Table 3. Summary of the Different Hyperparameters for the Different ML Methods.
hyperparameters | range | optimum values |
---|---|---|
Decision Tree | ||
max_depth | 5–25 | 9 |
max_features | ‘log2’ | ‘auto’ |
random_state | 1–100 | 1 |
Random Forests | ||
max_depth | 5–25 | 23 |
max_features | ‘log2′, ‘auto’ | ‘log2’ |
random_state | 1–100 | 1 |
‘n_estimators’ | 1–200 | 50 |
Support Vector Machine | ||
lambda = | 1 × 10–6 to 0.1 | 1 × 10–5 |
epsilon | 1 × 10–6 to 1 | 0.00001 |
kernel option | 1–10 | 3.5 |
verbose | 1 | 1 |
C | 50–2000 | 400 |
kernel | ‘poly’, ‘Gaussian’ | ‘Gaussian’ |