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ABSTRACT: Untargeted metabolomics promises comprehensive
characterization of small molecules in biological samples. However,
the field is hampered by low annotation rates and abstract spectral
data. Despite recent advances in computational metabolomics,
manual annotations and manual confirmation of in-silico
annotations remain important in the field. Here, exploratory data
analysis methods for mass spectral data provide overviews,
prioritization, and structural hypothesis starting points to
researchers facing large quantities of spectral data. In this research,
we propose a fluid means of dealing with mass spectral data using
specXplore, an interactive Python dashboard providing interactive
and complementary visualizations facilitating mass spectral
similarity matrix exploration. Specifically, specXplore provides a
two-dimensional t-distributed stochastic neighbor embedding embedding as a jumping board for local connectivity exploration using
complementary interactive visualizations in the form of partial network drawings, similarity heatmaps, and fragmentation overview
maps. SpecXplore makes use of state-of-the-art ms2deepscore pairwise spectral similarities as a quantitative backbone while allowing
fast changes of threshold and connectivity limitation settings, providing flexibility in adjusting settings to suit the localized node
environment being explored. We believe that specXplore can become an integral part of mass spectral data exploration efforts and
assist users in the generation of structural hypotheses for compounds of interest.

Bl INTRODUCTION

Untargeted metabolomics deals with the elucidation and
characterization of small molecules in complex biological
systems. Small molecules or metabolites cover an enormous
chemical diversity involved in a vast range of biological
functions. This chemical diversity leads to complex and
heterogeneous data that is difficult to provide consistent and
automated workflows for." Computational metabolomics tools
which assist manual data evaluation and annotations efforts
such as experimental networking thus remain critical to the
field.” Molecular Networking (MN) hosted on the Global
Natural Products Social Molecular Networking (GNPS)
servers is possibly the most used computational metabolomics
tool for exploratory data analysis work using liquid
chromatography tandem mass spectrometry (LC—MS/MS)
data>™® The core idea behind MN is that, since similar
structures tend to fragment similarly, spectral similarity may be
used to construct spectral feature groups with implied
structural similarity. In MN, the modified cosine score
similarity matrix of the measured spectra forms the basis for
constructing such groups using a network topology approach.’
The nodes in the network represent MS/MS spectral features
that may be connected via edges as a function of pairwise
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spectral similarity. Indeed, pairwise similarity thresholds and
other network processing parameters are used to filter the
complete network of all possible pairwise connections such
that only edges for high pairwise spectral similarities remain.
Using this approach, interrelated spectra are used to form
small, separated (disjoint) groups of nodes of high intraspectral
similarity commonly referred to as molecular families.” MN
can thus be viewed as an exploratory analysis framework
merging topological grouping and network visualization.
Molecular families serve two separate functions: (a) they
provided an ordered data overview and (b) they may be used
to assist network annotation propagation, that is, the
propagation of structural hypotheses from known structures
to unknown ones via proximity in the network.”” ™’

While the MN workflow is hugely successful, it comes with

its own trade-offs.” For instance, the use of the modified cosine
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Figure 1. SpecXplore dashboard overview of visual components using wheat data (see the Results section). The central t-SNE overview figure
provides a jumping board into three categories of visualizations in the form of color overlays such as group highlighting or node degree
visualization, networks overlays such as the ego network or selection network views, and add-on panels such as augmap for quantitative insights into
pairwise similarity and fragmap for insights into fragmentation overlaps across selections of features. For a video demonstration, please refer to

https://youtu.be/9ZqJAr8wdv8.

score and minimum fragment overlap requirements poses a
stringent similarity criterion for connectivity, resulting in rather
sparse networks suitable for representation as disjoint subnet-
works. However, the modified cosine score may miss
structurally related analogues which exhibit larger fragmenta-
tion differences, while the disjointness of the molecular families
may obscure relationships between groups. Importantly, MN
operates using a single global threshold setting on the basis of
which connectivity may or may not exist. Such a global
threshold is unlikely to work well for all chemical families
measured, where some may exhibit much richer or much
sparser fragmentation or overlap thereof. In addition, the
combination of disjointness of spectral groupings, as well as the
disconnected runs with new randomly generated layouts for
each molecular family make setting comparisons an arduous
task.

In this paper, we introduce specXplore, an interactive
Python dashboard aimed at facilitating spectral data explora-
tion in a flexible and local network topology tailored fashion.
Unlike traditional molecular networking, specXplore was
created with adjustable settings for heterogeneous and dense
network data in mind. SpecXplore provides complementary
and interactive visualizations that allow users to explore
connections between the spectral features using interactively
adjustable network settings.

SpecXplore consists of an importing module providing data
integration capacities and a dashboard-module for interactive
exploratory data analysis. The dashboard makes use of a two-
dimensional t-distributed stochastic neighbor embedding (t-
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SNE) overview network of the full pairwise similarity matrix as
a jumping board for localized data exploration. Rather than
being based on modified cosine scores, specXplore is based on
ms2deepscore pairwise similarities, which can more accurately
represent the structural similarities between compounds based
on their spectra via a deep-learning-based embedding
representation.””'” Being trained to predict pairwise structural
similarity from spectral data, ms2deepscore in principle allows
grouping of similar compounds even if their spectra are
dissimilar.'” However, ms2deepscore may also introduce a
much denser topology. At many reasonable threshold levels,
node-link diagram representations of dense matrices tend to
become unreadable for the network as a whole.” To facilitate
the effective exploration of local neighborhoods, specXplore
provides various interactive visualizations, providing views of
connectivity surrounding a feature or feature group of interest.
Here, partial network drawings and matrix representations play
an important role. Localized explorations are combined with
the ability to quickly change thresholds to regenerate local
views under the new constraints, allowing the careful expansion
of neighborhood size for some node of interest. In addition to
the network-based representations of local connectivity,
specXplore provides means for (a) investigating the raw
pairwise similarity matrix directly, (b) investigating the
fragmentation overlaps across multiple spectra, and (c)
inspecting any joined-in metadata or chemical classifications
from within the dashboard.

We will first outline the core components of the tool, their
intended usage, and their rationale. This will be followed by
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illustrative examples on real data and a discussion on the tool
in the broader contexts of mass spectral exploratory data
analyses.

B MATERIALS AND METHODS

The specXplore workflow is divided into a Python data
importing pipeline and a visual analysis dashboard using
dash.'"'* The importing part provides data integration and
preprocessing functionalities, while the dashboard provides the
interactive user interface for data exploration. The tool is
available on github under MIT license as a python package that
can be downloaded and installed for local use at https://
github.com/kevinmildau/specXplore. We will briefly outline
the dashboard’s importing pipeline and core visual compo-
nents.

Data Importing and Preprocessing. Before data can be
opened in the specXplore dashboard, it needs to be processed
using the specXplore importing pipeline. The processing
workflows and intermediate data structures used by specXplore
are built upon a cohort of open-source software Python data
science packages, namely, matchms,"> MS2Query,'* ms2deep-
score,"’ spec2vec,'® kmedoids,' Cython,'” numpy,'® pan-
das,'”?” scikit-learn,”’ and scipy.”” The input data for
specXplore spectral data exploration are MS/MS spectral
data. LC—MS/MS data preprocessing (i.e., feature detection
and MS/MS spectral exporting) is assumed to have been done
elsewhere, e.g., using MZMine3, in order to reduce data set
size and feature redundancy.”> The MS/MS feature data are
assumed to be in .mgf (mascot generic format) format, where
each entry should have a unique feature identifier, a precursor
mass to charge ratio, and spectral data in the form of one or
more mass to charge ratio and intensity value tuples. Spectral
data are imported into Python using matchms, and basic
specXplore data processin§ is performed (see Supporting
Information, Section $2.1)."” Spectral data can then be used to
initialize a template specXplore object that automatically
computes pairwise spectral similarities using three similarity
scores: ms2deepscore, modified cosine scores, and spec2vec
scores.”'”'#!'> For the machine learning scores, pretrained
models provided with MS2Query are used."*

The central overview of specXplore is based on a t-SNE
embedding of the ms2deepscore pairwise similarity matrix
serving as the primary similarity score.”"”*** Functionalities
are provided for users to test a range of values for the
perplexity tuning parameter (usually between S and 50) and
select an appropriate value. Users will need to balance both
high-dimensional distance preservation and network layout
qualitative grouping properties.

Similarly, functionalities are provided to construct a range of
k-medoid clustering-based data subdivisions to complement
the t-SNE embeddings. These clusters provide clear local
neighborhood groupings that can be otherwise difficult to
evaluate given t-SNE’s abstract projection of the similarity
matrix.

Finally, to provide the user with chemically informative
visual highlighting capacities, MS2Query analog classifications
via ClassyFire or NPClassifier, or direct classifications from
tools such as Sirius, may be integrated into the specXplore
session for visual highlighting capacities (see Supporting
Information, Section S2.5).

SpecXplore Interactive Dashboard. SpecXplore pro-
vides the user with a variety of views and interactive navigation
options (Figure 1).”> We envision specXplore’s functionalities
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to be used in an interactive local exploratory fashion, where the
settings and their impact on local neighborhood can be
evaluated seamlessly. This local exploration starts at a two-
dimensional t-SNE overview figure rendered using dash and
dash-cytoscape.'>***” All other visualizations in specXplore
make use of plotly.28 In its most basic form, the t-SNE map
only contains a node for each feature, and a number of visually
highlighted spike-in standard features. Following Shneider-
man’s mantra of “Overview first, details on demand”,
specXplore allows for the selection of any node, or collection
of nodes, for more in-depth analysis in complementary
visualization approaches falling into two broad categories:
(a) topology overlay views and (b) data details views.””

Three different topology-based views are provided. First, to
provide insights into the impact of thresholds on the topology,
a node degree overlay visualization using a color gradient to
represent individual node connectivity levels can be prompted
via a button click for the whole t-SNE map (Figure 1 and
Supporting Information Figure S2 in Supporting Information
Section $3.1.3). This node degree visualization as well as a
supporting edge weight distribution plot included in the
settings panel follow the principle idea of Willett et al’s
Scented Widgets, providing intuitions about the impact of
settings on the topology (see Supporting Information, Section
$4.5).”° This renders adjusting settings a more informed
process.

Second, to provide quantitative insights into the underlying
pairwise similarity data of selections of nodes, a heatmap
portraying the ms2deepscore pairwise similarity matrix for a
selection is provided. Here, the ms2deepscore scores are
quantitatively portrayed using a divergent color scale around
the current threshold setting, while the exact numeric values
are available via mouse-hover panels. This view is called
augmap (AUGmented HeatMAP) in specXplore since it also
incorporates implied adjacency matrices for modified cosine
score and spec2vec score matrices at current threshold settings
via additional markers and mouse-hover information, providing
a means of comparing adjacency between the scores at current
threshold levels.

As a third visualization component, we provide network
visualization overlays. For single nodes, specXplore provides
so-called ego-network overlays, visualizations suitable for
studying a network’s topology relative to a single node.”*”
Here, all edges connecting to the selected node, but also all
edges connecting to those connections and so forth, are
superimposed onto the t-SNE map in line with hop distance
settings. This allows the user to explore a branching view of
network connectivity emanating from the ego node. For
multinode selections, specXplore provides a network view for
intragroup connectivity assessments highlighting all edges
within a selection of nodes, as well as those connecting
outward of the selection.

Finally, specXplore provides a number of data details add-on
panels that can be prompted for selections of the nodes. For
any group of spectra, the metadata information can be
presented as a table, and MS/MS spectrum plots can be
generated. Moreover, for pairwise spectral comparison, so-
called mirror plots depicting one spectrum on the positive y
axis and the other on the negative y axis are available. However,
the latter are not suitable for multispectrum comparison and
evaluations of fragmentation overlaps across more than two
spectra. To support users with multispectrum comparisons,
specXplore provides fragmentation overview heatmaps we refer
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Figure 2. Process of exploring the local environment of a known feature node is illustrated. (A) Procyanidin-A2 reference standard surrounding
feature selection in the lower left corner of the t-SNE embedding. The selected nodes are highlighted using magenta outlines. The selected
reference standard is highlighted as a dark gray diamond with a dashed selection outline in magenta. (B) Fragmap view of the fragmentation overlap
between the spectra selected in A. The reference standard spectrum is of significantly lower complexity than that of the experimental spectra. Only
few fragments appear overlapping. However, many fragments are shared across experimental standards in a clear pattern indicating a structural
relationship. The reference standard is highlighted on the y-axis using an added diamond outline. The highest intensity fragment for the reference
standard is further is highlighted using an arrow. (C) Zoom-in of the overlapping area in fragmap view. All except one experimental feature in the
local selection share a low relative intensity fragment ion at mass 287.055 that appears to correspond to the most intense fragment in the reference

standard.

to as fragmap. To generate a fragmap, binned mass-to-charge
ratios are sorted in ascending order and factorized. This allows
to (a) reduce the amount of unused white space in each
individual spectrum plot by putting the ascending fragments
immediately next to each other regardless of mass differences
and (b) to separate crowded areas of the mass-to-charge ratio
axis into more easily separable pieces. The y-axis in the
fragmap is used for aligning the different spectra, while a color
gradient is used to highlight the fragment intensity. In addition,
neutral losses are indicated as constant colored blocks inside
the same visualization, providing a rich view of the overlaps in
the fragmentation patterns. The fragmap thus provides
immediate insights into the spectral overlaps or lack thereof
in a single, concise overview. This in turn facilitates assessment
of the meaningfulness of local connectivity.

B RESULTS

We illustrate specXplore by applying it on real LC—MS/MS
untargeted metabolomics data from two experiments: (a)
wheat plants LC—MS/MS data®>** and (b) urine metabolome
LC—MS/MS from a polyphenol exposome study.”” In both
cases, the approach and illustrations are similar. We hence
focus on the wheat data here and refer to the supplement for
the briefer urine data example (see Supporting Information,
Section $3.2). In addition, a video overview of the different
views of the tool can be found online at https://youtu.be/
9ZqJAr8wdv8. Spectral data from .mgf files was loaded into the
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preprocessing jupyter notebooks and processed into a
specXplore session object (see illustrative example notebooks
https://github.com/kevinmildau/specxplore-illustrative-
examples). For the wheat data set, the pipeline preprocessing
time was less than 15 min (on a MacBook Pro laptop with
Apple M1 Pro processor 2021), most of which was spent on
local library search via MS2Query. Using the same system, the
processing time for the larger urine data set was less than 75
min, whereof approximately 62 min was taken up by
MS2Query and 9 min for all pairwise spectral similarity
computations.

Upon opening the app and loading the data, the user faces
an interactive two-dimensional projection of all spectra created
by the t-SNE. Each spectral feature in the data set is
represented as either as a circular node or highlighted as
darkened diamonds for reference standards in this example. On
its own, the t-SNE overview figure is difficult to read. Only a
limited view of clustering trends can be observed through
denser node regions and positioning of reference standards
(Figure 1). This being the case, the t-SNE overview figure still
provides an excellent basis for in-depth exploration of the data
via interactivity. The most useful top-level exploration features
are k-medoid clustering at low values of k (see Supporting
Information, Figure S3A in Supporting Information, Section
S3.1.4), chemical classification (see Supporting Information,
Figure S3B in Supporting Information, Section $3.1.4), and

https://doi.org/10.1021/acs.analchem.3c04444
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node degree visualizations (see Supporting Information, Figure
S2A in Supporting Information, Section $3.1.3).

Node degree visualization provides an immediate and
uncluttered view of the network topology at current threshold
levels, providing insights into topological groupings in the data
(see Supporting Information, Figure S2A in Supporting
Information, Section $3.1.3). In addition, node degree
visualizations provide the most straightforward assessment of
the impact of threshold changes on local topology while
avoiding the computational cost and visual clutter of
potentially large numbers of edges (see Supporting Informa-
tion, Figure S2A,B in Supporting Information Section, S3.1.3).

Color-based highlighting of groupings based on k-medoid
clustering or chemical ontology predictions can provide
additional means of determining the local areas of interest in
the t-SNE overview. Here, k-medoid clustering provides an
edge-threshold-independent means of dividing the feature
space into smaller groups while still making use of the pairwise
similarity matrix. K-medoid clustering tends to show good
agreement with both t-SNE projections and topological
insights, while it provides a means of determining neighbor
sets of nodes of interest (see Supporting Information, Figure
S3A). At low k values, k-medoid clustering tends to produce
larger data groupings (see Supporting Information, Figure
S3A), higher values of k tend to subdivide the data into
smaller, localized clusters often corresponding well to
topological connectivity at higher thresholds (see Supporting
Information, Figure S4 in Supporting Information, Section
S3.1.4). Putative chemical classifications may serve a similar
means of prioritizing areas of interest in the t-SNE embedding,

In addition to the use of various color highlighting
approaches to detect groupings of interest or achieve a
bird’s-eye view of topology, specXplore makes use of edge
overlay visualizations granting insights into local node
connectivity patterns at adjustable similarity threshold settings
(see Supporting Information, Figure S2B in Supporting
Information, Section $3.1.3). These views provide insights
on what nodes are considered adjacent to one another given
the current similarity thresholds. While network views provide
simplified views of the similarity relationship between nodes,
augmap views provide deeper insights into the similarity matrix
and quantitative backbone of all of specXplore’s visualizations
(see Supporting Information, Figure S1 in Supporting
Information, Section S3.1.2). These quantitative insights can
be used to adjust the local threshold settings accordingly or be
used as an alternative to network views for small node
selections altogether.

While specXplore’s global overviews provide insight into the
rough patterns of the data, its localized views provide more
detailed insights into the possible relationships between the
features in the wheat data. There are numerous ways to delve
further into the data, given the areas of interest have been
found. One sensible approach in specXplore is to explore
connectivity around the known reference standards. For
instance, exploring the densely connected feature area around
the Procyanidin-A2 corresponding feature (Figure 2 A), we
can see the characteristic fragment ion overlap as well as the
much higher complexity of the experimental spectra (Figure 2
B,C). Such overlaps in fragmentation patterns and implied
substructure overlaps alongside local topology and other
metadata information may serve as vital starting points for
MS/MS structural hypothesis generation and manual annota-
tion efforts. Which features are considered of interest, and how
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stringent overlaps will need to be to be useful naturally depend
on the analysis goals.

B DISCUSSION

We have developed specXplore with two aims in mind: for it to
provide a flexible data exploration platform and for it to
provide a means of understanding and tailoring network
processing settings to the data at hand. In keeping with these
aims, specXplore allows the data to be explored interactively
with adjustable settings in the well anchored context provided
by the t-SNE embedding. In specXplore, there are no rigid
subdivisions of the data nor topological parameters to “fix”. We
opted for this approach since we think of specXplore as
providing an interface to a heterogeneous and complex
network of spectral similarities. This network aims to present
pairwise structural similarities between spectra via the
ms2deepscore model but is impacted by data and model
heterogeneity. Here, many different compound classes with
different fragmentation behaviors and different model cover-
ages are lumped together into a single, highly heterogeneous
network. With data this heterogeneous, local exploration and
local setting tailoring seem the most sensible. In practice,
specXplore thus requires the user to delve into the network
and find localized target groups based on their own criteria of
interest and tolerances in spectral and implied structural
similarity. While requiring more effort from the user, this also
provides them with unprecedented flexibility.

During the development of specXplore, we drew inspiration
from two extensions of MN, MolNetEnhancer, and MetGem
(see Supporting Information, Figure S6A—C in Supporting
Information, Section $4.1).>°”*” MolNetEnhancer extends
MN by providing molecular families with a dominant ms2lda
motif classification as a visually highlighteable component of
molecular networks in Cytoscape.””*' MetGem extends MN
by providing an interlinked network and a t-SNE visualization,
providing a means of inspecting the data from two
complementary angles at once.”””” Both MolNetEnhancer of
MetGem have found use in the field (e.g, refs 42—44 and refs
45—47) and highlight the potential in extending and tailoring
the MN workflows.

We also drew inspiration from the network visualization tool
EdgeMaps (see Supporting Information, Figure S6D in
Supporting Information, Section $4.1).>”*® In EdgeMaps, a
complex and dense network is embedded in a two-dimensional
projection of node similarities, and directed edges between any
interconnected nodes are visualized only upon interactive
demand.

SpecXplore makes use of the embedding approach of
MetGem and EdgeMaps to create a similarity preserving layout
and makes use of interactive prompting as in EdgeMaps to
highlight the local topological relationships. In addition,
chemical space prioritization is facilitated through chemical-
classification-based node coloring as done in MolNetEnhancer.

Naturally, as a tool for spectral data exploration, specXplore
draws inspiration from Network Annotation Propagation, be it
automatic or manual, where we designate the primary aim of
specXplore to be the exploration of the local topology with the
goal of structural hypothesis propagation and spectral cross
comparison.”*”* Combining elements of all these approaches,
specXplore is a uniquely flexible data exploration approach for
mass spectral data that covers a broad range of complex
network visualization tasks.>!
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Impact of Settings in Traditional Molecular Network-
ing and SpecXplore. MN, as hosted on GNPS, provides an
interesting and successful framework for topology-based mass
spectral exploratory data analysis (EDA)." EDA is character-
istically dynamic and flexible, yet the analysis approach and
settings may have a strong impact on how the data is viewed
and used. The primary topological settings in MN are (a) the
pairwise similarity thresholds used as well as corresponding
minimum fragmentation overlaps, (b) top-K neighbor limits
on individual nodes, and (c) maximal molecular family sizes.
Additionally, one can consider the choice of the modified
cosine score (or spec2vec scores) as the underlying metric a
setting. In the GNPS workflow, these settings are used to
create a subdivision of the spectral data into disjoint groupings
that are visualized separately as subnetworks. This subdivision
is possible because of the general connection sparsity
encouraged by the settings: modified cosine similarity matrices
will be comparatibely sparse, while typical default thresholds of
0.7 will lead to even sparser adjacency matrices. In addition,
top-K limitations on the number of neighbors for each node
can limit the scope of hub nodes and reduce cross-network
connectivity. Thus, the combination of settings and visual-
ization approaches are tailored to accommodate sparse
representations and not dense networks. A feature of MN is
thus that that molecular families represent groups of high
spectral similarity with no visible links to other families.
Missing connections between nodes and clusters through
restrictive settings, but in rarer instances also hard to decipher
hairball molecular networks through too liberal settings, may
be encountered.

With settings being as impactful, it is hence a key issue that
GNPS reruns with different settings are slow, while
comparisons of runs from one to another are nontrivial.
Indeed, MN produces disjoint molecular families to be
analyzed separately, while reruns with different settings
produce different molecular families in size, composition, and
natural ordering. In addition, individual molecular families
make use of randomized force-directed layouts, leading to
possibly different node positioning in each run and family. This
means that the preservation of any kind of mental map of the
different runs and how they compare against one another are
difficult. While the speed bottleneck of traditional MN on
GNPS can be partly overcome with tools such as MetGem or
MZMine, which allow fast local reruns separating data
processing from networking settings, the comparison of
different runs to one another still remains difficult.”>*”

The comparability issue is addressed in specXplore via its
local subnetwork and information on demand approach. The
use of fixed t-SNE coordinates as layout allows the user to
create a mental map of the data, as well as allows them to study
the impact of on-the-fly changeable network settings on their
requested local views easily against the thus provided visual
anchor-point.

In addition to fundamental visual design differences,
specXplore makes use of the ms2deepscore model for
generating the pairwise similarity matrix underlying its
visualizations.'” This model is used as it provides better
capabilities for linking spectra with stronger fragmentation
differences, albeit at the cost of denser networks that are more
challenging to visualize.'” However, since ms2deepscore is a
machine learning model it can only be expected to work well
for spectra and metabolites well covered by or related to its
training data. To accommodate this deficit at least in part,
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specXplore provides the augmap views granting insights into
the differences between ms2deepscore, modified cosine scores,
and spec2vec scores on the same data.

The specXplore dashboard has been shown in our
illustrative examples to work well for the wheat data and the
urine data sets containing <1000 and <4000 features each after
processing. For these smaller, processed data sets, specXplore
works provides broad flexibility and interconnected visual
analysis features. We expect that the dashboard will scale well
to 5000 features but face difficulties for larger data sets and
liberal settings. Network representations may quickly become
visually overwhelming or computationally demanding to
process and render. The feature-rich and liberal settings
approach of specXplore does not lend itself to repository scale
analyses.

Dense Networks and Network Layout Choice. Since
specXplore contains a large network analysis component, the
choice of feature positioning in its general overview is in part a
question of network layout choice. Laying out dense networks
is a difficult task often addressed using force-directed layout
algorithms owing to their computational tractabiity.”>~>°
However, the latter do not scale well to large and dense
networks and tend to é)roduce hard-to-read or unintelligable
networks rendition.””* This is particularly because of often
created dense “hairballs” of nodes and edges, as well as edge-
crossings.”’ ~>” In specXplore, this is addressed by a
combination of latent variable space embedding of nodes
with interactively triggered partial network drawings.’”**°%®!
Here, the latent variable embedding serves as a jumping board
for localized network explorations. This approach is in line
with Shneiderman’s mantra of “Overview first; details on
demand”.”” Dense hairball visualizations or edges traversing
the whole t-SNE embedding are avoided by only visualizing
edges on demand, using stringent user-modifiable edge filter
settings.

Alternative approaches available to dealing with poor
readibilty make use of summarization.”” The nodes can be
hierarchically aggregated, or the edges can be bundled.®>**
Such approaches however tend to alter the preceived
relationships within the graph and ultimately require
interactivity such as hypernode expansion or semantic zoon_lin%
to allow insights into the various levels of granularity.”>™°
Hence, no matter the approach taken, some form of interactive
data visualization is needed to handle dense networks. The
approach used in specXplore aims to only minimally alter the
perceived topology of the network and provide intuitive and
easily understandable forms of interaction via interactive
overlays.

It should be noted, however, that the use of t-SNE as the
layout approach in specXplore does not come without
disadvantages. Embeddings produced by t-SNE are built to
preserve local neighborhoods in the high-dimensional space in
their projection to a two-dimensional space.”* This focus may
lead to difficulties in interpretation of t-SNE results as neglect
of global similarity preservation may render cluster proximity a
poor indicator of cluster similarity.”® Alternative approaches
such as UMAP or PACMAP may be more capable at preserving
global or even global and local trends.®”””" However, recent
research shows that t-SNE artifacts may be avoided with very
careful method tuning.®®’> We note that t-SNE’s local focus
works well within specXplore as it tends to group together
high-similarity nodes, while global-similarity distortions are
partially offset by the use of complementary visualization
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overlays such as network representations which afford a view of
effective connectivity between groupings at given threshold
levels.

K-Medoid Clustering in SpecXplore. The t-SNE
embedding overview panel of specXplore provides the user
with an abstract and condensed representation of the pairwise
similarity matrix lacking a clear node grouping structure. To
alleviate this problem, specXplore provides complementary k-
medoid clustering color overlays, where clustering at various
values of k provides quick glances at local neighborhoods in
the t-SNE overview. The k-medoid clustering algorithm is
closely related to k-means clustering, where k-medoid omits
the necessity of computing some form of centroid against
which to measure distances, instead making use of the median
distanced observation within a cluster, i.e., the medoid, as the
reference against which to measure distances.”” K-medoid
clustering thus has a number of advantages within specXplore:
(a) any arbitrary distance measure may be used with k-medoid
clustering, including ms2deepscore itself, (b) making use of
medoids circumvents the need of defining centroids, as well as
any associated needs for recomputing distances from the latter
making it computationally cheap, and (c) since k-medoid
operates directly on the similarity matrix its cluster assignments
are unaffected by t-SNE projection artifacts.

We considered making use of hierarchical clustering with
medoid linkage for maintaining cluster consistency across
levels of granularity.”* Clusters being hierarchically subdivided
into subclusters, which in turn are further subdivided, and so
on, would provide a mental map advantage when exploring
different granularity levels. For k-medoid clustering, no such
agreement across different values of K is enforced, and hence,
cluster assignments may vary across settings of k sometimes
grouping features together and sometimes not. However, due
to both lacking implementation availability in Python and
suboptimality of the hierarchically constrained clusters at any
level of k, we opted to use k-medoid clustering only.”* In
specXplore, we make use of k-medoid clustering as an assistive
grouping approach rather than an end-point. Hence, different
values of k are used to provide variable granularity groupings to
be further explored in the general t-SNE embedding and using
other complementary views such as partial network drawings.
More work on measuring and comparing optimality would be
needed to provide users with stronger guidelines for automatic
cluster tuning.

B CONCLUSIONS

SpecXplore provides a means of interactively slicing into the
complete matrix of pairwise spectral similarities via adjustable
settings and complementary views. Exploration of the data in
this way provides a means of determining spectral neighbor-
hoods of interest and to assist direct and indirect network
annotation propagation. In addition, specXplore exposes the
impact of topological filtering settings on effective topology
and local neighborhood contexts. Being based on ms2deep-
score, it further allows for state-of-the-art similarity scoring that
reflects structural similarities more closely. This in turn opens
up opportunities for finding similarities missed by traditional
scoring approaches. SpecXplore thus provides users with
flexible state-of-the-art data exploration platform. Future works
for specXplore we are considering are (a) providing an online
hosted version for more straightforward accessibility and (b)
an integration with statistical testing results for more effective

5804

prioritization leveraging experimental designs (such as in
FERMO"™).
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