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Summary

The concept of localization precision, which is essential to localization microscopy, is formally 

extended from optical point sources to microscopic rigid bodies. Measurement functions are 

presented to calculate the planar pose and motion of microscopic rigid bodies from localization 

microscopy data. Physical lower bounds on the associated uncertainties – termed centroid 

precision and orientation precision – are derived analytically in terms of the characteristics 

of the optical measurement system and validated numerically by Monte Carlo simulations. 

The practical utility of these expressions is demonstrated experimentally by an analysis of the 

motion of a microelectromechanical goniometer indicated by a sparse constellation of fluorescent 

nanoparticles. Centroid precision and orientation precision, as developed here, are useful concepts 

due to the generality of the expressions and the widespread interest in localization microscopy for 

super-resolution imaging and particle tracking.
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1. Introduction

Localization microscopy comprises a class of rapidly advancing and broadly applicable 

experimental and computational methods for measuring the positions and motions of 

small optical indicators (Deschout et al., 2014a, b; Chenouard et al., 2014). Although the 

resolution of optical microscopy is ordinarily limited by diffraction to the Rayleigh limit 

of approximately half the imaging wavelength, the position of an optical point source that 

is individually resolved within an image with pixels and noise can be measured with an 

uncertainty that is orders of magnitude smaller (Bobroff, 1986). The physical lower bound of 
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uncertainty in estimating the position of a fluorescent point source was derived (Thompson 

et al., 2002) and corrected (Mortensen et al., 2010) to:

LP =
16 σG

2 + a2 ∕ 12
9N +

8πb2 σG
2 + a2 ∕ 12 2

a2N2 ,

(1)

where σG is the standard deviation of the Gaussian approximation of the microscope point 

spread function, a is the pixel pitch of the imaging sensor, b2 is the expected number of 

background photons per pixel and N is the total number of detected signal photons. This 

expression of localization precision denotes one standard deviation along a single spatial 

axis.

Localization precision is widely used as a metric of minimum uncertainty for designing 

measurements for low uncertainty and for assessing empirical uncertainties (Thompson et 

al., 2002; Ober et al., 2004; Betzig et al., 2006; Huang et al., 2009, 2013; Mortensen et 

al., 2010; Smith et al., 2010; Deschout et al., 2014b; Chenouard et al., 2014; Endesfelder 

& Heilemann, 2014). For a given experimental measurement or analysis, Eq. (1) can be 

used to predict if a target uncertainty is physically possible to achieve. Eq. (1) can also 

be informative of critical parameters in the design of an experimental measurement system 

to achieve a target uncertainty. In an analysis of experimental measurement results, if the 

empirical uncertainty is significantly larger than the localization precision, then experimental 

errors not modelled by Eq. (1), such as microscope drift (Elmokadem & Yu, 2015), 

vibration, or fixed pattern noise (Fox-Roberts et al., 2014; Long et al., 2014), must dominate 

the uncertainty in the measurement. If the empirical uncertainty is approximately equal 

to the localization precision, however, then it might be possible to reduce the empirical 

uncertainty by changing one of the experimental parameters in Eq. (1), such as increasing 

the number of detected signal photons emitted by an optical indicator.

Common optical indicators for localization microscopy include individual fluorophores, 

which are widely used in super-resolution imaging, and subresolution particles containing 

many fluorophores, which are frequently tracked as probes and fiducials (Ribeck & Saleh, 

2008). Such fluorescent nanoparticles are better localized than individual fluorophores in 

two ways. An ensemble of many fluorophores with random orientations increases N in 

Eq. (1), other things being equal, and produces approximately isotropic emission for which 

simple algorithms produce optimal results (Enderlein et al., 2006; Stallinga & Rieger, 

2010) that otherwise require more complex methods (Stallinga & Rieger, 2012). For many 

practical applications, the localization precision of an individual optical indicator is on the 

order of 1 to 10 nm.

Many microscopic objects of interest are rigid bodies with planar motions which can 

be measured by localizing and tracking multiple optical indicators in or on the bodies. 

For such experimental systems, information from multiple optical indicators can be 

mathematically combined to further reduce the uncertainty of a position measurement and 

to enable an orientation measurement with low uncertainty. Related measurements have 
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diverse applications in microtechnology, nanotechnology, biology, materials and metrology 

(Freeman, 2001; Ropp et al., 2013; Berfield et al., 2006, 2007; McGray et al., 2013; 

Samuel et al., 2007; Yoshida et al., 2011; Teyssieux et al., 2011; Ueno et al., 2010). 

Recently, constellations of fluorescent nanoparticles indicating the motion of microscopic 

actuators were localized and tracked, demonstrating the utility of the measurement method 

(McGray et al., 2013; Copeland et al., 2015). McGray et al. (2013) presented an expression 

for the minimum uncertainty of the centroid of a constellation of point sources of equal 

brightness. However, metrics comparable to localization precision have not been developed 

for either the centroid or the orientation of a sparse constellation of point sources of 

variable brightness on a microscopic rigid body. Such metrics would be useful to design 

measurements and assess uncertainties in these experimental systems.

In this paper, the concept of localization precision is extended to the analogous concepts 

of centroid precision and orientation precision. Just as localization precision provides the 

minimum uncertainty of localizing a point source by optical microscopy, centroid precision 

and orientation precision provide minimum uncertainties of the position and orientation of 

a sparse constellation of point sources of variable brightness on a microscopic rigid body 

in the image plane of an optical microscope. In Section 2, measurement functions and 

associated uncertainties for planar pose and motion are formally derived in terms of the 

localization precision and weighting of individual point sources in the constellation. This 

leads to the expressions for centroid precision and orientation precision that are summarized 

in Section 3. In Section 4, the expressions are numerically tested by Monte Carlo simulation, 

giving confidence in their validity. In Section 5, the expressions are applied to evaluate 

the experimental measurement uncertainties of the motion of a microelectromechanical 

goniometer labelled with fluorescent nanoparticles, providing a specific example of the type 

of analysis for which the expressions are useful. Future directions are indicated in Section 6, 

and conclusions are made in Section 7. Details of the measurement functions and associated 

uncertainties are presented in the Appendix.

2. Measurement functions and uncertainties for planar pose and motion

A sparse constellation of point sources in an invariant configuration can be used to measure 

the pose and motion of a rigid body in the imaging plane of an optical microscope by 

localizing and tracking the point sources, as illustrated in Figure 1. The optical indicators 

can be inherent to the body or applied for the purpose of the measurement. In such a 

measurement, an optical micrograph of a set of indicators in or on the body is captured, 

and the position of each point source is localized relative to the coordinate frame of the 

micrograph using an estimation technique, such as least squares or maximum likelihood 

(Mortensen et al., 2010). The images of the point sources in a micrograph captured after 

the body has moved are similarly localized. The full planar motion of the body can then be 

tracked by calculating the rigid planar transform that maps the points in the prior micrograph 

to the points in the subsequent micrograph. This transform can be expressed as a rotation 

followed by a translation.

Let Pk = {pk, 1, …, pk, η} be a set of point source positions estimated from an image of a rigid 

body, and let P 0 = {p0, 1, …, p0, η} be the set of true positions of those point sources when an 
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arbitrarily defined coordinate system intrinsic to the body is aligned with the (x, y) axes of 

the measurement. The diacritical hat, such as appears in P 0, is used to denote a true value, as 

opposed to an estimated value. Let TP( v ) be a transform over (x, y) vectors in the Cartesian 

plane. The pose of the body is the triple (X, Y , Θ) such that TP( v ) = cos Θ − sin Θ
sin Θ cos Θ v + (X, Y )

is the transform that best maps P 0 onto P .

Similarly, if Pk = {pk, 1, …, pk, η} is a set of point source positions estimated 

prior to some planar rigid motion, and Pk + 1 = {pk + 1, 1, …, pk + 1, η} is the 

set of point source positions estimated subsequent to the motion, 

then Mk, k + 1( v ) = TPk + 1( v ) − TPk( v ) = cos ΔΘ − sin ΔΘ
sin ΔΘ cos ΔΘ v + (ΔX, ΔY ) is the transform 

characterizing the motion. Importantly, the triple (ΔX, ΔY , ΔΘ) is independent of P 0, 

allowing motion measurements to be performed independently of the choice of the θ origin, 

which can be arbitrarily defined. The sets Pk and Pk + 1 may represent the positions of all point 

sources observed in the two images or the intersection of two different sets of point sources 

observed in the two images, as, for example, in the case of super-resolution imaging (Betzig 

et al., 2006; Hess et al., 2006; Rust et al., 2006).

The measurement functions utilized in calculating Mk, k + 1 from Pk and Pk + 1 are best selected 

to minimize the uncertainty of each coordinate of the motion (ΔX, ΔY , ΔΘ). In selecting 

these measurement functions and in calculating the associated uncertainties of motion, 

random and independent errors in the position estimates of point sources are assumed. The 

rotation and translation components of the motion can be treated separately (Arun et al., 

1987). The translation, (ΔX, ΔY ), is considered first. Each coordinate of each position 

estimate of a point source, pk, i ∈ Pk or pk + 1, i ∈ Pk + 1, has some associated measurement 

uncertainty, σx, k, i ∈ Sx, k, σx, k + 1, i ∈ Sx, k + 1, σy, k, i ∈ Sy, k, or σy, k + 1, i ∈ Sy, k + 1, which is at best the 

localization precision of that point source. If the uncertainties in Sx, k, Sy, k, Sx, k + 1, and Sy, k + 1

are all equal, then (ΔX, ΔY ) can be estimated with minimum uncertainty by the centroid 

displacement. However, in the experimentally relevant case that some of the points have 

lower uncertainties than others, for example due to a larger number of detected signal 

photons, then it is appropriate to weight the contribution of each point to the measurement, 

producing the following measurement function and associated uncertainty:

ΔXw = ∑
i = 1

η
wΔXi xk + 1, i − xk, i ,

U(ΔXw) = ∑
i = 1

η
wΔXi

2 σx, k, i
2 + σx, k + 1, i

2 ,

wΔXi
Opt = 1

(σx, k, i
2 + σx, k + 1, i

2 )∑j = 1
η 1

σx, k, j
2 + σx, k + 1, j

2

,

(2)
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where ΔXw is the x coordinate component of the weighted estimate of the object motion, 

U(ΔXw) is the associated uncertainty, and the set W ΔX = {wΔXi : i ∈ 1 . . η} is a set of weights 

applied to the point sources. Optimal choices of W ΔX and W ΔY  are inversely proportional to 

the sum of the variance, as shown in Eq. (2).

Similarly, an estimate of the minimum uncertainty of object rotation, ΔΘw, can be calculated 

from the optimally weighted measurement function with uncertainty U(ΔΘw) as follows:

ΔΘw =
∑i = 1

η wΔΘirk, irk + 1, i θk + 1, i − θk, i

∑i = 1
η wΔΘirk, irk + 1, i

,

U(ΔΘw) =
∑i = 1

η wΔΘi
2 rk + 1, i

2 σk, i
2 + rk, i

2 σk + 1, i
2

∑i = 1
η wΔΘirk, irk + 1, i

,

wΔΘi
Opt = rk, irk + 1, i ∕ rk + 1, i

2 σk, i
2 + rk, i

2 σk + 1, i
2

∑j = 1
η rk, jrk + 1, j

rk + 1, j
2 σk, j

2 + rk, j
2 σk + 1, j

2

,

(3)

where ΔΘw is the weighted estimate of the rotation of the object, (rk, i, θk, i) and (rk + 1, i, θk + 1, i) 

are the polar coordinates of the measured position of the ith point source with respect to the 

unweighted centroid of the constellation in the first and second image, respectively, U(ΔΘw)
is the uncertainty of ΔΘw, wΔΘi is the weight applied to the ith point source, and wΔΘi

Opt  is the 

value of the ith weight in a normalized, optimized weighting. Derivations are presented in 

the Appendix.

If σx, k, i ≈ σx, k + 1, i ≈ σy, k, i ≈ σy, k + 1, i for all i ∈ {1, …, η}, then the uncertainty of each component 

of the motion is a factor of 2 greater than the corresponding component of the pose. The 

true positions P 0 are not ordinarily known or estimated in measurement applications, since 

there is no axis to which the orientation of the rigid body is absolutely registered. In such 

cases, rotation is a meaningful metric, but orientation is not. In contrast, the true positions, 

P 0, are typically known in simulations, such as the one reported in the Section 4.

3. Centroid precision and orientation precision

The expression of localization precision given by Eq. (1) is the minimum uncertainty of 

a position measurement of a point source. Analogously, the equations in Table 3 can be 

used to express the minimum uncertainties of position and orientation measurements of 

a constellation of point sources on a microscopic rigid body in the image plane of a 

microscope. Most notable of these expressions are the centroid precision and the orientation 
precision. Centroid precision and orientation precision are minimum values of the centroid 

uncertainty and orientation uncertainty of the constellation, respectively, as determined from 

optimally weighted measurements of the pose of the constellation:
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CXP = 1
∑i = 1

η 1
σi

2

, CY P = 1
∑i = 1

η 1
σi

2

, OP = 1

∑i = 1
η ri

σi

2,

σi =
(16a2Ni + 72πb2) σG

2 + a2
12

3aNi
,

(4)

where (CXP, CY P) is the centroid precision, Op is the orientation precision and Ni is the total 

number of signal photons detected from the ith point source. The minimum values for the 

associated measurements of motion are given in Table 3. These expressions have several 

practical implications. Both centroid precision and orientation precision can be improved by 

increasing the brightness of individual point sources and the number of point sources in the 

constellation. Orientation precision can be further improved by increasing the radius of the 

constellation.

4. Numerical validation of uncertainty equations

A Monte Carlo simulation was conducted to validate the measurement uncertainties shown 

in Table 3. Sets of points were randomly generated, and each set of points was subjected 

to a randomly generated rigid planar transformation. Two images were synthesized from 

each set of points, one from the untransformed configuration of the set and one from 

the transformed configuration. In the synthetic images, each point was represented by a 

two-dimensional Gaussian intensity function with a randomly generated total number of 

photons. After adding a randomly generated uniform background photon intensity to the 

image, the intensity value of each pixel in the image was used as the lambda parameter for 

generating a value from a Poisson distribution. In this way, each image was constructed to 

resemble the image of a set of point sources recorded by an ideal sensor (Geist et al., 1982), 

and to represent isotropic emitters, as opposed to dipole emitters, for which synthetic images 

can be found elsewhere (Sage et al., 2015). The ranges of the parameters used and other 

details of the simulation are summarized in Section A5 of the Appendix.

The positions of the points in each synthetic image were estimated by regression to a 

bivariate Gaussian with parameters {x0, y0, α, s, C}, where (x0, y0) are the coordinates of the 

Gaussian peak, α ≈ kN ∕ 2πσG
2  is the Gaussian amplitude, s ≈ σG is the Gaussian standard 

deviation, C ≈ kb2 ∕ a2 is an offset approximating the background intensity, and k is the ratio 

of camera pixel intensity counts to photon counts. Poses and motions of the simulated rigid 

body were calculated from the estimated point positions using the measurement functions 

in Table 3. For simulated pose measurements, the true positions of the untransformed points 

were treated as P 0.

A set of τ = 200 image pairs was simulated according to the above procedure. Each 

pair was simulated ω = 2500 times for a total of 1 million images. For each of the 12 

measurands, Mi, of Table 3, the standard deviation of the set of estimates is the simulated 

uncertainty of the measurement, Usim(Mi). The calculated uncertainty, Ucalc(Mi), is determined 
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from the associated uncertainty equation in Table 3. For each measurand, the normalized 

root mean square residual is defined as 1
τ ∑i = 1

τ (Usim(Mi) − Ucalc(Mi)
Ucalc(Mi) )

2
, the residual bias 

is defined as 1
τ ∑i = 1

τ Usim(Mi) − Ucalc(Mi)
Ucalc(Mi) , and the coefficient of determination is defined as 

R2 = 1 − ∑i = 1
τ (Usim(Mi) − Ucalc(Mi))2

∑i = 1
τ (Usim(Mi) − ∑j = 1

τ Usim(Mj) ∕ τ)2
. All of the normalized root mean square residuals 

were less than 2.5 %, the absolute values of all of the residual biases were less than 0.8 

%, and the R2 values of all of the measurands were greater than 0.996, indicating good 

agreement between the calculated and simulated uncertainties.

Normal probability plots (not shown) indicated that the residuals were normally distributed. 

Graphical residual analysis demonstrated good randomness in the residuals with respect 

to the calculated uncertainties and all model parameters except for the standard deviation 

of the Gaussian point spread function, σG. A slight positive relationship between σG and 

the normalized residual of each measurand was fit to a linear regression model. For 

each measurand, the slope of this trend line was less than 0.5 % per pixel of σG. This 

systematic difference between the analytical calculations and the Monte Carlo calculations 

may have been due to truncation of wide Gaussians, since the region of interest employed 

in calculating each point source position had a width of 30 pixels. The largest simulated 

Gaussians with σG = 6 were therefore truncated at ±2.5σG. The systematic variation between 

the analytical and Monte Carlo models due to this effect was only 3% across the full domain 

of point spread functions tested.

5. Experimental pose and motion measurements

The utility of the derived measurement functions and associated uncertainties was 

demonstrated by analysis of the uncertainties from experimental measurements of the 

motion of a microelectromechanical system (MEMS). This particular MEMS (Oak et al., 

2011) took the form of a goniometer, articulated by a chevron-type electrothermal actuator 

(Sinclair, 2000; Baker et al., 2004), with an indicator needle rotating around a pivot, pointing 

to a dial gauge with graduations at increments of 17.5 mrad (1°) for readout, as shown in 

Figure 2. The indicator needle was labelled with subresolution fluorescent nanoparticles, and 

the system was imaged using a widefield epifluorescence microscope equipped with a light 

emitting diode for excitation at approximately 630 nm, an objective lens with a nominal 

magnification of 50× and a numerical aperture of 0.55, and a complementary metal–oxide–

semiconductor camera with a nominal pixel size of 6.5 μm × 6.5 μm for detection at 

approximately 660 nm. A region of the imaging sensor of 812 pixels × 1856 pixels was 

used, resulting in a field of view of 103 μm × 236 μm. Representative parameters of the 

experimental measurement system that are relevant to the calculation of uncertainties are 

given in Table 1.

To evaluate the uncertainties of position measurements of individual fluorescent 

nanoparticles, 2000 sequential fluorescence micrographs of the labelled indicator needle 

were recorded at a rate of 8 Hz in the absence of intended motion. Images were processed 

after the experiment at a rate of 2.5 Hz, including target detection, registration, Gaussian 
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estimation and motion calculation. The x and y position of each nanoparticle was measured 

by least squares Gaussian estimation from the image data, which is equivalent to maximum 

likelihood estimation for the number of detected signal photons. The corresponding 

uncertainty of each coordinate of the position of each nanoparticle was determined from 

the root mean square displacement of the nanoparticle between successive images divided 

by 2, which is equivalent to a pooled standard deviation of successive image pairs (ISO 

Technical Advisory Group 4, 1995). The position uncertainties of individual nanoparticles 

were then used to calculate predicted uncertainties for motion measurements of the 

nominally rigid indicator needle, according to the uncertainty expressions of Table 3.

Empirical uncertainties for motion measurements of the indicator needle were then 

estimated from the apparent motion of the needle between each pair of successive images, 

due to vibration, drift, or other non-ideal behaviour, as well as photon shot noise described 

by Eq. (1). The motion of the indicator needle between each successive pair of images was 

estimated using the expressions of Table 3, after establishing a correspondence between the 

points in each image (Besl & McKay, 1992; Pennec & Thirion, 1997; Zitova & Flusser, 

2003). The empirical uncertainty of each coordinate of this motion was calculated as the 

standard deviation of the set of estimates of the corresponding coordinate. The resulting 

empirical uncertainties are compared in Table 2 with the uncertainties predicted by the 

expressions of Table 3, and also with the minimum uncertainties given by the centroid and 

orientation precision.

The predicted and empirical uncertainties agree to within 2.9–16.5%. This near equality 

of uncertainties validates the assumption of planar rigid motion, as violation of this 

assumption would lead to much higher empirical uncertainties. In contrast, the predicted and 

empirical uncertainties are approximately a factor of three times greater than the minimum 

uncertainties defined by Eq. (4). This is a useful result, indicating that the limiting factor of 

the experimental measurement was not one of the parameters modelled by the measurement 

functions.

Such factors might include vibration and drift of the microscope system, or fixed pattern 

noise of the complementary metal–oxide–semiconductor camera. The empirical uncertainty 

might therefore be improved by up to a factor of three by additional investigation and 

mitigation of such factors, for example, by drift correction (Lee et al., 2012; Elmokadem 

& Yu, 2015) or camera calibration (Huang et al., 2013) If the empirical uncertainties and 

predicted uncertainties were then to become approximately equal to the associated minimum 

uncertainties, the signal-to-noise ratio would be the limiting factor of the measurement. 

Only at this point would the detection of more signal photons, for example, be useful to 

further reduce the measurement uncertainty. Such comparison of measured to minimum 

uncertainties provides practical guidance for ongoing improvement of the experimental 

measurement system.

Once the uncertainty of the rotation measurement was established, the repeatability of the 

MEMS rotation was tested. The actuator was driven alternately with an applied voltage of 

0 and 5 V for 1000 cycles, which repeatedly rotated the indicator needle by an angle of 

±5.00 mrad (±0.287°). Fluorescence micrographs were taken after each motion, and the 
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rotation of the indicator needle was determined using the optimally weighted and uniformly 

weighted estimators, ΔΘw and ΔΘu. The rotational repeatability of the indicator needle, as 

determined by the standard deviation of the motion measurement, was 18.9 μrad – the same 

as the empirical uncertainty – indicating that the observed repeatability was dominated by 

measurement uncertainty. Therefore, the repeatability of the MEMS may have been even 

better than indicated by this measurement. This is an interesting result, considering the 

sliding contact in the linkage coupling the electrothermal actuator and indicator needle. The 

motions of such systems can be complex, as will be investigated in future studies.

6. Future directions

The measurement functions and associated uncertainties presented in this paper have 

expressed the physical lower bounds of uncertainty of measurements of planar pose and 

motion, in terms of the parameters of the experimental measurement system used to 

perform localization microscopy. The direct calculation of these minimum uncertainties 

was facilitated by the existing theoretical basis of localization precision. This is an 

important distinction between the mathematical expressions presented here, and many 

generic algorithms for image registration (Zitova & Flusser, 2003). Although measurement 

uncertainties derived from such algorithms are beginning to be addressed (Fitzpatrick & 

West, 2001; Simonson et al., 2007), a similar physical basis for uncertainty is not ordinarily 

available for such generic algorithms. Future work might trace the uncertainties of generic 

algorithms to a physical basis in the quantization of light.

The measurement functions and associated uncertainties presented in this paper apply to the 

broadly relevant case of the pose and motion of rigid bodies within the image plane of an 

optical microscope. However, in some applications of localization microscopy, microscopic 

rigid bodies exhibit a component of motion out of the image plane. Such motion may lead 

to systematic effects that are not modelled here, and would be indicated by a discrepancy 

between the empirical and predicted uncertainties. The effects of such motion will be 

addressed in future work by a generalization of the image mapping from rigid to affine 

transformations.

The measurement functions, associated uncertainties, and experimental analysis presented 

in this paper are predicated on the assumption stated in Section 2 that errors in position 

estimates of point sources are random and independent. However, this assumption could be 

invalidated by some motions of optical microscopes, such as drift and vibration, which could 

result in correlated errors in position estimates of multiple point sources. Related effects will 

be addressed in future work.

Finally, the experimental measurements in this paper were performed on a microfabricated 

device that implemented motion as an engineered function. The measurement functions 

and associated uncertainties presented in this paper are similarly applicable in different 

experimental contexts, for example, reference measurements of multiple point sources in a 

fiducial constellation for investigation and correction of errors from unintended motion of an 

optical microscope.
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7. Conclusions

This paper has extended the concept of localization precision from optical point sources 

to microscopic rigid bodies in the imaging plane of a widefield microscope. This has 

established a firm foundation for related measurements involving localization microscopy. 

A complete set of measurement functions in closed form, along with the associated set 

of measurement uncertainties, was calculated for the planar pose and motion of rigid 

bodies indicated by a sparse constellation of multiple point sources of light in an invariant 

configuration. Physical limits on the minimum uncertainties, termed centroid precision and 

orientation precision, were expressed in terms of the characteristic properties of the optical 

measurement system. These measurement functions and uncertainties were numerically 

validated by Monte Carlo simulation. The utility of the expressions was demonstrated by 

analysis of the empirical uncertainty of motion measurements of a microelectromechanical 

goniometer. Because of the generality of centroid precision and orientation precision, and 

the widespread interest in super-resolution imaging and particle tracking, these innovations 

are broadly applicable to designing measurements for low uncertainty, interpreting the 

significance of measurement uncertainties, and identifying sources of uncertainty in 

measurement systems.
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Appendix

Detailed descriptions of measurement functions, associated uncertainties, analytical 

derivations, and numerical simulations are presented in this appendix.

A1. Measurement functions for planar motion of a rigid body

If a sparse constellation of multiple point sources in an invariant configuration is located in 

or on a rigid body, then the planar pose of the body can be determined from the positions 

of the point sources. Similarly, the motion of the body can be determined from the change 

in the positions of the point sources resulting from the motion. Measurement functions 

for each coordinate of pose and motion, reflecting uniform weighting of the point sources 

and optimal weighting of the point sources, along with associated uncertainties for the 

measurements, are presented in Table 3. Derivations and discussion of the measurement 

functions are presented in the remainder of this section. The associated uncertainties are 

derived and discussed in Section A2.

A1.1. Measurement functions for planar motion of a rigid body.

Let P = {p1, …, pη} be the true positions of a set of η point sources on a rigid body and 

let P 0 = {p0, 1, …, p0, η} be the set of true positions of those point sources when an arbitrarily-
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defined coordinate system intrinsic to the body is aligned with the (x, y) axes of the 

measurement. The true pose of the body is defined by the proper rigid planar transform, 

T P( v ) over (x, y) vectors in the Cartesian plane, that maps P 0 to P . The transform T P( v ) can 

be expressed in terms of three scalar parameters as follows:

T P v = cos Θ − sin Θ
sin Θ cos Θ

v − (X, Y ) + (X, Y ) ,

(A1)

where the triple, (X, Y , Θ), is an equivalent expression of the true object pose, with X
corresponding to the x-axis position, Y  to the y-axis position, and Θ to the orientation.

Let P = {p1, …, pη} be a set of estimates of the positions in P . Estimates of the object pose can 

be calculated from P  as follows:

X = ∑
i = 1

η
wxixiY = ∑

i = 1

η
wyiyiΘ =

∑i = 1
η wθiris i γ i − θi

∑i = 1
η wθiris i

(A2)

where X, Y  and Θ are estimates of X, Y  and Θ, respectively; xi and yi are the Cartesian 

coordinates of pi; ri and θi are the polar coordinates of pi with respect to an origin at the 

(weighted) centroid of P ; s i and γ i are the polar coordinates of p0, i with respect to an origin 

at the (weighted) centroid of P 0 and the sets W x = {wxi : i ∈ 1 . . η}, W y = {wyi : i ∈ 1 . . η} and 

W θ = {wθi : i ∈ 1 . . η} are weights applied to the measurements.

A1.2. Motion measurement functions.

If two images bracket a motion of a planar rigid body, then the motion can be determined 

from the change in the estimated positions of corresponding point sources in the two images, 

as determined by localization microscopy. Let P k = {pk, 1, …, pk, η} be the true positions of a set 

of η point sources on a rigid body prior to some motion, and let P k + 1 = {pk + 1, 1, …, pk + 1, η} be 

the set of true positions of those point sources after the motion. The motion of the body is 

defined by the proper rigid planar transform, T k, k + 1( v ) over (x, y) vectors in the Cartesian 

plane, that maps P k to P k + 1. The transform T k, k + 1( v ) can be expressed in terms of three scalar 

parameters as follows:

T k, k + 1 v = cos ΔΘ − sin ΔΘ
sin ΔΘ cos ΔΘ

v − (ΔX, ΔY )

+ (ΔX, ΔY ),

(A3)
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where (ΔX, ΔY , ΔΘ) is an equivalent expression of the true motion of the object, with ΔX, 

ΔY  and ΔΘ corresponding to the x-axis displacement, y-axis displacement, and rotation, 

respectively.

Let Pk = {pk, 1, …, pk, η} be a set of estimates of the positions in P k, and let 

Pk + 1 = {pk + 1, 1, …, pk + 1, η} be a set of estimates of the positions in P k + 1. Estimates of the motion 

of the object can be calculated from Pk and Pk + 1 as follows:

ΔX = ∑
i = 1

η
wΔXi xk + 1, i − xk, i ,

ΔY = ∑
i = 1

η
wΔY i yk + 1, i − yk, i ,

ΔΘ =
∑i = 1

η wΔΘirk + 1, irk, i θk, i − θk + 1, i

∑i = 1
η wΔΘirk + 1, irk, i

,

(A4)

where ΔX, ΔY  and ΔΘ are estimates of ΔX, ΔY  and ΔΘ, respectively; (xk, i, yk, i) and (xk + 1, i, 

yk + 1, i) are the Cartesian coordinates of pk, i and pk + 1, i; (rk, i, θk, i) and (rk + 1, i, θk + 1, i) are the 

polar coordinates of pk, i and pk + 1, i with respect to origins at the (weighted) centroids of 

Pk and Pk + 1, respectively; and the sets W ΔX = {wΔXi : i ∈ 1 . . η}, W ΔY = {wΔY i : i ∈ 1 . . η} and 

W ΔΘ = {wΔΘi : i ∈ 1 . . η} are weights applied to the measurements.

A1.3. Derivation of the orientation measurement function.

The expression for Θ in Eq. (A2) is derived by finding the value of Θ that minimizes the 

weighted sum of squared error between P  and TP(P 0):

E (α) = ∑
i = 1

η
wΘiεi

2 = ∑
i = 1

η
wΘi ri

2 + s i
2 − 2ris i

cos(γ i − (θi + α)) ,

(A5)

where (ri, θi) are the coordinates of the ith point in P − (X, Y ) and (s i, γ i) are the coordinates 

of the corresponding point in P 0. The offset, α, is the free variable for the optimization and 

represents a test rotation between the two sets of points. The error, εi, is the distance between 

pi and the point found by rotating pi by α, and wθi is the weight applied to the squared error εi
2. 

The optimal choice of rotation determined by this method, Θ, is found by minimizing E:
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Θ = α : dE
dα = 0

= α : ∑
i = 1

η
( − 2wθiris isin γ i − (θi + α) ) = 0

= α : ∑
i = 1

η
− 2wθiris i sin (γ i − θi) cos α

−cos γ i − θi sin α) = 0 .

(A6)

The optimal value of α can then be found by solving Eq. (A6), which yields:

Θ = α = atan
∑i = 1

η wθiris i sin (γ i − θi)

∑i = 1
η wθiris i cos (γ i − θi)

.

(A7)

Alternatively, the residuals (γ i − (θi + α)) in Eq. (A6) can be treated with a small angle 

approximation yielding the simpler expression:

Θ = α =
∑i = 1

η wθiris i (γ i − θi)

∑i = 1
η wθiris i

= β
λ ,

(A8)

where the sums β and λ are implicitly defined by the numerator and denominator to simplify 

use of the expression in the next section.

A2. Uncertainties of motion measurements by localization microscopy

Given uncertainties, (σxi, σyi), of the position of each point source pi ∈ P , the combined 

standard uncertainty of each component of the pose of P  can be calculated from the 

associated measurement function using the law of propagation of uncertainty (ISO Technical 

Advisory Group 4, 1995). Here the pose and motion uncertainties are calculated for the 

common case in which σi = σx = σy for each value of i.

A2.1. Position uncertainty.

The x-axis position uncertainty of a pose measurement by localization microscopy can be 

calculated from the x-axis position uncertainties of the individual points, Sx = {σi : i ∈ 1 . . η}, 

and the associated weights, W X, using the law of propagation of uncertainty as follows:

U (X) = ∑
i = 1

η dX
dxi

(U (xi))2 = ∑
i = 1

η
wXi

2 σi
2 .

(A9)
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The expression for U(Y ) is isomorphic to U(X).

A2.2. Orientation uncertainty.

With Eq. (A8) defining the measured value of Θ, the measurement uncertainty associated 

with Θ can be calculated from the law of propagation of uncertainty (ISO Technical 

Advisory Group 4, 1995) as follows:

(U (Θ))2 = ∑
i = 1

η dΘ
dθi

U (θi)
2

+ dΘ
dγ i

U (γ i)
2

+ dΘ
dri

U (ri)
2

+ dΘ
ds i

U (s i)
2

≈ ∑
i = 1

η −wΘiris i
λ U (θi)

2

+ wθis i (γ i − θi) λ − wΘis iβ
λ2 U (ri)

2
,

(A10)

where U(Θ) is the uncertainty of Θ, U(θi) is the uncertainty of θi, U(ri) is the uncertainty of ri, 

U(γ i) is the uncertainty of γ i, U(s i) is the uncertainty of s i and β and λ are defined in Eq. (A8). 

Since γ i and s i are true point coordinates, U(γ i) and U(s i) are both zero.

U(θi) and U(ri) can be derived from the position uncertainties, U(xi) = U(yi) = σi, again by 

using the law of propagation of uncertainty:

U (θi) = σi
ri

, U (ri) = σi .

(A11)

The uncertainty of the rotation can then be calculated as:

(U (Θ))2 ≈ 1
λ2 ∑

i = 1

η
(wΘis iσi)2(1 + (γ i − θi − Θ)2) .

(A12)

Noting that the residuals, (γ i − θi − Θ), are far smaller than unity and that the centroid 

distance errors, (ri − s i), are far smaller than the centroid distances themselves in all but 

degenerate cases, the orientation uncertainty can then be approximated as:

U (Θ) ≈
∑i = 1

η (wΘiriσi)2

∑i = 1
η wΘiri

2
.

(A13)
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It is evident from Eq. (A13) that the orientation uncertainty depends neither on the choice of 

the (x, y, θ) origin, nor on the orientation, Θ, but only on the weight, the position uncertainty, 

and the distance from the centroid of each point in P .

A3. Minimum uncertainty weights

An optimal weighting, W M, for each measurand, M ∈ {X, Y , Θ, ΔX, ΔY , ΔΘ}, can be 

determined from the estimated coordinates of the individual point sources and their 

associated uncertainties, such that the uncertainty of the measurand is minimized. The 

calculations for optimally weighted measurement functions are presented below and 

uncertainties are presented in Table 3. The optimal weight calculations are presented in 

Sections A3.1-A3.3.

A3.1. Optimal weighting for position.

Weightings for measurements of the position of a rigid body are restricted to those in which 

the weights sum to unity, to avoid scaling the measurand. The method of Lagrange is utilized 

to minimize the uncertainties of the weighted position calculated in Section 2, subject to the 

normalization constraint.

Consider the square of the x-axis position uncertainty of Eq. (A9):

U2(X) = ∑
1

η
wXi

2 σi
2 .

(A14)

To minimize the squared uncertainty subject to the constraint ∑i = 1
η wXi = 1, a Lagrangian is 

constructed as follows:

Λ wX1, …, wXη, λ = ∑
i = 1

η
wXi

2 σi
2 + λ ∑

i = 1

η
wXi − 1 ,

(A15)

where Λ is the Lagrangian and λ the Lagrange multiplier. The zeros of the partial derivatives 

of Λ with respect to W X, coupled with the normalization constraint, provide the following 

system of η + 1 equations:

wXi = −λ
2σi

2 , ∑
i = 1

η
wXi = 1,

(A16)

which yields uniquely optimal weights:
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wXi = 1
σi

2∑j = 1
η 1

σj
2

.

(A17)

Substituting Eq. (A17) into Eq. (A9) produces the minimum uncertainty in x-axis position 

that is achievable:

U (X) = 1
∑i = 1

η 1
σi

2

(A18)

The weighting for minimum uncertainty of y-axis position is isomorphic.

A3.2. Optimal weighting for orientation.

Since orientation is scale invariant, the method of Lagrange need not be used, and a 

set of weightings can be determined all of which are optimal with respect to orientation 

uncertainty. For simplicity, the unique normalized optimal weighting is selected.

Consider the square of the orientation uncertainty of Eq. (A13):

U2(Θ) ≈
∑i = 1

η (wΘiriσi)2

∑i = 1
η wΘiri

2)
2 .

(A19)

Optimal weightings occur where the gradient of U2(Θ) with respect to the set of wi is zero. 

Each component of the gradient can be expressed as:

∂U2(Θ)
∂wΘi

≈ ∂
∂wΘi

∑
j = 1

η
(wΘjrjσj)2Z−2 ,

Z = ∑
j = 1

η
wΘiri

2 .

(A20)

The partials can then be calculated as follows:

∂U2(Θ)
∂wΘi

≈
2wΘiri

2σi
2Z − 2ri

2∑j = 1
η wΘjrjσj

2

Z3 ,

(A21)

which at their roots yield a unique set of optimal normalized weights:
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wΘi = 1
σi

2∑j = 1
η 1

σj
2

.

(A22)

Substituting Eq. (A22) into Eq. (A13) produces the minimum uncertainty in orientation:

U (Θ) = 1

∑i = 1
η ri

σi

2 .

(A23)

Table A1.

Parameters of the Monte Carlo simulation.

Parameter Units Domain Probability distribution

σG Pixels {σG ∈ ℝ :1 ≤ σG ≤ 6} f(σG) = 1 ∕ 5

b2 Photons 
per pixel {b2 ∈ ℤ :1 ≤ b2 ≤ 250} Pr(b2) = (b2 ln 10)−1(log10250)−1

η Points {η ∈ ℤ :3 ≤ η ≤ 20} Pr(η) = 1 ∕ 18
Nμ Photons {Nμ ∈ ℤ :103 ≤ Nμ ≤ 108} Pr(Nμ) = 1 ∕ (5Nμ ln 10)

NS Photons {NS ∈ ℤ : − 0.9Nμ ≤ NS ≤ 0.9Nμ} Pr(NS) = 1 ∕ (1.8Nμ + 1)
Ni Photons

{Ni ∈ ℤ :Nμ − 1
2NS ≤ Ni ≤ Nμ + 1

2NS} Pr(Ni) = 1 ∕ (NS + 1)

r i Pixels {r i ∈ ℝ :0 ≤ r i ≤ 150} f(r i) = 2r i ∕ 22, 500

θ i
Radians {θ i ∈ ℝ :0 ≤ θ i ≤ 2π} f(θ i) = 1 ∕ 2π

ΔX Pixels {ΔX ∈ ℝ : − 50 ≤ ΔX ≤ 50} f(ΔX) = 1 ∕ 100

ΔY Pixels {ΔY ∈ ℝ : − 50 ≤ ΔY ≤ 50} f(ΔY ) = 1 ∕ 100

ΔΘ Radians {ΔΘ ∈ ℝ :0 ≤ ΔΘ ≤ 2π} f(ΔΘ) = 1 ∕ 2π

A4. Motion uncertainty

Uncertainties of motion measurements can be calculated from the measurement functions of 

Eq. (A4) in the same way that uncertainties of pose measurements were calculated from Eq. 

(A2) in the previous section, resulting in the following expressions:

U (ΔX) = ∑
i = 1

η
wΔXi

2 σk, i
2 + σk + 1, i

2 ,

U (ΔY ) = ∑
i = 1

η
wΔY i

2 σk, i
2 + σk + 1, i

2 ,

U (ΔΘ) ≈
∑i = 1

η wΔΘi
2 rk + 1, i

2 σk, i
2 + rk, i

2 σk + 1, i
2

∑i = 1
η wΔΘirk, irk + 1, i

.
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(A24)

In cases that the uncertainties of the positions of the points in the two images are the same 

in the two images that bracketed the measured motion, the above motion uncertainties are 

simply a factor of 2 greater than the corresponding pose uncertainty.

A5. Optimal weightings for motion measurements.

Optimal weightings for motion measurements can be calculated in the same way as those for 

pose measurements described in Section A.3, resulting in the following expressions:

U (ΔX) = U (ΔY ) = 1
∑i = 1

η 1
σk, i

2 + σk + 1, i
2

,

U (ΔΘ) = 1

∑i = 1
η rk, i

2 rk + 1, i
2

rk + 1, i
2 σk, i

2 + rk, i
2 σk + 1, i

2

.

(A25)

A5. Range of simulation parameters

A total of 200 configurations were randomly generated for the Monte Carlo method 

described above. Each configuration consisted of set of parameters, {σG, b2, η, N, P , ΔX, 

ΔY , ΔΘ}, where σG is the standard deviation of the Gaussian intensity function used to 

approximate the image of each point source, b2 is the expected number of background 

photons detected at each pixel, η is the number of point sources, each Ni of N = {N1, …, Nη}
is the expectation value of the number of photons detected from the ith point source, P  is 

the set of untransformed points, and the triple (ΔX, ΔY , ΔΘ) denotes the true transform of 

the points from the first image to the second. The parameters σG, η, ΔX, ΔY  and ΔΘ are 

generated from uniform distributions, whereas the distribution from which b2 is generated 

is logarithmically scaled. The η points pi ∈ P  are generated as polar coordinates pi = (r i, θ i), 
where θ i is generated from a uniform distribution over the range 0 to 2π, and r i is generated 

over the range 0 to 150 from a distribution that is quadratically scaled to ensure that points 

are distributed uniformly over a circle of diameter 300. Each of the η photon counts in N is 

generated from a uniform distribution over the range of scale NS centred on a mean value, 

Nμ, that is generated from a logarithmic distribution. The domain and probability distribution 

of each parameter are shown in Table A1.
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Fig. 1. 
Schematic illustrating the measurement concept, in which a sparse constellation of point 

sources in an invariant constellation indicates the planarmotion of a microscopic rigid body. 

Planar motion of the body (gray) can be expressed by a rotation (ΔΘ) followed by a 

translation, (ΔX, ΔY ). The initial positions of the point sources (blue) are Pk = {pk, 1, …, pk, η}, 

where k is the index of a series of images, η is the number of point sources, and pi, j

is the position of the jth point source in the ith frame of an image sequence. After the 

body has moved, the final positions of the point sources (green) are Pk + 1 = {pk + 1, 1, …, pk + 1, η}. 

Uncertainties of each of the three motion parameters are derived from the uncertainties 

of the positions of the point sources. The fundamental limits of uncertainty of position 

and orientation measurements are termed centroid precision and orientation precision, 

respectively. These limits are derived from the localization precision and radial position 

of the individual point sources in the constellation.
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Fig. 2. 
(Top) Optical brightfield micrograph showing a microelectromechanical system (MEMS) 

in the form of a goniometer, with an electrothermal actuator linked to an indicator needle. 

Linear actuation of the electrothermal actuator resulted in rotary motion of the indicator 

needle around a pivot. Coarse measurement of rotation was enabled by a graduated dial 

gauge. A region of interest is indicated by a white box. (Middle) Optical fluorescence 

micrograph showing a constellation of fluorescent nanoparticles on the indicator needle 

in the region of interest. (Bottom) Optical fluorescence micrographs showing four of the 

nanoparticles that label the indicator needle, appearing as the point spread function of the 

imaging system. The nanoparticles are ordered from left to right by increasing numbers 

of detected signal photons (N), which vary due to polydispersity in nanoparticle size and 

heterogeneity in illumination intensity. A larger number of detected signal photons results 

in a lower measurement uncertainty, motivating weighting of the contributions of individual 

nanoparticles to the overall measurement.
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Table 1.

Representative parameters of the experimental measurement system.

Parameter Value Units Subsystem

a 127 nm Microscope

b2 228 photons per pixel Microscope

σG 286 nm Microscope

Ni 104 to 105 photons Particles

ri 10 to 100 μm Particles
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