Skip to main content
. 2024 Apr 8;9(15):17066–17075. doi: 10.1021/acsomega.3c08795

Table 3. Summary of the Different Hyperparameters for the Different ML Methods.

hyperparameters range optimum values
Decision Tree
max_depth 5–25 9
max_features ‘log2’ ‘auto’
random_state 1–100 1
Random Forests
max_depth 5–25 23
max_features ‘log2′, ‘auto’ ‘log2’
random_state 1–100 1
‘n_estimators’ 1–200 50
Support Vector Machine
lambda = 1 × 10–6 to 0.1 1 × 10–5
epsilon 1 × 10–6 to 1 0.00001
kernel option 1–10 3.5
verbose 1 1
C 50–2000 400
kernel ‘poly’, ‘Gaussian’ ‘Gaussian’