxicity, leading to cell death and neurologic deficits after 

F I G U R E  5 The regulatory role of Nedd4 in DMT1 degradation through specific ubiquitination sites. (A) HT22 cells were transfected 
with a specific DNA construct and then exposed to Hemin (40 μM) for 24 after 48 h of transfection. Subsequently, MG132 (20 μM) was 
added to the culture medium and incubated for an additional 8 h. The cell lysate from HT22 cells underwent anti-myc immunoprecipitation 
to analyze the levels of the target protein and ubiquitination through immunoblotting. (B) A Pattern diagram to show the structure of 
Nedd4 and whether it mutants along with a summary of their interactions with DMT1. The plus symbol indicates binding, while the minus 
symbol indicates no binding. (C) Myc-DMT1 and various Flag-Nedd4 truncated mutants were co-transfected into HEK293T cells. After 24 h 
of transfection, the cells were treated with 20 μM MG132 for 8 h. WCL were subjected to immunoprecipitation with anti-Flag antibody, 
followed by immunoblotting using either anti-Flag or anti-Myc antibody. The WCL samples can also be used for immunoblotting analysis, 
with specific antibodies utilized to detect the protein expression. (D) HT22 cells were transfected with the designated DNA constructs 
and treated with MG132 for 8 h in one set of experiments. The lysates obtained were subjected to immunoprecipitation using an anti-myc 
antibody, followed by a western blot to investigate the presence of the target protein and its level of ubiquitination. (E) HT22 cells were 
transfected with the designated DNA constructs and treated with Hemin (40 μM) for 24 h. The resulting cell lysates were analyzed using 
immunoblotting.
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ICH.51,55,56 Numerous reports have also revealed the crucial role 
of iron in neuronal death after ICH.18,52,57,58 Thus, how to inhibit 
cellular iron uptake still needs further investigation.

Numerous reports have also revealed that DMT1 plays a cru-
cial role in iron transport.59 Previous studies have demonstrated 
that DMT1 expression increased after ICH,26,27 which is consistent 

F I G U R E  6 Nedd4 regulates neuronal ferroptosis mediated by DMT1 through specific ubiquitination sites. (A) The expression levels of 
Fe2+, MDA, GSSG, and GSH after ICH in mice injected with Nedd4 overexpression lentivirus, DMT1 overexpression lentivirus, and DMT1 
3KR lentivirus can be measured using specific assay kits (n = 6/group). (B) Detection of GPX4 protein expression level in mouse brain tissue 
using western blot (n = 6/group). (C) Representative image of FerroOrange staining in HT22 cells. (D) HT22 cells were transfected with the 
indicated DNA constructs and incubated for 48 h. After that, the cells were treated with Hemin for 24 h. The expression levels of Fe2+, MDA, 
GSSG, and GSH in the HT22 cell line were measured using appropriate assay kits (n = 6/group). (E) The expression level of GPX4 (n = 6/
group). (F) Flow cytometry was performed to measure ROS. (G) To assess the generation of lipid ROS, HT22 cells were transfected with the 
corresponding plasmids for 24 h and treated with 40 μM Hemin for an additional 24 h. Then, the cells were loaded with the BODIPY C11 
probe for 1 h and analyzed using flow cytometry. (H) The Nedd4/DMT1 signaling pathway mediates neuronal ferroptosis induced by divalent 
iron after intracerebral hemorrhage. During ICH injury, the interaction between Nedd4 and DMT1 weakens, leading to a decrease in Nedd4-
mediated ubiquitination of DMT1 at the K6, K69, and K277 sites. This ultimately leads to an increase in lipid ROS, thus exacerbating neuronal 
ferroptosis. *p < 0.05, **p < 0.01, ***p < 0.001.
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with our experimental findings. Specifically, our study showed an 
elevation in DMT1 levels and an associated increase in Fe2+ con-
centrations following ICH, indicating the potential significance of 
DMT1 in regulating Fe2+ level. Moreover, we observed that knock-
ing down DMT1 inhibited neuronal ferroptosis, as evidenced by 
reductions in Fe2+, MDA, GSSG, and along with augmentation of 
GPX4 levels. The role of DMT1-mediated ferroptosis has been ex-
plored in several systems, including subarachnoid hemorrhage,48 
Parkinson's,24 and myocardial infarction.25 These findings imply 
that targeting the degradation of DMT1 could be an effective 
strategy for mitigating ferroptosis. Notably, a previous study 
showed that DMT1 could be degraded via proteasomal degrada-
tion,60 which is the same as our data. Therefore, our results pro-
vide another possible investigation of the degradation of DMT1, 
which may be mediated by decreased Fe2+-dependent ferroptosis.

Nedd4, an E3 ubiquitin ligase, exerts neuronal protective func-
tions through ubiquitination-dependent mechanisms.61,62 Several 
studies have found that Nedd4 protects against acetaminophen-
induced liver injury through the ubiquitination of VDAC1.63 Recently, 
it has been discovered that Nedd4 plays an important role in regu-
lating ferroptosis.39,40 Nedd4 was found to be involved in ferropto-
sis along with VDAC2 in lung cancer.40 The specific mechanism was 
identified as Nedd4-mediated ubiquitination of VDAC2/3 in mela-
noma,39 which plays a crucial role in ferroptosis. However, whether 
Nedd4 can regulate ferroptosis after ICH is still unknown. Our results 
have verified that overexpression of Nedd4 reduces ferroptosis and 
brain damage in mice with ICH. To our knowledge, this is the first 
time that Nedd4 has been reported to regulate ferroptosis in ICH. 
Meanwhile, we found that overexpression of Nedd4 both in  vitro 
and in vivo could downregulate the protein level of DMT1 after ICH. 
Nedd4 is an E3 ubiquitin ligase, we guess that Nedd4 may exert its 
resistance to hemin-induced ferroptosis by mediating the ubiquiti-
nation of DMT1. In our data, we revealed that Nedd4 improved the 
ubiquitination of DMT1 after ICH. Thus, we speculate that manipulat-
ing the interaction between Nedd4 and DMT1 will contribute to the 
exploration of novel mechanisms of ferroptosis in the process of ICH.

Many proteins are degraded by a ubiquitination-dependent 
mechanism. In our study, we investigated the mechanism of Nedd4-
mediated ubiquitination in regulating DMT1. We discovered that 
Nedd4 promoted the degradation of DMT1 through K48-linked ubiq-
uitination, rather than K63-linked ubiquitination, indicating that DMT1 
is regulated at posttranscriptional levels. Intriguingly, we also found 
that DMT1 interacted with the WW domain of Nedd4, suggesting that 
this domain exerts its ubiquitination role. By examining the amino acid 
sequence of DMT1, we found DMT1 has 17 lysine residues that could 
be involved in ubiquitination. Further study identified that the ubiq-
uitination of K6R, K69R, and K277R mutants of DMT1 are decreased 
compared with wild-type DMT1, suggesting the three sites mediated 
the stability of DMT1. Furthermore, these site mutants could increase 
ferroptosis after ICH. Overall, our results provide a possible molecular 
mechanism that the neuroprotective role of Nedd4 may be mediated 
by downregulating DMT1-dependent ferroptosis.

A significant issue accompanied by avoiding neuron death is re-
sistance to the second injury. Unfortunately, our research has re-
vealed the neuroprotective role of Nedd4 in ferroptosis during ICH, 
but it lacks potential effects on other cell types (i.e., astrocytes and 
microglia). It should be noted that this study has only investigated 
ferroptosis without other ways of neuron death. In the future, we 
should further study the relation of these neuron death ways to find 
a better strategy to treat ICH. In addition, we only concentrate on 
the overexpression of Nedd4, which may lead to the ubiquitination 
of DMT1, ignoring a system increase in cellular ubiquitination, and 
the ubiquitination of DMT1 using Nedd4 overexpression animals still 
needs further investigation.

In conclusion, our study illustrates the role of Nedd4 in medi-
ating the degradation of DMT1 ubiquitination at the K6, K69, and 
K277, thereby conferring neuronal protection. Notably, our find-
ings provide the initial evidence of Nedd4 serving as an E3 ligase 
to ubiquitinate DMT1, thereby revealing the involvement of the 
Nedd4/DMT1 pathway in regulating neuronal ferroptosis after ICH 
(Figure 6H). Consequently, this study provides an understanding of 
how protein post-translational modification regulates DMT1, allevi-
ating brain injury after ICH.
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