
Real-Time Prediction of Petrophysical Properties Using Machine
Learning Based on Drilling Parameters
Said Hassaan, Abdulaziz Mohamed, Ahmed Farid Ibrahim, and Salaheldin Elkatatny*

Cite This: ACS Omega 2024, 9, 17066−17075 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: The prediction of rock porosity and permeability is crucial for assessing reservoir
productivity and economic feasibility. However, traditional methods for obtaining these properties are
time-consuming and expensive, making them impractical for comprehensive reservoir evaluation. This
study introduces a novel approach to efficiently predict rock porosity and permeability for reservoir
assessment by leveraging real-time machine learning models. Utilizing readily available drilling
parameters, this approach offers a cost-effective alternative to traditional time-consuming methods to
predict formation petrophysical parameters in real-time. The data set used in this study was collected
from two vertical wells located in the Middle East. It encompasses drilling parameters such as the rate
of penetration (ROP), gallons per minute (GPM), revolutions per minute (RPM), strokes per minute
(SPP), torque, and weight on bit (WOB), along with the corresponding measurements of porosity (ϕ)
and permeability (k) obtained through core analysis. Three machine learning models, namely, decision
trees (DTs), random forest (RFs), and support vector machines (SVMs), were employed and
evaluated for their effectiveness in predicting porosity and permeability. The results demonstrate
promising performance across the different data sets. All three models achieved correlation coefficients (R) higher than 0.91 in
predicting porosity. The RF model exhibited accurate predictions of permeability, achieving R values surpassing 0.92 in the various
data sets. While the DT model displayed slightly lower performance, with the R-value decreasing to 0.88 in the testing data set, the
SVM model suffered from overfitting, with R values dropping to 0.83 in the testing data set. The novelty of this work lies in the
successful application of machine learning models to the real-time prediction of reservoir properties, providing a practical and
efficient solution for the oil and gas industry. By achieving correlation coefficients exceeding 0.91 and showcasing the models’
efficacy in a dynamic testing data set, this study paves the way for improved decision-making processes and enhanced exploration
and production activities. The innovative aspect lies in the utilization of drilling parameters for timely and cost-effective estimation,
transforming conventional reservoir evaluation methods.

■ INTRODUCTION
In reservoir characterization and hydrocarbon exploration, the
assessment of permeability (k) and porosity is crucial.1−3 The
productivity and economic feasibility of a reservoir are greatly
influenced by these two characteristics. Porosity is the
measurement of pore spaces within a rock formation and
directly affects the storage capacity of fluids in a reservoir.
Accurate porosity estimation enables informed decisions on
well placement and enhanced oil recovery design. Permeability
defines the ability of a rock formation to transmit fluids,
impacting flow rates and fluid movement within the reservoir.
Estimating the permeability is vital for evaluating reservoir
productivity and designing effective production strategies.
High permeability enhances hydrocarbon recovery, while low
permeability poses challenges for commercial production.1−4

There are several methods available for estimating the rock
porosity and permeability, for example, experimental core
analysis, where core samples extracted from the reservoir are
subjected to laboratory tests such as permeability measure-
ments using steady-state or unsteady-state flow techniques.5−7

Porosity is measured directly using techniques such as helium

porosimetry, mercury intrusion porosimetry, or gas expansion
methods.8 Well logs, such as neutron porosity logs, density
logs, and sonic logs, can be used to estimate the porosity.
These logs measure various physical properties of the rock
formation and provide indirect indications of porosity.9−11

Well logs, including resistivity logs, nuclear magnetic resonance
(NMR) logs, and acoustic logs, can provide indirect
indications of the permeability. These logs capture different
properties related to the fluid flow characteristics in the
reservoir and can be used to estimate permeability.12−14 Well
testing such as pressure drawdown or buildup tests, can
provide valuable information for estimating permeability
through different pressure and rate transient analyses.15,16
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Seismic techniques, such as acoustic impedance inversion, can
be employed to estimate the porosity indirectly. By analyzing
the seismic response of the reservoir, porosity information can
be inferred based on the rock properties and fluid content.17,18

The real-time assessment of the porosity and permeability
plays a pivotal role in reservoir management and hydrocarbon
exploration. The ability to swiftly and precisely determine
these geological characteristics is essential for timely, well-
informed decisions that directly influence reservoir production
and economic feasibility. Porosity, reflecting the void spaces
within a rock formation, directly impacts the fluid storage
capacity. The continuous evaluation of porosity in real time
assists in optimizing well placement and dynamically devising
effective enhanced oil recovery solutions. Likewise, the real-
time assessment of permeability, representing a rock
formation’s fluid transport capability, is vital for evaluating
reservoir productivity and implementing effective production
methods. The ability to consistently observe and adjust these
parameters in real time empowers operators to promptly adapt
their drilling and production approaches, in line with evolving
reservoir conditions. This flexibility in decision-making
contributes to optimizing hydrocarbon recovery, minimizing
operational risks, and ensuring the overall success of reservoir
exploration and development initiatives. Moreover, the real-
time assessment of the porosity and permeability is essential
for enhancing the efficiency of reservoir management. It
facilitates the immediate identification of shifts in reservoir
properties, enabling proactive modifications to drilling
operations, well completions, and production strategies. This
proactive stance proves particularly valuable in dynamic
reservoir settings, where conditions can evolve rapidly and
conventional methods involving time-consuming laboratory
investigations may fall short.
The accurate prediction of porosity and permeability is

challenging due to the inherent heterogeneity of subsurface
formations. Traditional methods, such as core analysis, well
logging, and seismic methods, are time-consuming and
expensive, making it impractical to obtain measurements at
every location in a reservoir. This is where the application of
machine learning and data-driven models becomes highly
valuable.
Literature Review: ML Applications. Machine learning

(ML) algorithms offer promising solutions for different
problems by analyzing vast amounts of data and identifying
complex patterns and relationships that may not be apparent to
human analysts.19−21 By training the models on a data set that
includes both input parameters and corresponding output
measurements, the algorithms can learn the underlying
patterns and create predictive models capable of estimating
formation properties. Different authors discussed the applica-
tion of machine learning in predicting formation porosity and
permeability.22−29

Tian et al. (2021) presented a novel approach for predicting
permeability by utilizing a hybrid ML method.22 They
incorporated the quartet structure generation set (QSGS)
algorithm and pore network modeling to capture the intricate
relationship between pore structure parameters and perme-
ability. The hybrid Genetic Algorithm-Artificial Neural Net-
work (GA-ANN) method was employed to leverage the
extracted feature sets and improve the accuracy of the
permeability prediction. This study contributes to the
development of advanced techniques for assessing and
understanding the permeability characteristics of porous

media. However, the proposed hybrid ML method for the
permeability prediction may be limited in its generalizability to
different types of porous media.
In 2019, Ahmadi and Chen conducted a comprehensive

comparison of various machine-learning models to predict
porosity and permeability in oil reservoirs using petrophysical
logs.24 These models included artificial neural networks,
genetic algorithms, fuzzy decision trees, imperial competitive
algorithms (ICA), particle swarm optimization (PSO), and
hybrid approaches. Similarly, in 2020, Wood introduced an
optimized nearest-neighbor, machine-learning, and data-
mining network to predict porosity, permeability, and water
saturation using well-log data.25 The proposed algorithm
effectively evaluates multiple well-log curves, providing
accurate petrophysical predictions and valuable insights
through extensive data mining. By standardizing the well-log
representation and utilizing the data-matching algorithm, the
network enables the estimation of effective permeability and
water saturation (Ke, Sw) from data sets that incorporate
standard well logs, lithofacies, and stratigraphic information.
However, input of well-logged data is expensive and time-
consuming. Sun et al. 2021 applied machine learning to the
identification of porosity and permeability while drilling-based
logging while drilling combined with conventional wireline
logging.23

Matinkia et al. (2023) present intelligent hybrid approaches
for permeability estimation in rocks of the Fahlian formation
by fusing a multilayer perceptron network with heuristic
algorithms (SSD, GA, and PSO) as a function of conventional
well logging data.30 Enhancing prediction accuracy involves
preparing data, choosing features, and removing outliers. MLP-
GA is computationally efficient, whereas MLP-SSD performs
marginally better. The study highlights how hybrid algorithms
can be applied to heterogeneous formations and highlights
how the new MLP-SSD method outperforms other hybrid
techniques in terms of the permeability estimate. The study’s
limitations are due to its focus on a specific formation, which
may limit its applicability to different geological settings, and
the fact that the models need well logging data as input. Kalule
et al. (2023) use 2D slices from 3D micro-CT images to
predict porosity and permeability in carbonate rocks using a
stacked ensemble machine learning approach.31 The promise
of merging ensemble learning and image analysis approaches is
demonstrated by the stacked model algorithm’s ability to
predict rock attributes. The main limitations of this study are
the longer processing time of stacked models in comparison to
individual models and the difficulties in making real-time
forecasts in underground formations.
Tian et al. (2022) combine ensemble machine learning with

digital rock petrophysics to enhance the permeability
forecasting in subsurface porous media.32 The study calculated
the permeability of dynamically generated porous samples
using the lattice Boltzmann method (LBM), taking into
account critical characteristics such as porosity, tortuosity,
fractal dimension, average pore diameter, and coordination
number as inputs for the prediction (Table 1).
On the other hand, the availability of drilling parameters

such as rate of penetration, flow rates, torque, and weight on
the bit can provide valuable insights into the geological
properties of the formation. These parameters, when combined
with the appropriate machine learning algorithms, can serve as
inputs to predict porosity and permeability. Hence, the
objective of this study is to predict the rock permeability and
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porosity using the readily available drilling parameter for real-
time estimation with no additional cost.

■ METHODOLOGY
Data Description. The data set for this study was collected

from two vertical wells in the Middle East. The data consist of
drilling parameters such as ROP (rate of penetration), GPM
(gallons per minute), RPM (revolutions per minute), SPP
(strokes per minute), torque, and WOB (weight on bit), in
addition to the corresponding porosity (ϕ) and permeability
(k) that were measured from the core analysis. Table 2
summarizes the statistical analysis for the collected data set.
The data showed a wide range of porosities and permeability.
The porosity varied from 5 to 31%. Similarly, the permeability
varied from 0.02 to 2700 mD. Figure 1 presents a heatmap
illustrating the correlation coefficients (R) between various
parameters, visually conveying the strength and direction of
linear relationships among them. The correlation coefficient
(R), measured on a scale from −1 to 1, signifies the degree of
linear association between two variables. Notably, negative
correlations were observed between the WOB and torque in
relation to both permeability and porosity. Specifically, the
WOB exhibited a stronger negative correlation with porosity
(R = −0.44) and a slightly weaker correlation with
permeability (R = −0.27). Conversely, ROP and GPM
displayed positive relationships with porosity and permeability,
with R values of 0.37 and 0.18 for ROP in relation to porosity
and permeability, respectively. Of note, SPP emerged as the
least influential parameter for predicting petrophysical proper-
ties. The heatmap utilizes color variations to depict the
intensity and direction of these correlations, offering a
comprehensive visual representation of the interrelationships
among the examined parameters.
Model Development. Figure 2 presents the model

development procedures that involve different steps. After
data collection as highlighted in the previous section, the data
were preprocessed to ensure that the data are accurate,
complete, and representative of the target reservoir. Data
preprocessing also includes cleaning the data by removing
outliers and handling missing values. To improve data quality
and ensure consistency in the data set, all variables were
normalized using the min-maximum method, while the
permeability data were transferred to log permeability. The
ML models were trained using the training set based on Well-
1, while Well-2 was used to test and validate the developed
models. The training-to-testing data set ratio was set to be
75:25. The ML models’ performance was evaluated using the
testing data set by calculating the performance indicators such
as root-mean-square error (RMSE) and R-values. The model’s
performance was then assessed using independent validation
data to compare the predicted values of porosity and
permeability with actual values to measure the accuracy,
precision, and reliability of the model.
Different machine learning methods were applied in this

study including decision trees (DTs), random forests (RFs),
and the support vector machine (SVM).

Decision Trees (DTs). DT is a supervised machine learning
algorithm that builds a tree-like model to make decisions or
predictions based on input features. It partitions the data based
on different attribute values and creates a hierarchical structure
of decisions. Each internal node represents a decision based on
a specific feature, and each leaf node represents a final decision
or prediction. Decision trees are popular due to theirT
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interpretability and ability to handle both numerical and
categorical data. They can be used for classification and
regression tasks. DT has been applied in different supervised
machine learning problems.33

Random Forests (RFs). On the other hand, RF is an
ensemble learning method that combines multiple decision
trees to make predictions. It constructs a forest of decision
trees, where each tree is trained on a random subset of data
and features. During prediction, the outputs of all individual
trees are averaged or aggregated to obtain the final prediction.
RF performance can be improved by optimizing the hyper-
parameters as summarized in Table 3. Random Forest is

known for its robustness, as it reduces overfitting by combining
diverse models. It can handle high-dimensional data and
provides feature importance rankings, making it useful for
classification and regression problems. Random forests are
widely used due to their versatility and ability to handle large
data sets.34,35

Support Vector Machine (SVM). SVM is a powerful
supervised machine learning algorithm used for classification
and regression tasks.36 SVM aims to find an optimal
hyperplane that separates data points of different classes or
predicts a continuous target variable. The algorithm seeks to
maximize the margin between the hyperplane and the closest
data points, known as support vectors. SVM can handle both
linear and nonlinear classification tasks through the use of
kernel functions, which transform the data into higher-
dimensional spaces.37 This allows SVM to effectively classify
data that may not be linearly separable from the original
feature space. SVMs are known for their ability to handle high-

Table 2. The Statistical Analysis of the Collected Data

ROP GPM RPM SPP torque WOB phi K

mean 58 998 120 2064 10 18 0.144 57
standard deviation 31 291 19 718 2 11 0.073 175
minimum 20 695 84 1135 5 0 0.05 0.02
25% percentile 30 710 101 1339 9 10 0.081 0.29
50% percentile 49 1079 115 2228 9 18 0.142 3.90
75% percentile 83 1312 139 2746 10 25 0.205 29.23
maximum 159 1374 141 3245 18 54 0.310 2726

Figure 1. Correlation coefficient heat map between all parameters
with each other.

Figure 2. Processes of developing different ML models.

Table 3. Summary of the Different Hyperparameters for the
Different ML Methods

hyperparameters range optimum values

Decision Tree
max_depth 5−25 9
max_features ‘log2’ ‘auto’
random_state 1−100 1

Random Forests
max_depth 5−25 23
max_features ‘log2′, ‘auto’ ‘log2’
random_state 1−100 1
‘n_estimators’ 1−200 50

Support Vector Machine
lambda = 1 × 10−6 to 0.1 1 × 10−5

epsilon 1 × 10−6 to 1 0.00001
kernel option 1−10 3.5
verbose 1 1
C 50−2000 400
kernel ‘poly’, ‘Gaussian’ ‘Gaussian’
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dimensional data and for their good generalization perform-
ance. SVMs offer flexibility, robustness against outliers, and the
ability to capture complex decision boundaries. To optimize
these tools different hyperparameters were tuned for each ML
technique to improve the model’s performance as summarized
in Table 3.38

■ RESULTS AND DISCUSSION
Decision Tree Model Results. The decision tree model

was applied to the drilling parameters to develop two models:
one to predict the formation porosity and another model to
predict the formation permeability with the input parameters
consisting of ROP, GPM, RPM, SPP, torque, and WOB for
Both models.
For the porosity model, the optimum hyperparameter for

the DT models was selected to be max_depth = 9,
max_features = ‘auto’, and random_state = 1. The optimum
training testing ratio was found to be 70:30. Figure 3 depicts
the predicted porosity from a decision tree (DT) model versus

the actual porosity providing valuable insights into the model’s
performance and the agreement between predicted and
observed porosity values. With an R-value of 0.97, there is a
strong positive linear relationship between the predicted and
actual porosity. This high R-value indicates that the DT
model’s predictions align closely with the actual porosity
measurements. An RMSE of 0.02 further supports the accuracy
of the DT model’s predictions, where the DT model’s porosity
predictions differ from the actual porosity by only 0.02 units.
Similarly, in the case of the testing data set, where the R-value
was found to be 0.90 with an RMSE equals to 0.03.
Similarly, the DT method was applied to predict the

permeability values from the drilling parameters. The optimum
hyperparameters were found to be max_depth = 8,
max_features = ‘sqrt’, and random_state = 1 with an optimum
training testing ratio of 70:30. Figure 4 presents a cross plot for
the actual versus predicted permeability values on logarithmic
scales. The DT model performance was slightly lower than the
porosity model performance with an R value of 0.94 and an

Figure 3. Crossplot porosity results for the DT model for a) training data set and b) testing data set.

Figure 4. Crossplot permeability results for the DT model for a) training data set and b) testing data set.

Figure 5. Crossplot porosity results for the RF model for a) training data set and b) testing data set.
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RMSE of 0.39 for the training data set. An overfitting issue was
observed in the model where the R values decreased to 0.88 in
the testing data set with an RMSE of 0.52.
Random Forest Model Results. Similarly, the RF method

was applied to develop two models to predict the formation
porosity and permeability from the drilling parameters. For the
porosity model, the optimum hyperparameters were found to
be ‘max_depth’: 23, ‘max_features’: ‘log2’, ‘n_estimators’: 50
with training to testing ratio of 70:30.
Figure 5 presents the RF results for the training and testing

data sets. The figure comparing the predicted porosity from a
random forest (RF) model to the actual porosity values
provides insights into the model’s performance and the
agreement between predicted and observed porosity values.
For the training data set, the RF model exhibits a high R-value
of 0.98, indicating a strong positive linear relationship between
the predicted porosity and actual porosity values. This suggests
that the RF model captures the underlying patterns and
variability in the training data, resulting in accurate predictions.
Additionally, the root-mean-square error (RMSE) of 0.02
indicates that on average, the predicted porosity values deviate
from the actual values by only a small amount. When
evaluating the model’s performance on the testing data set,
the RF model maintains a high R-value of 0.93. Although
slightly lower than the training R-value, this still indicates a
strong positive linear relationship between the predicted and
actual porosity values in the testing data set. The RMSE of
0.02 suggests that the model’s predictions on the testing data
set have a similar level of accuracy to those on the training data
set.
Similarly, the RF method was utilized to forecast

permeability values based on drilling parameters. The optimal
hyperparameters determined were n_estimators = 150,
max_depth = 35, max_features = ‘sqrt,’ and random_state =

1, with a preferred training-to-testing ratio of 70:30. Figure 6
showcases a scatter plot comparing the actual and predicted
permeability values by using logarithmic scales. The perform-
ance of the RF model exhibited higher performance compared
to the DT model, with an R-value of 0.98 with an RMSE of
0.29 for the training data set. The testing data set showed an R-
value of 0.92 with an RMSE of 0.22 which confirms the
capability of the RF model to predict the permeability from the
drilling parameters.
Support Vector Machine Model Results. Similarly, the

support vector machine (SVM) method was employed to
construct two models for predicting formation porosity and
permeability based on drilling parameters. The training/test
splitting ratio was used to be 70:30. In addition, the optimum
hyperparameters for the SVM model to predict the porosity
were found to be lambda = 1 × 10−5, epsilon = 0.00001, kernel
option = 3.5, verbose = 1, C = 400, and kernel = ‘Gaussian’.
The cross-plot for predicted porosity from SVM versus

actual porosity shown in Figure 7 shows the relationship
between the predicted and actual porosity values. For the
training data set, the R-value of 0.94 indicates a strong positive
correlation between the predicted and actual porosity values.
This means that the SVM model has captured the underlying
patterns and trends in the training data quite well with an
RMSE value of 0.03.
After evaluation of the model performance on the testing

data set, a slightly lower R-value of 0.92 was observed. The
RMSE value between the actual and predicted porosity values
in the testing data set was 0.12 suggesting that, on average, the
predicted porosity values deviate from the actual values by 0.12
units, which is slightly higher than the training data set and
higher than the other two models.
In the permeability model, the SVM hyperparameters were

found to be lambda = 0.1, epsilon = 0.01, kerneloption = 10.5,

Figure 6. Crossplot permeability results for the RF model for a) training data set and b) testing data set.

Figure 7. Crossplot porosity results for the SVM model for a) training data set and b) testing data set.
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verbose = 1, C = 100, and kernel = ‘Gaussian’. Figure 8 shows
the cross plot for the permeability prediction versus the actual
values for both training and testing data sets. The SVM model
performed slightly less than both DT and RF models with the
R value reached 0.83. An RMSE from SVM in the testing data
set was 0.61 compared to 0.45 and 0.52 from RF and DT
models, respectively.
Model Validation. The developed models were then

validated with unseen data sets to predict both porosity and
permeability from drilling parameters. Figure 9 visualizes the
actual properties in black dots versus DT results in the blue
line, RF results in the green line, and SVM in the red line. The
plot shows that the different models were able to predict the
porosity and the permeability correctly with RF having the
highest performance compared to DT and SVM which may
have overestimated or underestimated the porosity values. In

addition, Tables 4 and 5 summarize the model performance
indicators for the different data sets.

The R-value summary in the bar chart depicts the
performance of machine learning porosity models across
diverse data sets�training, testing, and validation in Figure
10a. The random forest (RF) model consistently excels,
displaying the highest R-values of 0.98 in training, 0.93 in
testing, and 0.94 in validation. This highlights its robust ability
to establish a positive linear relationship between the predicted
and actual porosity values. The decision tree (DT) model
closely follows, maintaining strong accuracy across data sets
with R-values of 0.97, 0.91, and 0.93. In comparison, the
support vector machine (SVM) model, while competitive,
slightly lags behind with R-values of 0.94, 0.92, and 0.91 in
training, testing, and validation, respectively. Notably, the RF
model consistently outperforms both the DT and SVM
models, underscoring its efficacy in porosity prediction.
However, the observed overfitting in the SVM model,
indicated by declining R-values, emphasizes the importance
of balancing model complexity and generalizability in applying
machine learning to reservoir porosity prediction.
Similarly, Figure 10b illustrates the R-value summary for

permeability models across distinct data sets�training, testing,
and validation. In the training data set, the random forest (RF)
model stands out with the highest R-value of 0.98, signifying a
robust positive linear relationship between predicted and actual
permeability values. The decision tree (DT) model follows
closely with an R-value of 0.94, demonstrating commendable
accuracy during the training phase. However, the support

Figure 8. Crossplot permeability results for the SVM model for a) training data set and b) testing data set.

Figure 9. Permeability results for the SVM, DT, and RF models for
the validation data set.

Table 4. Performance Indicator Summary for the Different
ML Porosity Models in the Different Datasets

R-value RMSE

training testing validation training testing validation

DT 0.97 0.91 0.93 0.02 0.03 0.03
RF 0,98 0.93 0.94 0,02 0.03 0.02
SVM 0.94 0.92 0.91 0,03 0.03 0.03

Table 5. Performance Indicator Summary for the Different
ML Permeability Models in the Different Datasets

R-value RMSE

training testing validation training testing Validation

DT 0.94 0.88 0.91 0.39 0.52 0.47
RF 0.98 0.92 0.93 0.29 0.47 0.43
SVM 0.92 0.83 0.90 0.45 0.60 0.48
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vector machine (SVM) model trails with an R-value of 0.92,
indicating a slightly lower performance. Moving to the testing
data set, the RF model maintains superior performance with an
R-value of 0.92, emphasizing its consistent accuracy in
predicting permeability values. The DT model exhibits slightly
reduced but still strong performance with an R-value of 0.88,
while the SVM model shows a decline with an R-value of 0.83,
indicating a noticeable decrease in accuracy. In the validation
set, the RF model continues to excel with the highest R-value
of 0.93, showcasing its effectiveness in permeability prediction.
The DT model closely follows with an R-value of 0.91,
indicating its ability to generalize well beyond the training and
testing data sets. The SVM model, while competitive, displays
a slightly lower R-value of 0.90. The results highlight the
consistent superiority of the RF model in predicting
permeability values, emphasizing its significance in accurate
reservoir characterization.
The observed overfitting in the decision tree (DT)

permeability model (R = 0.94 for training, 0.88 for testing)
may be attributed to the model’s sensitivity to the specific
training data, resulting in less generalizability. The DT model
tends to capture noise and outliers in the training data, leading
to less robust performance on unseen data. On the other hand,
the Random Forest (RF) model’s superior performance can be
attributed to its ensemble nature, which combines multiple
decision trees to mitigate overfitting. The optimized RF model
parameters (max_depth: 23, max_features: ‘log2’, n_estima-
tors: 50) contribute to enhanced accuracy and prevent the
overemphasis on individual features. The ensemble approach
enables RF to capture complex relationships in the data while
maintaining better generalization capabilities.

Moreover, RF’s ability to handle high-dimensional data and
capture nonlinear relationships is advantageous in the context
of predicting porosity and permeability from drilling
parameters. The ensemble of decision trees in the RF
collectively contributes to a more robust and accurate
prediction by reducing variance and minimizing the risk of
overfitting. The methodical approach of cross-validation,
hyperparameter tuning, and the ensemble strategy collectively
empower RF to outperform other models. The diverse set of
decision trees in the RF ensemble effectively balances the
model’s bias and variance, resulting in a more reliable and
accurate prediction of porosity and permeability in subsurface
formations. On the other hand, The SVM model’s over-
estimation or underestimation of porosity values in the testing
data set might be a consequence of its sensitivity to outliers
and noise, causing deviations from the true underlying
patterns. In contrast, the ensemble approach of RF, with
optimized parameters and effective hyperparameter tuning,
results in a model that is less prone to overfitting and more
capable of making accurate predictions in diverse data sets.

■ CONCLUSIONS
The study aimed to predict porosity and permeability values
from drilling parameters by using machine learning techniques.
Three different methods, namely, decision trees (DTs),
random forest (RF), and support vector machines (SVMs),
were applied and evaluated. The following are the main
conclusions.

• The DT, SVM, and RF models showed promising results
in predicting porosity with correlation coefficients higher
than 0.91 in the different data sets.

• RF model was able to accurately predict the formation
permeability with R values higher than 0.92 in the
different data sets, while DT showed slightly lower
performance where the R-value decreased to 0.88 in the
testing data set.

• On the other hand, the SVM model indicates an
overfitting problem as R values decreased from 0.92 in
the training data set to 0.83 for the testing data set.

Overall, the novelty of the current study lies in the
comprehensive comparison of machine learning models for
predicting reservoir properties directly from drilling parame-
ters. This approach offers a more streamlined and efficient
alternative to traditional methods, providing valuable insights
into subsurface rock properties that are crucial for decision-
making in the oil and gas industry. These results pave the way
for future research to refine machine learning models, address
overfitting challenges, and explore additional variables for
predictions that are even more accurate in diverse geological
settings. Generally, the current study contributes to advancing
the application of machine learning in reservoir character-
ization, marking a significant step toward enhanced exploration
and production processes.
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