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Application of Texture and Volume Model Analysis to Dedicated
Axillary High-resolution 3D T2-weighted MR Imaging: A Novel
Method for Diagnosing Lymph Node Metastasis in Patients with

Clinically Node-negative Breast Cancer

Hiroaki Shimizu1,2, Naoko Mori1*, Shunji Mugikura1,3, Yui Maekawa1,
Minoru Miyashita4, Tatsuo Nagasaka5, Satoko Sato6, and Kei Takase1

Purpose: To evaluate the effectiveness of the texture analysis of axillary high-resolution 3D T2-weighted
imaging (T2WI) in distinguishing positive and negative lymph node (LN) metastasis in patients with
clinically node-negative breast cancer.

Methods: Between December 2017 and May 2021, 242 consecutive patients underwent high-resolution
3D T2WI and were classified into the training (n = 160) and validation cohorts (n = 82). We performed
manual 3D segmentation of all visible LNs in axillary level I to extract the texture features. As the additional
parameters, the number of the LNs and the total volume of all LNs for each case were calculated. The least
absolute shrinkage and selection operator algorithm and Random Forest were used to construct the
models. We constructed the texture model using the features from the LN with the largest least axis length
in the training cohort. Furthermore, we constructed the 3 models combining the selected texture features
of the LN with the largest least axis length, the number of LNs, and the total volume of all LNs: texture-
number model, texture-volume model, and texture-number-volume model. As a conventional method, we
manually measured the largest cortical diameter. Moreover, we performed the receiver operating curve
analysis in the validation cohort and compared area under the curves (AUCs) of the models.

Results: The AUCs of the texture model, texture-number model, texture-volume model, texture-number-
volume model, and conventional method in the validation cohort were 0.7677, 0.7403, 0.8129, 0.7448, and
0.6851, respectively. The AUC of the texture-volume model was higher than those of other models and
conventional method. The sensitivity, specificity, positive predictive value, and negative predictive value of
the texture-volume model were 90%, 69%, 49%, and 96%, respectively.

Conclusion: The texture-volume model of high-resolution 3D T2WI effectively distinguished positive
and negative LN metastasis for patients with clinically node-negative breast cancer.
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Introduction

The diagnosis of lymph node (LN) metastasis in
patients with breast cancer plays an important role in

predicting its prognosis and in determining the treat-
ment strategy. LN metastasis is strongly correlated
with overall and disease-free survival.1–4 Neoadjuvant
chemotherapy may be indicated as one form of
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treatment following the preoperative diagnosis of LN
metastasis.5,6

In clinical practice, MRI is used to evaluate primary
breast cancer and axillary LN metastasis.7,8 Advanced LN
metastasis could be detected using morphological changes
including shape and diameter on 2D T2 weighted imaging
(T2WI); however, for early LN metastasis, the diagnostic
performance of 2D T2WI is limited.9–12 In early LN metas-
tasis, small histological metastatic nests grow within the
LNs,13,14 and it is difficult to detect the condition on 2D
T2WI. Schipper et al. reported that 3D T2WI displays high
specificity in distinguishing positive and negative LN
metastasis by morphological changes.15 They used a surface
coil to image the axillary region. Samiei et al. used bilateral
breast coils focusing on the FOV of the axillary region and
reported on comparable diagnostic performance to that of a
surface coil.16 Taken together, 3D T2WI with high spatial
resolution using bilateral breast coils can detect morpholo-
gical changes in LN metastasis.17

The heterogeneous signal intensity in LNs on T2WI
is associated with LN metastasis.12,18,19 To quantify the
morphological changes and heterogeneity of signal intensity
in LNs, texture analysis measuring spatial variations could be
applied to 3D T2WI. Haralick et al. proposed the grey-level
co-occurrence matrix (GLCM) method, one of the texture
analysis procedures, which evaluates the arrangement and
interrelation among grey-level voxel intensities.20 Previous
studies in uterine reported on the effectiveness of texture
analysis on 2D T2WI in distinguishing positive and negative
LN metastasis.21 Moreover, the texture analysis was applied
to LNs on 3D T2WI in distinguishing positive and negative
LN metastasis in patients with breast cancer by Samiei et al.
They included patients with clinically node-negative and node-
positive breast cancer.22 We hypothesized that the texture ana-
lysis of high-resolution 3D T2WI could quantitatively evaluate
the morphological changes, including the shape and volume,
and signal changes caused by metastasis within the LNs.

In this study, we focused on patients with clinically node-
negative breast cancer and aimed to evaluate the efficacy of
texture analysis of axillary high-resolution 3D T2WI in dis-
tinguishing positive and negative LN metastasis.

Materials and Methods

Patients
Our Institutional Review Board approved this retrospective
study and waived the requirement for informed consent.
Between December 2017 and May 2021, 426 consecutive
patients underwent preoperative MRI, including 3D T2WI,
followed by mastectomy or lumpectomy. The inclusion cri-
teria were as follows: (a) diagnosis of invasive breast cancer
by preoperative biopsy, (b) clinical node-negative breast
cancer judged by the breast surgeon to be comprehensively
negative for LN metastasis (neither apparently swollen LNs
nor irregular thickening of the cortex on MRI or ultrasound),

and (c) surgery with sentinel LN biopsy. The exclusion
criteria were as follows: (a) neoadjuvant treatment, which
might affect the histology of LNs (n = 154) and (b) poor
image quality of 3D T2WI (n = 30): cases with strong
wrap-around artefacts (n = 18) and those with severe noises
because of smaller FOV and larger matrix size (n = 12). In
case of bilateral breast cancer (n = 4), we selected the side
with larger-sized primary breast cancer. Thus, a total of 242
patients were included in this study and chronologically
separated into two independent cohorts. The training and
validation cohorts included 160 and 82 patients between
July 2019 and May 2021 and December 2017 and July
2019, respectively. All patients were women with a median
age of 55 years (range, 26–87 years).

MR imaging protocol
MR examinations were performed before surgery using a
3.0T MRI unit (Intera Achieva dStream; Philips
Healthcare, Best, the Netherlands), with multiple-source
radiofrequency transmission for all scans. All patients were
imaged in the prone position with both breasts placed in
16-channel bilateral breast coils, and dynamic contrast-
enhanced MRI (DCE-MRI) and axillary high-resolution 3D
T2WI were performed using the same bilateral breast coils.
The DCE-MRI protocol comprised a 3D fat-suppressed
T1-weighted gradient-echo sequence (TR/TE, 5.2/2.6 ms;
flip angle, 10°; acquisition section thickness, 1.8 mm; FOV,
350 mm; matrix size, 480 × 282, resulting in an in-plane
resolution of 0.73 × 1.24 mm2; and acquisition time, 60s)
with an intravenous infusion of 0.1 mmol/kg Gadobutrol
(Gadovist; Bayer Yakuhin, Osaka, Japan), followed by 20
mL of saline flush at 2 mL/sec. The high-resolution 3D
T2WI protocol was performed centering around the axillary
level I region with a FOV of 100 mm. It comprised an axial
3D T2-weighted turbo spin-echo sequence without fat sup-
pression (TR/TE, 2000/210 ms; flip angle, 90°; echo train
length, 120; number of signals acquired, one; acquisition
section thickness, 1.47 mm; FOV, 100 mm; matrix size,
166 × 166, resulting in an in-plane resolution of 0.6 ×
0.6 mm2; and acquisition time, 5 min 10s).

Image analysis
Manual measurement of the cortical diameter
The MRI Digital Imaging and Communications in
Medicine (DICOM) data of 242 patients were displayed
on a commercially available workstation (HMC Viewer
Ver. V1.0.0; Hitachi, Tokyo, Japan). Two observers (14
and 5 years of experience in breast imaging) independently
interpreted the high-resolution 3D T2W images blinded to
the patients’ clinical information, other imaging findings,
and pathological results. They reviewed the data in the
axial plane of high-resolution 3D T2W images to visually
select the LNs with the largest cortical diameter in the
axillary level I region.23 Subsequently, they manually mea-
sured the largest cortical diameter of the LN (Fig. 1a).
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Segmentation and extraction of the texture features
The MRI DICOM data of 242 patients were transferred to a
personal computer. One observer (14 years of experience in

breast imaging) performed the semi-automatic 3D segmenta-
tion of all visible LNs in axillary level I using an online
free software ITK-SNAP (v.3.8.0; www.itksnap.org) on

a b

c d

e f

g

Fig. 1 Manual measurement of the cortical diameter and segmentation of all visible LNs in axillary level I. A 49-year-old woman diagnosed
with invasive ductal carcinoma underwent preoperative MRI, including high-resolution 3D T2-weighted imaging. The LN with the largest
cortical diameter was selected to manually measure the cortical diameter (a). Manual 3D segmentation of all visible LNs in axillary level I
was performed using ITK-SNAP (b–f), and the 3D volumes of interest for all visible LNs were obtained to extract the texture features. Six LNs
were identified on 3D rendering from the coronal view (g). In this case, the manual measurement of cortical diameter was 6.41mm. The
volume of all LNs was 1359 mm3, and the texture-volume model indicated positive LN metastasis. The case was diagnosed as sentinel LN
metastasis with a 1.5 mm metastatic nest by sentinel LN biopsy. LN, lymph node.
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high-resolution 3D T2W images (Fig. 1b–1g). The observer
was blinded to the patients’ clinical information, other ima-
ging findings, and pathological results. We obtained the 3D
volumes of interest (VOIs) for all visible LNs in axillary
level I to extract the texture features. Texture analysis was
performed using the PyRadiomics software (v3.0.1; https://
www.pypi.org/project/pyradiomics/). Normalization of sig-
nal intensity was performed as pre-processing in the
Pyradiomics pipeline. PyRadiomics extracted 90 texture fea-
tures from the high-resolution 3D T2W images for each LN,
including the shape and volume (Supplementary Table 1).
The least axis length was calculated as one of the features of
PyRadiomics. As the additional parameters, the number of
the LNs and the total volume of all LNs for each case were
calculated. The total volume of all LNs was calculated as the
sum of the volumes of all LNs in axillary level I.

Model construction
Since the number of all visible LNs varied from case to case
and texture features are calculated from each LN, it is pro-
blematic to determine which LN should be used for model
construction. In this study, we hypothesized that the largest
LN in a certain case would have the most specific features of

the LN in that case. The least axis length of LNs was used to
select the LNs as follows. The least axis length of LNs
denotes the smallest axis length of the ellipsoid enclosing
the VOI and was obtained as one of texture features. It was
considered similar to the largest cortical diameter of the LN,
and the LNs with the largest least axis length was selected as
the representative LN in each case (Fig. 2). The LN with the
largest least axis length was not identical to the LN assessed
in the manual measurement of the cortical diameter. For the
texture features of the LN with the largest least axis length,
we performed feature selection by the least absolute shrink-
age and selection operator (LASSO) algorithm.21,24–26 We
constructed the texture model using the selected texture
features of the LN with the largest least axis length by
Random Forest (Fig. 2). Furthermore, we constructed the 3
models combining the selected texture features of the LN
with the largest least axis length, the number of LNs, and the
total volume of all LNs using Random Forest. The texture-
number model was constructed using the texture features and
the number of LNs. The texture-volume model was con-
structed using the texture feature and the total volume of all
LNs. The texture-number-volume model was constructed
using the texture features, the number of LNs, and the total

Fig. 2 Flowchart of the texture and texture-model construction. Texture analysis is performed for each LN segmented on 3D T2-weighted
images. Feature selection is performed for the texture features of the LN with the largest least axis length. The number of the LNs and the
total volume of all LNs defined as the sum of the volumes of all LNs are calculated. The texture model is constructed using the selected
texture features of the LN with the largest least axis length by Random Forest. The texture-number model is constructed using the texture
features and the number of LNs. The texture-volume model is constructed using the selected texture features of the LN with the largest least
axis length and the total volume of all LNs by Random Forest. The texture-number-volume model is constructed using the texture features,
the number of LNs, and the total volume of all LNs. LN, lymph node; T2 weighted imaging (T2WI).
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volume of all LNs. In this study, the number of estimators
was set at 100 and the maximum depth at 2000.

Statistical analysis
We performed Mann–Whitney U tests to compare the age,
diameter of breast cancer, and Ki-67 labelling index between
the training and validation cohorts. Fisher’s exact tests were
conducted to compare the histological type of breast cancer,
receptor status of breast cancer, Nottingham’s histologic
grade, and pathological diagnosis of LN metastasis between
the training and validation cohorts. We assessed the inter-
observer reliability of the manual measurement of the cor-
tical diameter using the interclass correlation coefficient
(ICC) (r = 1.0, perfect agreement; 0.81–0.99, almost perfect
agreement; 0.61–0.80, substantial agreement; 0.41–0.60,
moderate agreement; 0.21–0.40, fair agreement; and ≤ 0.20,
slight agreement).27 The manual measurement of the cortical
diameter by one of the two observers was used for the
statistical analysis. Furthermore, in the training and valida-
tion cohorts, Mann–Whitney U tests were performed to
compare the manual measurement of the cortical diameter,
the number of LNs, and the total volume of all LNs between
the positive and negative LN metastasis groups. We evalu-
ated the diagnostic performance of the models constructed
on the training cohort in differentiating between the positive
and negative LN metastasis groups by receiver operating
characteristic (ROC) curve analysis. The area under the
curves (AUCs) were calculated for the training and valida-
tion cohorts. AUCs of the texture model, texture-number
model, texture-volume model, texture-number-volume
model, and manual measurement of the cortical diameter
were compared in the validation cohort. We determined the
sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) of the model with the high-
est AUC in the validation cohort at a cut-off point that
maximized the value of the Youden index. Statistical ana-
lyses including LASSO and Random Forest were performed
using JMP Pro 16 (SAS Institute, Cary, NC, USA). ICC
was calculated using SPSS Version 21 (IBM, Armonk,
NY, USA). A P-value < 0.05 was considered statistically
significant.

Results

We observed a significant difference in the patient age
between the training and validation cohorts (P = 0.0080)
(Table 1). There were no statistically significant differences
between the training and validation cohorts in terms of other
background factors. Thirty-two of 160 cases and 20 of 82
cases were pathologically diagnosed as positive LN metas-
tasis in the training and validation cohorts, respectively. The
isolated tumor cell (ITC) in LN was observed in the valida-
tion cohort (n = 1), which was classified as negative LN
metastasis. Three out of 32 positive LN metastases in the
training cohort and two out of 20 positive LN metastases in

the validation cohort were micrometastases with metastases
less than 2 mm in size.

In the training cohort, there was no significant difference
in the manual measurement of the cortical diameter
between the positive and negative LN metastasis groups
(P = 0.1811) (Table 2). In evaluating the agreement between
readers, the ICC for the manual measurement of the cortical
diameter was 0.964, thus indicating almost perfect agree-
ment. We identified significant differences in the number of
LNs and the total volume of all LNs between the positive
and negative LN metastasis groups in the training cohort
(P = 0.0417 and 0.0027, respectively) (Table 3). During
feature selection using the LASSO algorithm, we selected
six features with non-zero coefficients for LNs with the
largest least axis length as follows: shape least axis length,
shape surface volume ratio, GLCM inverse variance,
GLCM joint average, GLCM maximal correlation coeffi-
cient (MCC), and Gray Level Dependence Matrix (GLDM)
large dependence high gray level emphasis (Supplementary
Table 1). The AUCs of the texture model, texture-number
model, texture-volume model, texture-number-volume
model, and manual measurement of the cortical diameter
in the training cohort were 0.9944, 0.9963, 0.9949, 0.9832,
and 0.5765, respectively (Table 4, Fig. 3).

The validation cohort displayed a significant difference in
the manual measurement of the cortical diameter between the
positive and negative LN metastasis groups (P = 0.0132)
(Table 2). While evaluating the agreement between readers,
the ICC for the manual measurement of the cortical diameter
was 0.960, thereby indicating almost perfect agreement. No
significant difference was found between the positive
and negative LN metastasis groups in the number of LNs
(P = 0.7439), while we observed a significant difference
in the total volume of all LNs between the two groups
(P = 0.0028) (Table 3). The AUCs of the texture model,
texture-number model, texture-volume model, texture-num-
ber-volume model, and manual measurement of the cortical
diameter in the validationing cohort were 0.7677, 0.7403,
0.8129, 0.7448, and 0.6851, respectively (Table 4, Fig. 3).
The texture-volume model had the highest AUC with sensi-
tivity, specificity, PPV, and NPV; 90%, 69%, 49%, and 96%,
respectively.

Discussion

The texture-volume model combining texture features from
the LN with the largest least axis length and the total volume
of all LNs displayed the highest diagnostic performance in
distinguishing positive and negative LN metastasis groups in
patients with clinically node-negative breast cancer. We
demonstrated the generalization ability of the aforemen-
tioned model by classifying the patients into the training
and validation cohorts. The model displayed higher diagnos-
tic performance than other models or manual measurement
of the cortical diameter.
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T2WI can effectively distinguish axillary LN metastasis
in patients with breast cancer.7,9,10,12,15,16,28,29 The majority
of studies simultaneously imaged the breast and axilla in the
large FOV using bilateral breast coils, whereas some studies

focused on the axillary region using a surface coil.7,10 Samiei
et al. reported that 3D T2WI focused on the axillary region
using bilateral breast coils displayed comparable diagnostic
performance as 3D T2WI using a surface coil in the visual

Table 2 Manual measurement of the cortical diameter between the positive and negative LN metastasis groups

Variables Positive LN metastasis Negative LN metastasis P-value

Manual measurement of cortical diameter

Training cohort (mm) 4.320± 1.298 4.021± 1.435 0.1811

Validation cohort (mm) 4.667± 1.236 3.820± 1.191 0.0132*

Data are expressed as mean± standard deviation. *indicates statistical significance. LN, lymph node.

Table 1 Comparison of patient and lesion characteristics between the training and validation cohorts

Variables Training cohort
(n = 160)

Validation cohort
(n = 82) P-value

Age (years) 56± 14 60± 13 0.0080*

Diameter of breast cancer (mm) 15.9± 10.5 18.9± 14.9 0.1777

Histological types of breast cancer (n (%)) 0.2985

No specific type 137 (85.6) 74 (90.2)

Invasive lobular carcinoma 10 (6.3) 4 (4.9)

Mucinous carcinoma 12 (7.5) 2 (2.4)

Apocrine carcinoma 1 (0.6) 1 (1.2)

Microinvasive carcinoma 0 (0) 1 (1.2)

Receptor status of breast cancer (n (%))

ER positive 147 (92) 72 (88) 0.3560

negative 13 (8) 10 (12)

PR positive 129 (81) 66 (80) 1.0000

negative 31 (19) 16 (20)

HER2 positive 15 (9) 12 (15) 0.2804

negative 145 (85) 70 (85)

Ki-67 labelling index 19.4± 16.3 17.6± 13.6 0.4468

Nottingham’s histologic grade (n (%)) 1.0000

1 64 (44) 33 (40)

2 85 (53) 44 (54)

3 11 (7) 5 (6)

Pathological diagnosis of LN metastasis (n (%)) 0.5086

Positive 32 (20) 20 (24)

Negative 128 (80) 62 (76)

Data are expressed as mean± standard deviation. *indicates statistical significance. ER, oestrogen receptor; HER2,
human epidermal growth factor 2; LN, lymph node; PR, progesterone receptor.
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Table 4 Diagnostic performance of the texture model, texture-volume-number model, texture-volume model,
texture-number model, and manual measurement of the cortical diameter for the training and validation cohorts
in differentiating between positive and negative LN metastasis groups

Models AUC in the training cohort AUC in the validation cohort

Texture model 0.9944 0.7677

Texture-number model 0.9963 0.7403

Texture-volume model 0.9949 0.8129

Texture-volume-number model 0.9832 0.7448

Manual measurement of cortical diameter 0.5765 0.6851

AUC, area under the curve; LN, lymph node.

Table 3 Number of LNs and total volume of all LNs between the positive and negative LN metastasis groups

Variables Positive LN metastasis Negative LN metastasis P-value

Number of LNs

Training cohort 5.5± 2.8 6.4± 2.5 0.0417*

Validation cohort 4.8± 2.6 4.5± 2.4 0.7439

Total volume of all LNs

Training cohort (mm3) 1246± 618 1108± 528 0.0027*

Validation cohort (mm3) 945± 817 706± 528 0.0028*

Data are expressed as mean± standard deviation. *indicates statistical significance. LN, lymph node.

Fig. 3 Graphs depicting the ROC curve analysis using AUCs for the texture model, texture-number model, texture-volume model, texture-
number-volume model, and manual measurement of the cortical diameter for differentiating between positive and negative lymph node
metastasis in the training (a) and validation cohorts (b). A comparison of AUCs in the validation cohort demonstrates higher diagnostic
performance of the texture-volume model (0.8129) than that of the texture model (0.7677), the texture-number model (0.7403), the texture-
number-volume model (0.7448), and the manual measurement of the cortical diameter (0.6851). AUCs, area under the curves; ROC,
receiver operating characteristic.
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assessment of LN metastasis in patients with breast cancer.16

Our results focusing on patients with clinically node-
negative breast cancer highlighted the utility of high-
resolution 3D T2WI with bilateral breast coils in distinguish-
ing positive and negative LN metastasis groups, thereby
supporting the findings of Samiei et al.16 Previous studies
used visual heterogeneity of signal intensity on T2WI within
LNs as an evaluation criterion for distinguishing positive and
negative LN metastasis.10,19 Texture analysis can capture
and quantify patterns of signal intensity on images.25,26,30,31

In this study, texture analysis of high-resolution 3D T2WI
focused on the axillary region and facilitated distinguishing
positive and negative LN metastasis groups. The texture
analysis may supposedly capture the heterogeneity of signal
intensity in the LNs caused by histological changes such as
necrosis, angiogenesis, and histiocyte aggregation caused by
metastasis.32–34

We observed a significant difference in the total volume
of all LNs between the positive and negative LN metastasis
groups both in the training and validation cohorts. In addi-
tion, the texture-volume model displayed a higher diagnostic
performance than other texture models combining the num-
ber of LNs or the total volume of all LNs, thus indicating the
total volume of all LNs had an added value in discriminating
between positive and negative LN metastasis. The number of
LNs was significantly different between the positive and
negative LN metastasis groups in the training cohort, but
not in the validation cohort. The diagnostic performance of
the model with the number of LNs did not exceed that of the
texture-volume model. In mice experimental studies of LN
metastasis, the internal pressure increased in distant non-
metastatic LNs, other than in metastatic LNs. Furthermore,
histological changes occurred in non-metastatic LNs, despite
not being accompanied by metastasis.35,36 Such changes in
metastatic and non-metastatic LNs may increase the total
volume of all LNs in patients with breast cancer and LN
metastasis. This warrants future animal and clinical studies
to confirm the mechanism of an increase in the total volume
of all LNs.

We calculated the least axis length of LNs by
PyRadiomics as the smallest axis length of the ellipsoid
enclosing the VOI. It was regarded as a parameter similar
to the largest cortical diameter of the LN, and the segmented
LNs were ordered from the largest LN to the smallest LN
based on the least axis length in each case. To extract reliable
texture features from the most suspicious LNs, we selected
the LNs with the largest least axis length. One reason was
that a large number of voxels as much as possible might be
required for the texture analysis. Texture features are calcu-
lated by adding the relationship between the signal intensity
of neighboring voxels within VOIs,25 and features from a
larger volume are considered more reliable.37,38 The second
reason is that several studies on LN metastasis in breast
cancer have demonstrated that an increase in the short axis
length of LNs is one of the suggestive findings of metastatic

LNs.10,12,19,39 Therefore, we used the least axis length as the
parameter for selecting the most suspicious LNs. All visible
LNs were segmented for texture analysis, and the number of
LNs varied among cases. Using the mean value of each
feature is one method for using the texture features from all
LNs for model construction. However, the mean value of
each feature might not be appropriate because features from
metastatic and non-metastatic LNs were averaged. Indeed,
the diagnostic performance of the mean value of texture
features was insufficient for distinguishing the positive and
negative LN metastasis groups (Appendix).

Baltzer et al. reported an increased number of LNs on the
affected side, compared with the contralateral side in patients
with breast cancer.9 In this study, we did not image the
contralateral axillary region, thus necessitating future studies
with high-resolution 3D T2WI of the bilateral axillary
region.

Only few studies have attempted to discriminate positive
and negative LN metastasis using MRI in clinically node-
negative breast cancer cases.40 Our texture-volume model
could detect LN metastasis in patients with clinically node-
negative breast cancer with a sensitivity of 90%, which may
enable the prediction of prognosis and the indication of
neoadjuvant therapy. The result of 96% NPV indicated that
clinicians may avoid unnecessary sentinel LN biopsy using
this texture-volume model. We manually segmented all visi-
ble LNs in 242 cases. This segmentation process is time-
consuming, and the development of automatic segmentation
appears essential for the clinical application of texture ana-
lysis of high-resolution 3D T2WI in diagnosing LN
metastasis.41,42

This study had several limitations. First, the sample size
of positive LN metastasis cases was small, and there was a
significant difference in the age between the training and
validation cohorts. This necessitates further study with a
larger sample size to confirm our results. Second, we
excluded cases with severe noise and artefacts. Focusing on
the FOV and increased matrix size to improve the spatial
resolution caused the degradation of SNR and aliasing arte-
facts, thus warranting technical development to improve the
image quality of high-resolution 3D T2WI. Third, the gen-
eralization ability of high-resolution 3D T2WI has not been
confirmed. 3D T2WI provides comparable contrast and
improved depiction of lesion morphology in the breast in
comparison to 2D T2WI, and it is routinely used in breast
MRI protocol.43 In this study, high-resolution 3D T2WI was
imaged at 3T MR system at our institution; however, we do
not know whether similar image quality sufficient for texture
analysis of LNs can be obtained on 3Tor 1.5TMR systems at
other institutions. Therefore, a multicenter study on other
MRI units at different institutions is required to confirm
our results. Fourth, the exclusion of patients who underwent
neoadjuvant treatment may have resulted in a selection bias
with the tendency toward patients with luminal type or early-
stage breast cancer. Furthermore, we did not perform a
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subgroup analysis based on histological types, such as inva-
sive lobular carcinoma and mucinous carcinoma. This neces-
sitates a detailed subgroup analysis to construct models
based on intrinsic subtypes (luminal, human epidermal
growth factor 2 [HER2], and triple negative), stages, and
histological types of breast cancer. Fifth, the interobserver
reliability of the segmentation of LNs was not confirmed in
this study. We used 3D T2WI without fat suppression for
imaging axillary LNs. Segmentation of the LNs was not
difficult because the LNs, blood vessels, and muscles were
visualized as low-signal intensity in the axillary fat (high-
signal intensity). It is expected that any observer can easily
segment LNs with a high agreement. However, the segmen-
tation of multiple LNs is time-consuming, and it is desirable
to develop an automatic segmentation system for LNs in the
future.

Conclusion

The texture-volume model combining texture features from
the LN with the largest least axis length and the total volume
of all LNs on axillary high-resolution 3D T2WI effectively
distinguished positive and negative LN metastasis for patients
with clinically node-negative breast cancer.
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Appendix

We averaged 90 texture features obtained from all lymph
nodes (LNs) in each patient. For the average texture features,
we performed feature selection using the least absolute
shrinkage and selection operator (LASSO) algorithm to con-
struct an average texture model by Random Forest. We
evaluated the diagnostic performance of the average texture
model constructed on the training cohort in differentiating
between the positive and negative LN metastasis groups
using receiver operating characteristic (ROC) curve analysis.

During feature selection using the LASSO algorithm,
four features with non-zero coefficients were selected for
average texture features: first order skewness, GLCM dif-
ference variance, GLCM MCC, gray level run length

matrix short run emphasis, gray level size zone matrix
large area emphasis. The area under the curves of the
average texture model in the training and validation
cohorts were 0.8779 and 0.6681, respectively.

Supplementary Information

A supplementary file is available online.

Supplementary Table 1
Ninety texture features for high-resolution 3D T2 weighted
images.
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