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Abstract
Survival time is the primary endpoint of many randomized controlled trials, and a treatment effect is typically quantified
by the hazard ratio under the assumption of proportional hazards. Awareness is increasing that in many settings this
assumption is a priori violated, for example, due to delayed onset of drug effect. In these cases, interpretation of the
hazard ratio estimate is ambiguous and statistical inference for alternative parameters to quantify a treatment effect is
warranted. We consider differences or ratios of milestone survival probabilities or quantiles, differences in restricted
mean survival times, and an average hazard ratio to be of interest. Typically, more than one such parameter needs to be
reported to assess possible treatment benefits, and in confirmatory trials, the according inferential procedures need to
be adjusted for multiplicity. A simple Bonferroni adjustment may be too conservative because the different parameters
of interest typically show considerable correlation. Hence simultaneous inference procedures that take into account
the correlation are warranted. By using the counting process representation of the mentioned parameters, we show
that their estimates are asymptotically multivariate normal and we provide an estimate for their covariance matrix. We
propose according to the parametric multiple testing procedures and simultaneous confidence intervals. Also, the logrank
test may be included in the framework. Finite sample type I error rate and power are studied by simulation. The methods
are illustrated with an example from oncology. A software implementation is provided in the R package nph.
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1 Introduction
The aim of survival analysis in a randomized clinical trial typically is to show a benefit of an experimental treatment over
a control treatment. Under the frequent model assumption of proportional hazards, the relative treatment benefit can be
quantified with a single parameter, the hazard ratio, which describes the shift of the survival function under treatment
compared to the survival function under control at every time point.

When aiming to establish the superiority of a new treatment over control in terms of survival in a randomized controlled
clinical trial, the null hypothesis of equal survival functions is typically tested by a logrank test, or an equivalent test
based on the Cox model, and a hazard ratio estimate is reported to quantify the treatment effect. Under the assumption of
proportional hazards, this approach is efficient in terms of power and allows for unambiguous conclusions on superiority,
because one single parameter, the hazard ratio, is sufficient to describe the shift between survival functions at every time
point.
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Recently, the assumption of proportional hazards has been found to be inadequate or at least questionable in relevant
clinical settings.1–5 In particular, a delayed onset of treatment effect in immuno-oncology drugs has been discussed as an
important source of non-proportional hazards and, moreover, as a setting in which the traditional logrank test loses power
and the effect quantification using the hazard ratio as a single summary measure may be flawed. Other sources of non-
proportional hazards that have been discussed in the literature are, for example, a heterogeneous patient population with
population subgroups that respond differently to treatment, such as long-term survivors, modified efficacy after disease
progression, or the need for rescue medication or treatment switching.5–7

Several testing procedures have been proposed to remedy the potential loss of power of the logrank test in these set-
tings. In particular, the use of weighted logrank tests has been proposed, putting more weight on event times with a more
pronounced anticipated effect.8,9 If the pattern of non-proportional hazards is not well known beforehand, a maximum com-
bination (MaxCombo) test of differently weighted logrank tests has been shown to be a robustly powerful method.5,10–14

However, in the absence of further assumptions, a significant result for these tests, at first, only implies that there exists a
time point for which the hazard function under treatment is less than the hazard function under control. Whether this result
translates into a relevant (or in fact into any9) benefit in terms of the survival functions needs to be assessed by estimates
for parameters that appropriately quantify the differences between survival functions.6,15

The interpretation of the parameter estimate of the Cox model can be challenging under non-proportional hazards. In
particular, the limiting value of the Cox model hazard ratio estimate will depend not only on the true hazard functions, but
also on study design parameters such as recruitment rate, study duration and censoring distribution that affect the timing of
observed events. Alternative effect measures, proposed to be used under non-proportional hazards, include the difference
in restricted mean survival times,16,17 average hazard ratios defined via predefined weighting functions,18–20 differences
x-year milestone survival probabilities or differences in quantiles of the survival distribution. Several authors have argued
that a single such parameter may not be sufficient and differences in survival curves should instead be assessed by a set of
summary statistics.4,6,21

In this paper, we propose a simultaneous inference framework for a set of multiple parameters, which may include dif-
ferences in survival probabilities, differences in log survival probabilities, differences in complementary log–log (cloglog)-
transformed survival probabilities, differences in quantiles of the survival functions, differences in log-transformed
quantiles, an average hazard ratio and the difference in restricted mean survival times. The logrank test, albeit being a non-
parametric test, may be included, too. For completeness, the Cox model hazard ratio may be included under the assumption
of proportional hazards.

We present multiple testing procedures and simultaneous confidence intervals for pre-specified sets of parameters, such
that the family-wise type I error rate is controlled and multiple parameter estimates can be interpreted simultaneously in a
confirmatory manner. The multiple testing adjustment is based on the counting process representation of survival function
estimates, by which we show that the considered estimates are asymptotically multivariate normal and by which we derive
an estimate of their asymptotic covariance matrix. The resulting procedures are more powerful than more simple procedures
based on the Bonferroni correction because the latter does not take into account the correlation between estimates.

The paper is structured as follows. In Section 2, we propose a general framework for the multivariate normal approxi-
mation of multiple survival parameters and show the application to particular estimates. In Section 3, we describe multiple
testing procedures and simultaneous confidence intervals, In Section 4, we perform a simulation study to assess the operat-
ing characteristics of the proposed methods in terms of type I error rate and power under different scenarios. In Section 5,
we illustrate the proposed methods in a worked example based on survival curves reported by Burtness et al.22 (KEYNOTE-
048) for the comparison of pembrolizumab versus cetuximab in treating recurrent or metastatic squamous cell carcinoma.
A software implementation of all proposed methods is implemented in the R package nph5 (see Section 6). We conclude
with a discussion.

2 Multivariate normal approximation for multiple survival parameter estimates
In this section, we present a general framework for a multivariate normal approximation and the estimation of the covariance
matrix for multiple parameters derived from survival functions. We subsequently apply the framework to different parameter
estimates that are commonly used to quantify the difference between two survival curves.

2.1 General framework based on martingale representation
We consider a control and a treatment group, indexed i = 0, 1, including ni independent subjects with observations on
possibly censored survival times. Denote with i the set of observed event times in group i. We assume that the censoring
times are stochastically independent of the true event times.
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For further notation purposes, let Si(t) = Pi(Ti > t) be the survival function in group i, with Ti a random event time
from the respective group. The corresponding hazard function is 𝜆i(t) = (dSi(t)∕dt)(1∕Si(t)), and the cumulative hazard
function is Λi(t) = ∫ t

0 𝜆i(s)ds = − log(Si(t)). Further, for a given data sample, let Ni(t) be the number of observed events

in the time interval [0, t] and Yi(t) the number at risk at time t in group i. We denote by Λ̂i(t) =
∑

s∈i,s≤t dNi(s)∕Yi(s) the

Nelson–Aalen estimator for the cumulative hazard, by Ŝi(t) = exp{−Λ̂i(t)} the Nelson–Aalen estimator for Si(t) and by
Ŝ−

i (t) = exp{−
∑

s∈i,s<t dNi(s)∕Yi(s)} the left continuous version of Ŝi(t). Define q̂i(𝛾) = min{t : Ŝi(t) ≤ 1 − 𝛾} as an
estimate of the 𝛾-quantile of the survival distribution in group i.

Further we denote by Mi(t) = Ni(t) − ∫ t
0 Yi(s)dΛi(s) the difference between observed and expected events up to time t.

Mi(t) is a martingale process that is key to the counting process representation of estimates in survival analysis.8,23 Finally,
we use the wedge operator ∧ to denote the minimum of two quantities.

As a general framework, we aim to quantify the difference in the survival functions under control and treatment by a set
of parameters 𝜃1,… , 𝜃m. We assume that the true parameters are of the form 𝜃k = 𝜃k,1 − 𝜃k,0, k = 1,… , m, where 𝜃k,i is a
function of the true survival function and possibly of the true censoring function in group i.

We further assume that the difference between the corresponding estimates �̂�k,i and the true parameter values 𝜃k,i can
be approximated up to an asymptotically negligible residual term by a stochastic integral such that

�̂�k,i − 𝜃k,i = ak,i ∫

tk

0
Hk,i(s)

1
Yi(s)

dMi(s) + op(1∕
√

ni) (1)

where ak,i are constant parameters for which consistent estimates âk,i exist and Hk,i are predictable processes with respect

to the martingale process Mi for which consistent estimates Ĥk,i exist. The interval [0, tk] is the time interval within which

data is used to calculate �̂�k,i.

We also assume that �̂�k,0 and �̂�k′,1 are asymptotically uncorrelated for all k = 1,… , m and k′ = 1,… , m.
Finally, we assume the asymptotic stability condition holds24: for both i ∈ {0, 1}, there exists a function 𝜌i with values

in (0, 1) such that for ni → ∞, sup0<s≤max(t1,…,tm) |(Yi(s)∕ni) − 𝜌i(s)| → 0 a.s.

Then, by the multivariate martingale central limit theorem, the vector (
√

ni(�̂�1,i−𝜃1,i),… ,
√

ni(�̂�m,i−𝜃m,i)) asymptotically

follows a multivariate normal distribution with mean zero and variances and covariances given by Fleming and Harrington8

cov
(√

ni(�̂�k,i − 𝜃k,i),
√

ni(�̂�k′,i − 𝜃k′,i)
)
= ak,iak′,i ∫

tk∧tk′

0
Hk,i(s)Hk′,i(s)

1
𝜌i(s)

dΛ(s))

A consistent estimator Σ̂i for the covariance matrix of (�̂�1,i,… , �̂�m,i) is obtained by replacing ak,i by âk,i, Hk,i by Ĥk,i, 𝜌i(s)
by Yi(s)∕ni and dΛ by dΛ̂ = dNi(s)∕Yi(s), resulting in

ĉov(�̂�k,i, �̂�k′,i) = âk,iâk′,i

∑

s∈i,s≤tk∧tk′

Ĥk,i(s)Ĥk′,i(s)
1

Y 2
i (s)

dNi(s) (2)

We assume continuous survival distributions such that two events occur at the same time with probability zero. However,
in actual applications, event times are not measured precisely but they are typically rounded, for example, to full days, such
that tied event times may occur. To account for ties, the term (1∕Y 2

i (s))dNi(s) in (2) can be replaced by the sum

dNi(s)−1∑

j=0

1
(Yi(s) − j)2

(3)

if dNi(s) ≥ 1, see, for example, Klein and Moeschberger.25

Let Σ̂i denote the covariance matrix estimate for (�̂�1,i,… , �̂�m,i) with entries according to (2). Then the joint distribution

of (�̂�1,… , �̂�m) can be approximated by a multivariate normal distribution with mean (𝜃1,… , 𝜃m) and covariance matrix
Σ̂ = Σ̂0 + Σ̂1.

2.2 Application to specific parameters
To quantify between-group differences, we consider a range of parameters: differences in survival probabilities, differences
in log survival probabilities, differences in cloglog-transformed survival probabilities, differences in quantiles of the sur-
vival times, differences in log-transformed quantiles, an average hazard ratio and the difference in restricted mean survival
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Table 1. Summary of the expressions required for the variance–covariance estimation according to equation (2) for the considered
parameters. The formal definition of the restricted mean survival time estimate �̂�i and the Cox model log hazard ratio estimate 𝛽 are
given in Section 2.2. In the last column, L is the time-point up to which the (average) hazard ratio, RMST difference or logrank test
are calculated.

Parameter of interest 𝜃k Per group estimate âk,i Ĥk,i(s) tk

Survival difference Ŝi(t) −Ŝi(t) 1 t
Survival ratio log Ŝi(t) −1 1 t
Cumulative-hazard ratio cloglog Ŝi(t) −1∕ log Ŝi(t) 1 t
Quantile difference q̂i(𝛾)

1
−�̂�(q̂i(𝛾))

1 q̂i(𝛾)

Quantile ratio log q̂i(𝛾)
1

−q̂i(𝛾)�̂�(q̂i(𝛾))
1 q̂i(𝛾)

Average hazard ratio log ∫ L
0 Ŝ−0 (s)Ŝ

−
1 (s)dΛ̂i(s)

1

log ∫ L
0 Ŝ−0 (s)Ŝ

−
1 (s)dΛ̂i(s)

Ŝ−0 (s)Ŝ
−
1 (s) L

RMST difference �̂�i 1
∑

tj≥s Δtj Ŝi(tj) L

Logrank test ∫ L
0

Y0(s)Y1(s)
Y0(s)+Y1(s)

1
Yi(s)

dMi(s) 1 Y0(s)Y1(s)
Y0(s)+Y1(s)

L

Cox model log hazard ratio i𝛽 1∕
∑1

i=0 ∫
L

0
Y0(s)Y1(s) exp(𝛽)

Y0(s)+Y1(s) exp(𝛽)
dNi(s)

Y0(s)Y1(s) exp(i𝛽)
Y0(s)+Y1(s) exp(𝛽)

L

RMST: restricted mean survival time.

times. We also consider the Cox model score test (logrank test) statistic and (under the proportional hazard assumption)
the hazard ratio corresponding to the Cox model. For all these parameters, estimators can be constructed that satisfy the
assumptions laid out in Section 2.1. Especially, the estimators can be written in the form (1), as will be detailed below.
Hence, their joint distribution can be approximated by a multivariate normal distribution, with covariances estimated by
equation (2). Based on this approximation, multiple hypotheses tests can be constructed. The specific terms to calculate
variance and covariance estimates according to (2) are summarized in Table 1.

2.2.1 Survival probabilities
The estimated difference in survival functions at times t is �̂�j = Ŝ1(t) − Ŝ0(t). The asymptotic properties and the martingale
representation for survival function estimates are well established.8,23 In particular,

Λ̂i(t) − Λi(t) = ∫

t

0

1
Yi(s)

dMi(s) (4)

and by first-order approximation,8

Ŝi(t) − Si(t) = −Si(t)(Λ̂i(t) − Λi(t)) + op(1∕
√

ni) (5)

Hence the representation in terms of equation (1) is Ŝi(t) − Si(t) ≈ −Si(t) ∫
t

0 (1∕Yi(s))dMi(s).
Alternatively, the ratio in survival probabilities at time t may be of interest, which may be included in the proposed

framework on the log-scale in terms of �̂�j = log Ŝ1(t) − log Ŝ0(t). Since log S(t) = −Λ(t) and by equation (4), the repre-

sentation in terms of equation (1) is log Ŝi(t) − log Si(t) ≈ − ∫ t
0 (1∕Yi(s))dMi(s). Estimates and confidence intervals for the

log ratio of survival probabilities may be backtransformed to obtain the respective quantities for the ratio S1(t)∕S0(t) at the
original scale.

A further common transformation is the cloglog of the estimated survival probability, such that the parameter �̂�j =
log(− log Ŝ1(t)) − log(− log Ŝ0(t)) may be included with the martingale representation log(− log Ŝi(t)) − log(− log Si(t)) ≈
−(1∕log S(t)) ∫ t

0 (1∕Yi(s))dMi(s). Here, the transformed parameter exp(�̂�j) may be of interest. This is an estimate for the
ratio of cumulative hazards, Λ1(t)∕Λ0(t) (which under proportional hazards corresponds to the hazard ratio).

2.2.2 Quantiles of the survival function
The estimated between-group difference between the 𝛾-quantiles of two survival time distributions is �̂�j = q̂1(𝛾)− q̂0(𝛾). A

first-order approximation is given by q̂i(𝛾) − qi(𝛾) = −((Λ̂i(qi(𝛾)) − Λi(qi(𝛾)))∕(𝜆i(qi(𝛾)))) + op(1∕
√

ni).26,27 Again using
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(4) results in the representation

q̂i(𝛾) − qi(𝛾) ≈
−1

�̂�i(qi(𝛾)) ∫

t

0

1
Yi(s)

dM(s)

Here a consistent estimate �̂�i(qi(𝛾)) for the hazard at the respective quantile is required. We use a relatively simple approach
and estimate �̂�i(qi(𝛾)) under a locally constant hazard approximation as follows: let ei be the total number of observed events
in group i. Define a positive finite constant bandwidth K and the boundaries for a time interval that contains at least K

√
ei

(i.e. for intervals at the boundary) and up to 2K
√

ei (for intervals in the middle of the observed time span) events as tlow =
max{0,max{t ∈ i : Ni(t) ≤ Ni(q̂𝛾 ,i) − K

√
ei}} and tup = min{max{t ∈ i},min{t ∈ i : Ni(t) ≥ Ni(q̂𝛾 ,i) + K

√
ei)}}.

Here, the maximum and minimum of an empty set are defined as −∞ and ∞, respectively. This definition ensures that
tlow ≥ 0 and tup is less or equal the maximum observed event time. The hazard in the interval is estimated as the ratio of

the number of events and the sum of all observed times, that is, �̂�i(qi(𝛾)) = ((Ni(tup) − Ni(tlow))∕(∫
tup

tlow
Yi(s)ds).

With an increasing number of events, the interval becomes narrower while the absolute number of events within the
interval gets larger. Under the assumption of continuous hazard function and by the consistency of q̂i(𝛾), the resulting
estimate is consistent. In the actual calculations, we used K = 2. Alternatively, the local hazard may be estimated by
kernel-density estimation.28

When the ratio of quantiles is of interest, the difference at the log scale may be defined as a parameter of interest such
that �̂�j = log q̂1(𝛾) − log q̂0(𝛾). By application of the delta method to the original approximation, we obtain the required
presentation as

log q̂i(𝛾) − log qi(𝛾) ≈
−1

q̂i(𝛾)�̂�i(qi(𝛾)) ∫

t

0

1
Yi(s)

dM(s)

2.2.3 Average hazard ratio
A general class of average hazard ratios can be defined as ∫ L

0 W (s)dΛ̂1(s)∕∫
L

0 W (s)dΛ̂0(s), where L is a predefined time
point and W (s), s ≥ 0 is a non-negative monotonically decreasing weight function with values in [0, 1].18 We consider the
average hazard ratio with weight function W (s) = Ŝ0(s)Ŝ1(s) and its corresponding estimate Ŵ (s) = Ŝ−

0
(s)Ŝ−

1
(s). Here the

left continuous estimator of the survival function is used to obtain a predictable function, which is required in the eventual
application of the martingale central limit theorem. Note that both Ŝ and Ŝ− are uniformly consistent estimates of S, and
with sufficient sample size their numeric difference is negligible.

The specific weight function was chosen, because the average hazard ratio based on the this weight function is iden-
tical to P(T1 ∧ L > T0 ∧ L)∕P(T1 ∧ L < T0 ∧ L) and can be interpreted as a non-parametric effect measure similar to a
Mann–Whitney statistic. Unlike the Cox model hazard ratio estimate, the limiting value of this average hazard ratio esti-
mate does not depend on the censoring distribution, because it is entirely defined through the survival functions, which can
be estimated consistently regardless of the pattern of random censoring times under the assumption that censoring times
and survival times are independent. (Also see simulation scenarios 2 and 3 in Section 4.).

To embed the average hazard ratio in the proposed framework we utilize the log-transformed estimate �̂�j =
log(∫ L

0 Ŵ (s)dΛ̂1(s)) − log(∫ L
0 Ŵ (s)dΛ̂0(s)).

The contribution of group i to the estimate of the log-average hazard ratio immediately fits into the proposed framework
as ∫ L

0 Ŵ (s)dΛ̂i(s) − ∫ L
0 Ŵ (s)dΛi(s) = ∫ L

0 Ŵ (s)(1∕Yi(s))dMi(s).
By application of the delta method, the representation according to (1) for the log-transformed term is

log
(

∫

L

0
Ŵ (s)dΛ̂i(s)

)
− log

(

∫

L

0
Ŵ (s)dΛi(s)

)

≈ 1

∫ L
0 Ŵ (s)dΛ̂i(s) ∫

L

0
Ŵ (s) 1

Yi(s)
dMi(s)

Note that the statistic
√

ni ∫
L

0 Ŵ (s)(1∕Yi(s))dMi(s) is asymptotically equivalent to
√

ni ∫
L

0 W (s)(1∕Yi(s))dMi(s). This fol-
lows from the following arguments: By the martingale central limit theorem, the difference between both expressions,
√

ni ∫
L

0 Ŵ (s)(1∕Yi(s))dMi(s) −
√

ni ∫
L

0 W (s)(1∕Yi(s))dMi(s) =
√

ni ∫
L

0 (Ŵ (s) − W (s))(1∕Yi(s))dMi(s), converges in distri-

bution to a normal distribution with mean zero and variance ∫ L
0 (Ŵ (s)−W (s))2(n∕Y (s))dΛ(s). Because Ŝ−

i and, consequently,
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Ŵ (s) are uniformly strongly consistent estimators, the variance of
√

ni ∫
L

0 (Ŵ (s) − W (s))(1∕Yi(s))dMi(s) can be bounded

by ∫ L
0 (Ŵ (s) − W (s))2(n∕Y (s))dΛ(s) ≤ max0≤s≤L((Ŵ (s) − W (s))2) ∫ L

0 (ni∕Y (s))dΛ(s). Since max0≤s≤L((Ŵ (s) − W (s))2)
converges to 0 a.s. and ∫ L

0 (ni∕Y (s))dΛ(s) converges to a constant (the asymptotic variance of Λ̂i(L)), the variance of
√

ni ∫
L

0 (Ŵ (s) − W (s))(1∕Yi(s))dMi(s) converges to 0. Hence, the asymptotic arguments established in Section 2.1 are

not affected by using estimated weights Ŵ instead of the true (unknown) weights W and ∫ L
0 Ŵ (s)(1∕Y0(s))dM0(s) and

∫ L
0 Ŵ (s)(1∕Y1(s))dM1(s) are asymptotically uncorrelated.

2.2.4 Restricted mean survival time (RMST)
The RMST in group i up to a pre-specified time-point L is 𝜇i = ∫ L

0 Si(t)dt. Let Di be the number of unique event times
ti,1 < … < ti,Di−1 ≤ L in group i that are less or equal L. Further define ti,0 = 0 and ti,Di+1 = L and Δti,j = ti,j+1 − ti,j. The

according estimate for the RMST is �̂�i =
∑Di

j=0
Ŝi(tj)Δti,j and the estimated RMST difference between the two groups is

�̂�j = �̂�1 − �̂�0. �̂�i may be represented in terms of equation (1).29,30 First note that

�̂�i − 𝜇i =
Di∑

j=0

Ŝi(tj)Δti,j −
Di∑

j=0

Si(tj)Δti,j +
Di∑

j=0

Si(tj)Δti,j − ∫

L

0
Si(t)dt

=
Di∑

j=0

Δti,j(Ŝi(tj) − Si(tj)) + op(1∕
√

ni)

where we use that the error of the integral approximation is of order 1∕n. By replacing Ŝi(tj) − Si(tj) by equation (5) and by
changing the order of integration and summation the required form is obtained as

�̂�i − 𝜇i ≈ −
∫

L

0

⎛
⎜
⎜
⎝

∑

j∈{1,…,Di:tj≥s}
ΔtjSi(tj)

⎞
⎟
⎟
⎠
(1∕Yi(s))dMi(s)

Analysing RMST has been proposed as an alternative to hazard ratio-based inference in different medical fields such as
oncology31,32 and cardiology.33 As an extension to between-group comparisons considered here, RMST is amenable to
regression analysis, see Hasegawa et al.29 for a recent review. Also, group sequential methods have been developed.34

2.2.5 Cox model score test (logrank test)
The logrank test for the null hypothesis H0 : 𝜆0(s) = 𝜆1(s),∀0 ≤ 0 ≤ L may be of interest also under non-proportional
hazard settings. The usual logrank test is asymptotically equivalent to the Cox model score test for the null hypothesis
𝛽 = 0, where 𝛽 is the Cox model hazard ratio. The tests are equivalent to the variance estimate for the score test statistic.
The score test may be directly included in the proposed framework to adjust for multiple testing as shown below.

For subject j = 1,… , ni in group i ∈ {0, 1}, let yij(t) ∈ {0, 1} indicate whether the subject is at risk at time t, and let
Nij(t) ∈ {0, 1} be the number of events of the subject in the time interval [0, t]. Let Mij(t) = Nij(t) − yij(t)Λi(t).

In a Cox model comparing two treatment groups up to a time point L, the score function (i.e. the derivative of the log
partial likelihood) is

U(𝛽) =
1∑

i=0

ni∑

j=1
∫

L

0

(
i −

Y1(s) exp(𝛽)
Y0(s) + Y1(s) exp(𝛽)

)
dNij(s) (6)

It can be shown35 that under the proportional hazards assumption (i.e. 𝜆1(t) = 𝜆0(t) exp(𝛽),∀t ≥ 0), and for 𝛽 = 𝛽0 being
the true parameter value, dNij may be replaced by dMij, such that

U(𝛽0) =
1∑

i=0

ni∑

j=1
∫

L

0

(
i −

Y1(s) exp(𝛽0)
Y0(s) + Y1(s) exp(𝛽0)

)
dMij(s) (7)



Ristl et al. 595

which can be rewritten as

U(𝛽0) = ∫

L

0

Y0(s)Y1(s)
Y0(s) + Y1(s) exp(𝛽0)

1
Y1(s)

dM1(s) − ∫

L

0

Y0(s)Y1(s) exp(𝛽0)
Y0(s) + Y1(s) exp(𝛽0)

1
Y0(s)

dM0(s) (8)

Note that under the null hypothesis H0 : 𝜆0(s) = 𝜆1(s),∀s ≤ 0 ≤ L, the proportional hazard assumption holds. Further
note that rejection of 𝛽 = 0 entails rejection of 𝜆0(s) = 𝜆1(s) at least for some s. The reverse is not necessarily true under
crossing hazards, that is, the hazard functions 𝜆0(s) and 𝜆1(s) may be different but crossing in such a way that 𝛽 = 0, which
results in low power of the logrank test under crossing hazards. The test statistic for the score test of the null-hypothesis
𝛽 = 𝛽0 is U(𝛽0) as defined in 8. Hence, the Cox model score test for the null hypothesis 𝛽 = 0 can be included in the
framework of Section 2.1 by defining a parameter estimate �̂�j = U(0) and by setting Hk,i(s) = (Y0(s)Y1(s))∕(Y0(s) + Y1(s))
and ak,i = 1 in equation (1).

Note that Assumption 3 about uncorrelated contributions from both groups is satisfied for the score test despite both
terms in equation (8) containing the at-risk process of both groups, because we assume that the probability for equal event
times is 0 (and ties only occur due to rounding of observed event times). Under this assumption, Theorems 2.5 (Section 2)
and 2.4 (Section 4) of Fleming and Harrington8 show that the covariance of statistics of the type assumed in equation (1)
is 0.

2.2.6 Cox model hazard ratio
The Cox model hazard ratio can be included in the proposed framework of simultaneous inference under the assumption of
proportional hazards. First note that the estimate of the log hazard ratio, 𝛽, is the solution of U(𝛽) = 0. Next, by standard
asymptotic results and with 𝛽0 the true log hazard ratio 𝛽−𝛽0 ≈ −(dU∕d𝛽)−1(𝛽0)U(𝛽0).36 Here, U(𝛽0) can be decomposed
in contributions from the two groups according to (8). The Hessian matrix  = dU∕d𝛽 can be estimated by

̂ = −
1∑

i=0
∫

L

0

Y0(s)Y1(s) exp(𝛽)
Y0(s) + Y1(s) exp(𝛽)

dNi(s)

Therefore, the Cox model hazard ratio can be included in the framework of Section 2.1, by setting 𝜃j = 𝛽, Hk,i(s) =
(Y0(s)Y1(s) exp(i𝛽))∕(Y0(s) + Y1(s) exp(𝛽)) and ak,i = (−̂)−1. The theory of Section 2.1 applies to the hazard ratio under
the assumption of proportional hazards. The operating characteristics of simultaneous inference including the hazard ratio
under non-proportional hazards are explored in the Supplemental material.

2.3 Resampling-based covariance matrix estimate
As an alternative method, the covariance matrix for a vector of parameter estimates �̂� = (�̂�1,… , �̂�m) may be estimated
by a resampling approach similar to perturbation methods described by Zhao et al.30,37 and Parzen et al.,38 which can be
regarded as parametric bootstrap.

Based on the martingale central limit theorem and equation (2), the process Λ̂i(t)−Λi(t) = ∫ t
0 (1∕Yi(s))dMi(s), t ≥ 0 can

be approximated by a Gaussian process with independent increments and covariance function cov(Λ̂i(t) − Λi(t), Λ̂i(t′) −
Λi(t′)) = var(Λ̂i(t) − Λi(t)) = ∫ t

0 (dNi(s)∕Y 2
i (s)). Accordingly, the distribution of this process can be approximated by the

distribution of the process P(t) =
∑ni

j=1
∫ t

0 Zj

√
(dNij(s)∕Y 2

i (s)), t ≥ 0, where Zj, j = 1,… , ni are independent standard

normal random variables.

A perturbation sample of Λ̂ − Λ is defined as P∗(t) =
∑ni

j=1
∫ t

0 zj

√
(dNij(s)∕Y 2

i (s)), t ≥ 0, where zj, j = 1,… , ni are

realizations of independent standard normal random variables. And a perturbation of Λ̂ is defined as Λ̂∗ = Λ̂ +P∗. Similar
to equation (2), in the case of ties, the expression dNij(s)∕Y 2

i (s) may be replaced by (3) if dNi(s) ≥ 1.

A vector of parameter estimates can be regarded as function �̂�(Λ̂0, Λ̂1) of the estimated cumulative hazard functions. In
the proposed perturbation approach, the distribution of �̂�(Λ̂0, Λ̂1) given the true cumulative hazard functions Λ0 and Λ1 is
approximated by the distribution of �̂�(Λ̂∗

0
, Λ̂∗

1
) given Λ̂0 and Λ̂1.

To estimate the covariance matrix of �̂�(Λ̂0, Λ̂1), a large number of K perturbation pairs (Λ̂∗
0
, Λ̂∗

1
)l, l = 1,… , K, is gen-

erated and for each pair the estimate �̂�
∗
l = �̂�((Λ̂∗

0
, Λ̂∗

1
)l), is calculated. Now consider the matrix (�̂�∗

1,… , �̂�
∗
K) and let �̂�∗

be

the corresponding row-mean centred matrix. Then the covariance matrix of �̂� can be estimated by the empirical covariance
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matrix as

̂covpert(�̂�) = �̂�∗�̂�∗T∕(K − 1) (9)

3 Simultaneous inference

3.1 Maximum-type hypothesis tests for multivariate normal statistics
We aim to test the hypothesis with respect to parameters 𝜽 = (𝜃1,… , 𝜃m), as defined in the previous sections, with strong
control of the family-wise type I error rate. We consider one-sided elementary null hypotheses Hk : 𝜃k ≤ 𝜃

(0)
k

, k = 1,… , m
and the global intersection null hypothesis of no difference in any of the parameters H0 = ∩m

k=1
Hk . In superiority trials,

depending on whether the parameter of interest is ratios or differences between treatment and control, 𝜃(0)
k

is set to 1 or 0,
respectively. The considered hypothesis tests can also be defined as two-sided hypotheses, but for the purpose of showing
the superiority of treatment over a control we regard one-sided tests to be more relevant.

Multiple hypothesis tests can be constructed based on the multivariate normal approximation of the estimates �̂� =
(�̂�1,… , �̂�m), see, for example, Hothorn et al.39 Correlations of estimates can be high, hence the multiplicity correction
based on the approximate joint distribution can be moderate compared to methods that control the family-wise type I
error rate without taking into account the correlation structure, as the Bonferroni correction. We consider maximum-type
tests. Other test statistics, such as sum or chi-squared type statistics may also be used within the multivariate normal

framework. Consider a vector of m parameter estimates �̂�
appr.∼ Nm(𝜽, �̂�). Let V̂ be the diagonal matrix with diagonal

entries of �̂�. Define a vector of elementary test statistics T = V̂
−1∕2(�̂� − 𝜽0). Under the global null hypothesis H0 :

𝜽 = 𝜽0, T
appr.∼ N(0, V̂

−1∕2�̂�V̂
−1∕2). A one-sided p-value for the test of H0 is given by P{max(Z) ≥ max(T)}, where

Z ∼ Nm(0, V̂
−1∕2�̂�V̂

−1∕2).
A single-step maximum-type test for the elementary null hypothesis can then be defined via multiplicity-adjusted p-

values for the hypotheses Hk , k ∈ {1,… , m} and is given by P{max(Z) ≥ Tk}.
The single-step test can be improved by applying the closed testing procedure,40 where each intersection null hypothesis

∩k∈I Hk , I ⊂ 1,… , m is tested by a maximum-type test for intersection hypotheses. The elementary hypothesis Hk is then
rejected by the closed test, if all intersection hypotheses that include Hk (i.e. all ∩k∈I Hk with I ⊂ 1,… , m and k ∈ I)
are rejected with the corresponding maximum-type test. A multiplicity-adjusted p-value is given by the maximum of the
elementary p-values of these intersection hypotheses.

3.2 Simultaneous confidence intervals
Lower confidence bounds with simultaneous coverage probability 1 − 𝛼 that correspond to the inversion of a one-sided
single-step multiple-testing procedure are given by �̂�j − V̂ 1∕2

j q
𝛼
, where q

𝛼
is defined as q

𝛼
: P(max(Z) ≥ q

𝛼
) = 𝛼. The

boundaries of two-sided confidence intervals with simultaneous coverage probability 1−𝛼 that correspond to the inversion
of a two-sided single-step test are defined as �̂�j ± V̂ 1∕2

j q′
𝛼
, where q′

𝛼
is defined as q′

𝛼
: P(max(|Z|) ≥ q′) = 𝛼.

In an actual analysis, the closed testing procedure may be preferred over the single-step procedure as it is more powerful.
It is possible to construct confidence regions that correspond to the inversion of the closed testing procedure. However, such
regions would typically be of complex shape and not easily interpreted, and the projections of such a region onto univariate
confidence intervals would typically not retain the advantage of the closed test over the single-step test.41

4 Simulation study
In six different simulation scenarios and for different parameter sets, we studied the operating characteristics of the proposed
multivariate inference methods and compared them with the Bonferroni–Holm multiplicity adjustment and a single logrank
test.

We considered seven parameter sets. In parameter set 1, we included the average hazard ratio and the restricted mean
survival time as an example of joint inference using two alternative summary measures of a possible treatment benefit.

In parameter set 2, we included the between-group difference in survival probabilities after 1, 2 and 3 years as well as
25% quantiles and the restricted mean survival time. This parameter set was intended to illustrate an analysis where one
summary measure (RMST) is combined with several statistics that allow a point-wise description of the survival differences.
Parameter set 3 was defined similarly, albeit replacing survival probabilities and quantiles by their log-transformations.
This set was included to study a possible effect of log transformation on the finite sample properties of the distributional
approximation. In a similar spirit, parameter set 4 included cloglog-transformed survival probabilities combined with the
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average hazard ratio. The comparison of untransformed, log-transformed and cloglog-transformed survival differences is
of particular interest as the asymptotic normal approximation may work differently well with small sample sizes depending
on the chosen transformation.

Parameter sets 5 to 7 were designed to study simultaneous inference for the logrank test combined with estimators for
several parameters that quantify differences between the survival functions. Parameter sets 5 and 6 included the logrank
test and differences in untransformed or cloglog-transformed survival probabilities, respectively. In parameter set 7, we
combined the logrank test with estimates for the average hazard ratio and restricted mean survival time.

In all scenarios, a cut-off value of 3 years was set for the restricted mean survival time, for (average) hazard ratios and
for the calculation of the logrank test. The rationale for this approach was to have an interpretable comparison between the
logrank test on the one side and RMST and average hazard ratio on the other side. By applying the same cut-off value to
all methods, they use the same data and the results are comparable. If the logrank test was used without cut-off it would
be difficult to say if power differences are due to more data being available to the logrank test or due to inherent power
differences.

Table 2 shows a summary of the considered parameter sets and the true values of the respective parameters in the
simulation scenarios. Further simulation scenarios, including also the Cox model hazard ratio (despite its limitation) are
considered in the Supplemental material.

To assess the coverage probabilities of confidence intervals, simulations were performed for parameter sets 1 to 4 (see
Table 2) with sample sizes 50, 100, 200 or 1000 per group. Adjusted and unadjusted two-sided confidence intervals with a
nominal (simultaneous) coverage probability of 95% were calculated. The asymptotic covariance matrix estimate and the
perturbation-based estimate, both with adjustment for ties, were used.

To assess type I error rate and power of hypothesis tests, simulations were performed for parameter sets 5 to 7 (see
Table 2) with a sample size of 50 and 200 per group, under the alternative and under the null hypothesis of identical survival
curves. In the latter case, data for both groups was sampled from the distribution of the control group. For each parameter
set (𝜃1,… , 𝜃m), the elementary null hypotheses H1 : 𝜃1 = 0,… , Hm : 𝜃m = 0 versus one-sided alternatives were considered,
as well as the global null hypothesis ∩m

i=1
Hi. The null hypotheses were tested with the closed testing procedure described in

Section 3 and, for comparison, with unadjusted and with Bonferroni–Holm adjusted tests where the elementary p-values
were computed based on univariate normal approximations. The nominal (family-wise) one-sided significance level was
set to 0.025. To calculate the critical values, the asymptotic covariance matrix estimate with adjustment for ties was used
(see Section 2.1). Simulation results using the resampling-based covariance estimate (see Section 2.3) are given in the
Supplemental material.

All simulations were repeated 50,000 times. The resulting simulation standard error for type I error rate, power or
confidence interval coverage can be assessed from the normal approximation to the binomial distribution. It is at most 0.22
percentage points. Assuming a true type I error rate of 2.5% one-sided and a true confidence interval coverage of 95%
two-sided, respective simulation standard errors are 0.07 or 0.10 percentage points only. However, with a sample size of 50
per group under scenario 1, in 24 out of 50,000 runs, the variance of the 1-year survival probability was not estimable due
to zero events within 1 year in one group. These runs were excluded from the calculations.

4.1 Simulation scenarios
In all scenarios, we compare two groups with an equal number of patients per group in (50, 100, 200, 1000). Recruitment
was assumed to be uniform over 1 or 1.5 years (depending on the scenario) and the maximum follow-up time was 3.5 years
in all scenarios. Furthermore, we applied random censoring according to an exponential distribution with rate − log(0.9)
such that, given no other events occur, on average within 1 year 10% and within 2 years 19% of subjects are censored.
Simulated survival times were rounded to full days to reflect the degree of precision and the occurrence of ties as observed
in actual trials.

The scenarios are described in detail below, and the resulting survival functions, hazard functions and hazard ratios as
a function of time are shown in Figure 1.

Scenario 1, delayed onset of treatment effect: In Scenario 1, we sampled data for the treatment group from a
lognormal(0.8, 0.82) distribution and data for the control group from a lognormal(log(exp(0.8)−0.5), (log(exp(0.8)−0.5))2)
distribution. The distributions were chosen to resemble a setting with a delayed onset of the treatment effect. During the
initial phase, the control group has slightly better survival, which may occur if the treatment effect is observed only after
a certain duration of treatment, but the potential risk of side effects increases immediately after treatment starts. The
recruitment phase in the simulation was 1.5 years.

Scenario 2, crossing survival curves, fast recruitment: In Scenario 2, we used Weibull(2,1.8) and Weibull(3.5,0.8)
distributions (where parameters refer to scale and shape) for the treatment and the control group, respectively. The resulting



598 Statistical Methods in Medical Research 33(4)

Ta
bl

e
2.

Pa
ra

m
et

er
se

ts
in

th
e

si
m

ul
at

io
n

st
ud

y.
A

ll
pa

ra
m

et
er

s
co

ns
id

er
ed

in
th

e
si

m
ul

at
io

n
ar

e
lis

te
d

an
d

th
ei

r
tr

ue
va

lu
es

ar
e

sh
ow

n
fo

r
sc

en
ar

io
s

1
to

6
of

Se
ct

io
n

4.
1.

Fo
r

lo
g-

sc
al

ed
pa

ra
m

et
er

s
of

Se
ct

io
n

2.
2,

ba
ck

-t
ra

ns
fo

rm
ed

va
lu

es
,t

ha
t

is
,r

at
io

s,
ar

e
sh

ow
n

in
th

e
ta

bl
e.

T
he

ex
pe

ct
ed

va
lu

e
of

th
e

C
ox

m
od

el
H

R
es

tim
at

e
is

sh
ow

n
fo

r
co

m
pa

ri
so

n.
Fo

r
th

e
sc

or
e

te
st

,t
he

ex
pe

ct
ed

co
nt

ri
bu

tio
n

of
an

in
di

vi
du

al
to

th
e

su
m

m
ed

sc
or

e
st

at
is

tic
is

sh
ow

n.
C

ro
ss

-m
ar

ks
(x

)
in

di
ca

te
w

hi
ch

pa
ra

m
et

er
is

in
cl

ud
ed

in
w

hi
ch

se
t.

Sc
en

ar
io

Pa
ra

m
et

er
se

t

Pa
ra

m
et

er
In

te
rp

re
ta

tio
n

T
im

e
1

2
3

4
5

6
1

2
3

4
5

6
7

S
Su

rv
iv

al
di

ff.
1

0.
00

−
0.

06
−

0.
06

0.
12

0.
12

0.
17

x
x

S
2

0.
16

0.
16

0.
16

0.
15

0.
10

0.
15

x
x

S
3

0.
20

0.
29

0.
29

0.
15

0.
09

0.
10

x
x

lo
gS

Su
rv

iv
al

ra
tio

1
1.

00
0.

92
0.

92
1.

19
1.

34
1.

35
x

lo
gS

2
1.

41
1.

43
1.

43
1.

42
1.

63
1.

70
x

lo
gS

3
2.

28
3.

29
3.

29
1.

69
1.

74
2.

05
x

Q
25

%
qu

.d
iff

.
0.

10
−

0.
26

−
0.

26
0.

31
0.

09
0.

29
x

lo
gQ

25
%

qu
.r

at
io

1.
09

0.
74

0.
74

1.
54

1.
29

1.
71

x
R

M
ST

R
M

ST
di

ff.
3

0.
26

0.
20

0.
20

0.
36

0.
28

0.
40

x
x

x
x

cl
og

lo
gS

C
um

ul
at

iv
e

H
R

1
1.

00
1.

28
1.

28
0.

65
0.

73
0.

60
x

x
cl

og
lo

gS
2

0.
63

0.
64

0.
64

0.
65

0.
73

0.
65

x
x

cl
og

lo
gS

3
0.

56
0.

43
0.

43
0.

65
0.

74
0.

69
x

x
av

gH
R

A
ve

ra
ge

H
R

3
0.

67
0.

75
0.

75
0.

65
0.

74
0.

62
x

x
x

H
R

C
ox

m
od

el
H

R
3

0.
63

0.
62

0.
69

0.
65

0.
73

0.
64

sc
or

e
Sc

or
e

te
st

3
-0

.0
7

−
0.

07
−

0.
05

−
0.

06
−

0.
06

−
0.

08
x

x
x

H
R

:h
az

ar
d

ra
tio

;a
vg

H
R

:a
ve

ra
ge

H
R

:R
M

ST
:r

es
tr

ic
te

d
m

ea
n

su
rv

iv
al

tim
e;

cl
og

lo
gS

:c
om

pl
em

en
ta

ry
lo

g–
lo

g
sc

en
ar

io
.



Ristl et al. 599

Figure 1. Simulation scenarios. Left column: True survival functions for treatment and control group. Vertical dashed lines indicate
the 1-, 2- and 3-year time point. The horizontal line indicates the 25% quantile. Middle column: True hazard rates (per year) as a
function of time for treatment and control group. Right column: Hazard ratio between treatment and control as a function of time.
Dotted and dash-dotted lines indicate the large sample limit of the Cox model hazard ratio estimate and the true average hazard
ratio as defined in Section 2.2, both calculated with a cut-off at 3 years.
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distributions, as illustrated in Figure 1, show a pronounced crossing of the survival functions and the hazard functions. The
assumed duration of the recruitment phase was 1 year.

Scenario 3, crossing survival curves, slow recruitment: Scenario 3 was identical to scenario 2, except that the duration
of the recruitment phase was 2 years, which resulted in a modified censoring pattern.

Scenario 4, proportional hazards: In Scenario 4, data are sampled from Exp(0.5) and Exp(0.5⋅0.65) distributions,
meeting the proportional hazards assumption with a hazard ratio of 0.65, with a recruitment phase of 1 year.

Scenario 5, cure fraction: In scenario 5, we assumed that 30% of patients belong to a subpopulation of strong treat-
ment responders in whom the treatment leads to a complete cure and we further assumed that in the control group, patients
are switched to active treatment after disease progression with 70% probability. Transitions to progression or death were
assumed to be governed by independent processes with constant rates. Hazard rates for death were 0.69 per year before pro-
gression and 2.77 per year after progression and the progression rate was 1.39 per year. (This corresponds to median event
times for the three processes of 12, 6 and 3 months, respectively.) The recruitment phase was 1.5 years. Data simulation
for scenarios 5 and 6 was performed using The R library nph.5

Scenario 6, rescue medication: In the final scenario, we assume that a rescue medication is applied to all patients in
both groups after disease progression. The assumed hazard rates per year for death were 0.35 under treatment, 0.69 under
control and 0.83 under rescue medication (corresponding to median times of 24, 12 and 10 months). Progression rates were
0.52 under treatment and 0.92 under control (corresponding to median times of 16 and 9 months). The recruitment phase
was 1.5 years.

4.2 Simulation results
The empirical coverage probabilities of simultaneous confidence intervals as well as of unadjusted, univariate confidence
intervals were in general close to the nominal 95% with sizes of 200 or 1000 per group (and approximately half as many
events), for both the asymptotic and the perturbation covariance matrix estimate. With sample sizes of 50 or 100 per
group, deviations from the nominal coverage were mostly below one percentage point. Stronger deviations due to small
sample sizes were observed when including log-transformed survival probabilities, as opposed to untransformed or cloglog-
transformed survival probabilities, with the asymptotic covariance matrix estimate. In contrast, intervals for the difference
in cloglog-transformed survival were overly conservative with the perturbation approach applied to small sample sizes, in
particular for early time points. In general, the perturbation method was less robust with respect to small sample sizes than
methods using the asymptotic covariance matrix estimate, however, deviations led to conservative tests in almost all cases.
For both methods, deviations from the nominal coverage were not specific to the simultaneous inference methods but were
also observed for the univariate confidence intervals. Results for the asymptotic covariance estimate are shown in Figures 2
and 3, results for the perturbation-based covariance estimate are shown in Figures S1 and S2 in the Supplemental material.
The univariate coverage of multiplicity-adjusted intervals was >95%, but the intervals were less conservative than simple
Bonferroni-adjusted intervals. Similar results with close to nominal coverage under sufficient sample sizes were observed
for parameter sets including the Cox model hazard ratio, see Figures S3 and S4 in the Supplemental material.

With a sample size of 200 per group, the type I error rate of one-sided unadjusted hypothesis tests for the studied
parameters was well controlled at the 2.5% level with the exception of tests for untransformed survival probabilities.
However, it is well known that the normal approximation for untransformed survival probabilities may not be entirely
appropriate with small sample sizes. In contrast, tests for cloglog-transformed survival did control the type I error rate. See
column ‘T1E unadj’ in Tables 3 and 4.

Without adjustment, the type I error rate for the global null hypothesis of no difference in any included parameter was
in the order of 6.5% to 7.5% in the studied scenarios. Multiplicity adjustment using the proposed multivariate normal
approximation resulted in type I error rates close to the nominal 2.5%. Some inflation was still observed for parameter sets
containing untransformed survival probabilities, which likely results from the inaccuracy even of the univariate approxi-
mation for these parameters (see column ‘T1E adj’ in Tables 3 and 4). Adjustment using the Bonferroni–Holm test resulted
in strictly conservative tests and adjusted significance levels below those of the multivariate normal-based closed test (see
column ‘T1E adj’ and ‘T1E Holm’ in the result tables).

The power of the multivariate normal-adjusted tests for the global null hypothesis was on average 4.0 percentage points
below the power of corresponding unadjusted tests. For comparison, Bonferroni-adjusted tests were on average 7.7 per-
centage points less powerful than the unadjusted tests. (See columns regarding power and rows with parameter label ’Any’
in Tables 3 and 4.) Similarly, the power for elementary hypothesis tests was on average 4.4 percentage points lower with the
multivariate normal-based closed test compared to unadjusted univariate tests. The Bonferroni–Holm procedure resulted
on average in 7.2 percentage points lower power compared to unadjusted tests.
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Table 3. T1E and Pow for unadj tests, multiplicity adjustment through the multivariate normal-based closed test (adj) and Holm
tests, observed in 50,000 simulation runs for scenarios 1–3. Rows labelled ‘Any’ refer to the probability of rejecting the null
hypothesis for at least one included parameter (i.e. family-wise T1E or Pow). Further rows show the rejection probability for each
specific parameter included in the parameter set. The sample size in the simulation was 200 subjects per group. Values are presented
as per cent.

Scenario Set Parameter T1E unadj T1E adj T1E Holm Pow unadj Pow adj Pow Holm

1 5 Any 7.56 2.73 2.21 97.2 92.5 91.1
S 1 2.58 0.92 0.75 2.6 2.5 2.5
S 2 2.54 0.92 0.76 84.7 76.6 75.4
S 3 2.59 0.95 0.79 92.3 86.2 85.2
Score test 2.44 0.80 0.64 92.9 86.3 84.4

6 Any 7.13 2.38 1.87 97.1 92.2 90.5
cloglogS 1 2.42 0.78 0.60 2.4 2.3 2.3
cloglogS 2 2.48 0.86 0.71 84.4 75.9 74.6
cloglogS 3 2.31 0.74 0.60 92.1 85.5 84.4
Score test 2.44 0.79 0.62 92.9 86.2 84.2

7 Any 3.22 2.46 1.01 92.9 91.1 84.7
avgHR 2.54 2.10 0.96 84.8 83.8 78.1
RMST 2.54 2.10 0.95 83 82.4 77.8
Score test 2.44 2.00 0.96 92.9 91.0 84.7

2 5 Any 7.41 2.65 2.13 100.0 99.9 99.9
S 1 2.6 0.89 0.71 0.1 0.1 0.1
S 2 2.58 0.91 0.75 86.0 79.6 78.2
S 3 2.51 0.87 0.73 100.0 99.9 99.9
Score test 2.46 0.90 0.71 95.3 91.3 89.6

6 Any 7.09 2.39 1.90 100.0 99.9 99.9
cloglogS 1 2.47 0.79 0.61 0.1 0.1 0.1
cloglogS 2 2.5 0.86 0.70 85.7 79.1 77.7
cloglogS 3 2.31 0.71 0.60 100.0 99.9 99.9
Score test 2.46 0.89 0.71 95.3 91.3 89.6

7 Any 3.38 2.52 1.14 95.3 93.8 89.0
avgHR 2.63 2.11 1.04 60.6 58.1 49.6
RMST 2.62 2.11 1.04 47.9 47.6 45.1
Score test 2.46 2.01 1.10 95.3 93.8 89.0

3 5 Any 7.67 2.72 2.24 99.6 98.6 98.2
S 1 2.52 0.84 0.73 0.1 0.1 0.1
S 2 2.45 0.86 0.70 83.6 75.2 72.3
S 3 2.78 1.01 0.84 99.4 98.2 97.7
Score test 2.31 0.87 0.70 76.7 67.6 64.7

6 Any 7.06 2.27 1.80 99.6 98.4 97.9
cloglogS 1 2.41 0.77 0.63 0.1 0.1 0.1
cloglogS 2 2.39 0.78 0.62 83.2 74.6 71.6
cloglogS 3 2.21 0.62 0.49 99.3 98.0 97.4
Score test 2.31 0.85 0.69 76.7 67.5 64.6

7 Any 2.9 2.28 1.01 76.7 72.4 60.7
avgHR 2.43 2.05 0.98 56.9 53.8 45.7
RMST 2.37 2.02 0.98 45.8 45.2 42.1
Score test 2.31 1.96 1.00 76.7 72.4 60.7

T1E: type 1 error rate; Pow: power; unadj: unadjusted; adj: adjusted; Holm: Bonferroni–Holm adj; HR: hazard ratio; avgHR: average HR; RMST:
restricted mean survival time; S 1: scenario 1; S 2: scenario 2; S 3: scenario 3; cloglogS 1: complementary log–log scenario 1; cloglogS 2: complementary
log–log scenario 2; cloglogS 3: complementary log–log scenario 3.
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Table 4. T1E and Pow for unadj tests, multiplicity adj through the multivariate normal-based closed test (adj) and Holm tests,
observed in 50,000 simulation runs for scenarios 4–6. Rows labelled ‘Any’ refer to the probability of rejecting the null hypothesis for
at least one included parameter (i.e. family-wise T1E or Pow). Further rows show the rejection probability for each specific
parameter included in the parameter set. The sample size in the simulation was 200 subjects per group. Values are presented as per
cent.

Scenario Set Parameter T1E unadj T1E adj T1E Holm Pow unadj Pow adj Pow Holm

4 5 Any 6.41 2.46 1.74 94.6 88.4 85.2
S 1 2.39 0.94 0.73 66.8 62.6 61.3
S 2 2.61 1.05 0.73 83.5 77.1 74.9
S 3 2.56 1.01 0.76 83.0 77.0 75.3
Score test 2.45 0.99 0.70 91.6 85.0 81.7

6 Any 6.24 2.31 1.60 94.5 88.1 84.8
cloglogS 1 2.31 0.88 0.66 66.1 61.7 60.4
cloglogS 2 2.55 0.99 0.69 83.2 76.5 74.1
cloglogS 3 2.47 0.93 0.69 82.7 76.5 74.7
Score test 2.45 0.98 0.69 91.6 84.9 81.6

7 Any 3.27 2.40 1.12 92.8 90.9 84.7
avgHR 2.47 1.98 1.04 90.6 89.3 83.8
RMST 2.50 2.00 1.04 90.0 88.9 83.9
Score test 2.45 1.97 1.07 91.6 90.2 84.5

5 5 Any 6.30 2.58 1.79 83.9 71.7 65.9
S 1 2.58 1.10 0.80 63.6 54.9 51.9
S 2 2.49 1.08 0.76 64.6 55.3 51.3
S 3 2.60 1.11 0.79 54.0 46.9 44.2
Score test 2.45 1.07 0.74 76.7 65.3 59.7

6 Any 6.06 2.37 1.63 83.6 71.1 65.2
cloglogS 1 2.51 1.04 0.75 63.1 54.2 51.1
cloglogS 2 2.46 1.04 0.72 64.3 54.7 50.7
cloglogS 3 2.39 0.93 0.66 53.5 46.1 43.4
Score test 2.45 1.07 0.73 76.7 65.3 59.5

7 Any 3.53 2.40 1.26 79.9 75.1 65.2
avgHR 2.49 1.88 1.12 71.6 69.6 63.3
RMST 2.49 1.88 1.03 77.0 73.4 64.1
Score test 2.45 1.85 1.01 76.7 73.0 64.1

6 5 Any 7.16 2.58 1.97 98.1 94.6 93.2
S 1 2.42 0.84 0.68 90.4 85.4 84.5
S 2 2.63 0.95 0.73 88.0 82.2 81.1
S 3 2.67 1.03 0.78 56.8 54.1 53.6
Score test 2.51 0.93 0.73 96.7 92.7 91.0

6 Any 6.58 2.17 1.65 98.1 94.4 93.0
cloglogS 1 2.35 0.77 0.64 90.1 84.8 83.8
cloglogS 2 2.57 0.89 0.68 87.7 81.7 80.6
cloglogS 3 2.11 0.65 0.48 56.4 53.4 52.9
Score test 2.51 0.92 0.72 96.7 92.6 91.0

7 Any 3.36 2.44 1.16 98.0 97.3 94.7
avgHR 2.52 2.03 1.10 97.5 97.0 94.6
RMST 2.54 2.01 1.04 97.4 96.8 94.3
Score test 2.51 1.97 1.05 96.7 96.3 94.3

T1E: type 1 error rate; Pow: power; unadj: unadjusted; adj: adjusted; Holm: Bonferroni–Holm adj; HR: hazard ratio; avgHR: average HR; RMST:
restricted mean survival time; S 1: scenario 1; S 2: scenario 2; S 3: scenario 3; cloglogS 1: complementary log–log scenario 1; cloglogS 2: complementary
log–log scenario 2; cloglogS 3: complementary log–log scenario 3.



Ristl et al. 603

Figure 2. Empirical coverage of confidence intervals for scenarios 1–3, based on the multivariate normal distribution with
asymptotic covariance matrix estimate. Filled circles show the simultaneous coverage (All) and univariate coverage probability of
multiplicity-adjusted intervals for single parameters (abbreviations as in Table 2). Open circles represent the coverage of unadjusted
univariate confidence intervals. Error bars represent 95% Wald confidence intervals for the respective coverage probabilities. For
comparison, the horizontal solid line indicates the nominal coverage of 95%, and the horizontal dashed line indicates the univariate
confidence level that would result from a Bonferroni adjustment for the respective number of parameters. S 1: scenario 1; S 2:
scenario 2; S 3: scenario 3; avgHR: average hazard ratio; RMST: restricted mean survival time; logS 1; log scenario 1; logS 2; log
scenario 2; logS 3; log scenario 3; cloglogS 1: complementary log–log scenario 1; cloglogS 2: complementary log–log scenario 2;
cloglogS 3: complementary log–log scenario 3.

That means, averaged across the studied settings, the proposed testing procedure retains almost half the power loss,
which would occur with a simpler Bonferroni–Holm approach.

When comparing the approach to test multiple parameters with a single Cox model score test, in scenarios with strong
non-proportionality of hazard functions (scenarios 1, 2 and 3), the hypothesis test for a difference in 3-year survival or
3-year cloglog-transformed survival was of similar (scenario 1) or larger power (scenarios 2 and 3) compared to the score
test.

When including the difference for 1-year, 2-year, and 3-year survival (or cloglog-transformed survival) and the score test
in one parameter set and adjusting for multiple testing, the power to show a difference in at least one considered parameter
was similar (Scenario 1) or considerably larger (Scenarios 2 and 3) than the power of a single unadjusted score test. Further,
the power to show a difference in at least one parameter under multiplicity adjustment was similar to the unadjusted power
of the most powerful univariate comparison (either 3-year survival or score test).

This implies that, first, under severely non-proportional hazards, testing for differences at a well-chosen milestone
time-point can be more powerful than the score test. And, secondly, testing several milestone time points and adjust-
ing for multiplicity will often be a better choice than selecting one time-point in advance and avoid multiple testing,
as the multiplicity adjustment with the proposed method will mostly maintain the power of the most powerful univariate
comparison.
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Figure 3. Empirical coverage of confidence intervals for Scenarios 4–6, based on the multivariate normal distribution with
asymptotic covariance matrix estimate. Further details as in Figure 2. S 1: scenario 1; S 2: scenario 2; S 3: scenario 3; avgHR: average
hazard ratio; RMST: restricted mean survival time; logS 1; log scenario 1; logS 2; log scenario 2; logS 3; log scenario 3; cloglogS 1:
complementary log–log scenario 1; cloglogS 2: complementary log–log scenario 2; cloglogS 3: complementary log–log scenario 3.

When comparing the score test for the Cox model hazard ratio with tests for the two other summary measures (average
hazard ratio and RMST difference), the score test performs by far best in the three scenarios with strongly non-proportional
hazards.

In scenarios with proportional hazards (scenario 4) or moderate non-proportionality (scenarios 5 and 6), the score test
was more powerful, in the order of 10 percentage points, than the best comparison for survival at either milestone time
point. Also, the unadjusted power of the score test was larger than the adjusted power to reject at least one of the considered
null hypotheses by two to five percentage points. Tests for average hazard ratio and RMST difference had almost identical
power as the score test in scenarios 4 and 6 and when combining all three tests, the adjusted power to reject at least one null
hypothesis was also at the almost same value as the power of the unadjusted tests. In scenario 6, the score test and the test
for RMST difference both had a power of ∼77%, whereas the test for average hazard ratio was at 71.6%. Still, the power
of the better tests was almost retained in adjusted power to reject at least one null hypothesis with a value of 75%.

Similar patterns were observed with sample sizes of 50 per group, see Tables S1 and S2 in the Supplemental material.
As the main differences to the moderate sample size setting, tests based on cloglog survival probabilities were increasingly
conservative in the small sample setting with family-wise type I error rates between 1.65% and 2.47% when using the
multivariate normal adjustment. Similar to the larger sample size, tests that included untransformed survival probabilities
were liberal, with family-wise type I error rates up to 2.97%. The family-wise type I error rate was controlled at the 2.5%
level for the parameter set comprising the average hazard ratio, RMST difference and the score test.

Taken together, the simulation results show that in terms of power to show at least some difference, the score test (or
logrank test) is in most settings a robust choice. However, to increase robustness or to aid in the interpretation of the pattern
of differences between survival curves, the test may be complemented by tests for further parameters and, when applying
the proposed multiplicity adjustment, the adjusted overall power to find some difference will typically remain at a very
similar level as the power of the best-included test.
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Figure 4. Estimated survival functions for the example data based on Figure 2D of Burtness et al.22

5 Data example
As an illustrating example, we considered comparisons from the study ‘Pembrolizumab alone or with chemotherapy versus
cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048):
a randomised, open-label, phase 3 study’ by Burtness et al.22 The survival curves shown in this study exhibit obvious prop-
erties of non-proportional hazards. For the comparison of pembrolizumab alone versus cetuximab with chemotherapy,
survival curves were crossing, with better survival under cetuximab with chemotherapy in the first eight months and sub-
sequent better survival under pembrolizumab. In the comparison of pembrolizumab with chemotherapy versus cetuximab
with chemotherapy, survival curves were almost equal in both groups for the first eight months with subsequent separation
of the two curves, showing a benefit for the pembrolizumab group.

We reconstructed a data set for the comparison of overall survival in the full population under pembrolizumab alone
versus cetuximab with chemotherapy based on the numbers at risk and the number of censored event times, which are given
for every five-month interval in Figure 2D of this publication.22 In the reconstructed data set, event times and censoring
times, respectively, were equally spread within each five-month interval. The survival functions for the reconstructed data
set were estimated using the Nelson–Aalen method and are shown in Figure 4. The data set contains 301 subjects with 237
events in the pembrolizumab alone group and 300 subjects with 264 events in the cetuximab with chemotherapy group. The
overall median and maximum follow-up times are 0.96 years and 3.96 years. In the study by Burtness et al.,22 confirmatory
tests were performed for the Cox model hazard ratio between groups. As discussed, under non-proportional hazards, the
expected value of the Cox model hazard ratio depends on trial characteristics such as the length of recruitment and follow-
up periods and other parameters may be more appropriate to quantify the treatment effect, in particular, under crossing
survival curves (see, e.g. Magirr and Burman9). Accordingly, survival functions were further characterized in Burtness
et al.22 by reporting 0.5-year survival, 1-year survival and median survival times, however, no inference for the between-
group difference of these parameters and, consequently, no adjustment for simultaneous inference was provided. In our
example, assume there is some information from previous studies that the survival curves will likely show late separation
and a standard analysis may hence be affected by non-proportional hazards.

We consider two alternative analysis approaches. The first approach is focused on establishing a difference between
survival curves based on a small set of parameters, the second one aims at a characterization of differences by confidence
intervals for a larger set of parameters.

In the first approach, two primary null hypotheses for the overall differences in survival functions and for the difference
in 2-year survival probabilities are defined and tested, respectively, with the Cox model score test and the Wald test for
survival differences. Multiplicity adjustment at the simultaneous one-sided significance level of 0.025 is applied, using the
closed test based on the multivariate normal distribution with asymptotic covariance estimate. This analysis is intended to
show at least some benefits of pembrolizumab (Group 1) over cetuximab (Group 0). Two tests are combined to complement
a possible lack in power of the score test compared to the potentially large difference in survival at a late milestone time
point. The according null hypotheses are H01 : 𝜆1(s) ≥ 𝜆0(s),∀s ≤ 0 ≤ 3.5 and H02 : S1(2) ≤ S0(2).



606 Statistical Methods in Medical Research 33(4)

Table 5. Analysis of example data based on Figure 2D of Burtness et al.22 Selected parameters of the survival function under
pembrolizumab and cetuximab are compared using unadj confidence intervals, simultaneous confidence intervals with adjustment
based on the MVN distribution (MVN adjusted) and Bonferroni-adjusted intervals.

95% Confidence intervals

Parameter Pembro. Cetux. Difference Unadjusted MVN adjusted Bonferroni

0.5-year survival 0.721 0.763 −0.042 [−0.112, 0.028] [−0.129, 0.044] [−0.134, 0.049]
1-year survival 0.514 0.465 0.049 [−0.030, 0.129] [−0.049, 0.148] [−0.056, 0.155]
2-year survival 0.277 0.189 0.088 [0.021, 0.155] [0.005, 0.171] [−0.001, 0.177]
Median survival 1.037 0.915 0.122 [−0.075, 0.319] [−0.121, 0.365] [−0.136, 0.381]
3.5-year RMST 1.436 1.232 0.204 [0.027, 0.381] [−0.015, 0.422] [−0.029, 0.437]

unadj: unadjusted; MVN: multivariate normal; RMST: restricted mean survival time.

The resulting unadjusted one-sided p-values for H01 and H02 are p1 = 0.0100 and p2 = 0.0053. The according
multiplicity-adjusted one-sided p-values, resulting from the multivariate normal-based closed test, are p1,adj = 0.0100
and p2,adj = 0.0082. Hence, both null hypotheses are rejected at the one-sided family-wise significance level of 0.025.
Furthermore, the adjustment did not change the p-value of the score test, and only by a small amount increased the p-value
of the test for 2-year survival differences. In this example, the estimated correlation between the two test statistics was 0.87,
and this large correlation entails a very modest adjustment to the p-values.

To further explore the power of the considered analysis approach in the setting of the example, we performed a boot-
strap simulation study. Bootstrap samples of the same size as the original data were obtained by sampling patients with
replacement from the example data set. The above analyses were applied to 50,000 bootstrap samples at the one-sided
0.025 significance level. For the score test, the empirical power values without multiplicity adjustment, with adjustment
using the multivariate normal-based closed test and with Bonferroni–Holm adjustment were 65.8%, 63.2% and 60.9%.
The respective power values for the 2-year survival difference were larger with 72.0%, 68.2% and 64.8%.

In the second example analysis approach, the difference in survival curves is characterized by a parameter set that
includes the differences in 0.5-year survival, 1-year survival, 2-year survival, median survival times and 3.5-year RMST.
Simultaneous two-sided 95% confidence intervals for these parameters are calculated using the multivariate normal
adjustment with the asymptotic covariance estimate.

The results of the second analysis are shown in Table 5. In this example, the width of Bonferroni-adjusted confidence
intervals is 1.064 times the width of multivariate normal-adjusted intervals.

The analysis shows that regarding 0.5-year survival, lower efficacy of pembrolizumab alone or with chemotherapy versus
cetuximab cannot be ruled out, with a difference up to 13 percentage points at the adjusted 95% confidence level. At 1-
year, the relation has reversed with point estimates for survival probabilities and for the median, which is close to 1 year in
both groups, favouring pembrolizumab. Albeit uncertainty remains at this time point, reflected in the confidence intervals
that cover the possibility of no between-groups difference in 1-year survival and in the median survival times. Only at
longer time spans point estimates and confidence intervals for 2-year survival and the 3.5-year RMST difference support
the conclusion of larger benefit under pembrolizumab.

6 Software implementation
The proposed methods were implemented in the R42 function nphparams(). This function was added to the previously
published R library nph,5 which provides functions to simulate and analyse survival data under non-proportional hazards.
The function makes use of the R library multcomp,39 which provides general functions for simultaneous inference with
multivariate normal statistics. The example data set of Section 5, too, was added to the nph package under the name pembro.
Appendix A.1 contains R code that may be applied to reproduce the exemplary data analysis.

Computing time is not restrictive for the proposed methods. In the analysis of the example data, the application of the
nphparams() R-function to parameter set 2 (comprising 0.5-, 1- and 2-year survival difference, median survival difference
and RMST) takes 0.3 s when using the asymptotic covariance estimate and 0.4, 0.5 or 2.7 s when using the perturbation
approach with 500 (default), 1000 or 10,000 perturbations on a 3.4 GHz processor.

7 Discussion
In the absence of the proportional hazard assumption, the exact definition of a survival benefit under treatment versus control
is ambiguous. Essentially, two distribution functions need to be compared and different aspects of these distributions may
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receive different emphases depending on personal preferences or circumstances. For example, a survey by Shafrin et al.43

among melanoma patients and lung cancer patients and their treating physicians found that patients on average preferred a
larger chance for increased long-term survival and in exchange were more willing to accept increased short-time risk for
mortality as opposed to their physicians.

Consequently, to formally establish a benefit of treatment over control in a clinical trial under non-proportional hazards,
more than one parameter for the difference in survival functions needs to be regarded. Our aim was to provide a formal
inference framework that is applicable, both, under non-proportional and proportional hazard settings, that includes a wide
range of suitable parameters and that allows for an efficient parametric multiplicity adjustment to control the type I error
rate of hypothesis tests and the simultaneous coverage of confidence intervals.

All considered parameter estimates essentially are a function of the observed event process and as such can be combined
in a joint counting process framework that establishes their asymptotic multivariate normal distribution. Simultaneous
inference based on this distributional approximation results in more powerful procedures than adjustments such as the
Bonferroni–Holm method, which does not take into account the underlying distribution. In particular when parameters
are highly correlated, as is, for example, the case for combinations such as 3-year survival and RMST in our simulation
scenarios, only moderate multiplicity adjustment is required and the proposed methods result in little loss in efficacy
compared to unadjusted univariate analyses.

Which parameters to include in an actual analysis may depend on clinical reasoning and statistical considerations.
A set of x-year survival comparisons may be useful to provide a concise characterization of differences between two
survival curves. With small sample sizes, these comparisons should be made using the cloglog transformation to improve
the accuracy of the asymptotic-based inference. Summary measures such as RMST difference or average hazard ratio may
be added to provide an overall estimate of the treatment effect across the considered time interval. The score test may be
included to maintain robust power for hypothesis testing purposes, with further interpretation supported by a small set of
well-interpretable parameters. The number of considered parameters could be larger than in the simulation study, however,
more parameters would result in more conservative multiplicity adjustment (depending on their correlations) while the gain
in information from an increasingly large number of parameters may be limited.

Of note, in the absence of proportional hazards, the Cox model hazard ratio is not robust to design characteristics as it
depends on the timing of events and hence can be affected, for example, by the recruitment rate and length of follow-up.
Thus the traditional hazard ratio is of limited use to quantify differences in survival curves under non-proportional hazards.
In particular with crossing survival curves (or more generally crossing hazard curves) the hazard ratio estimate should be
interpreted with care. The logrank test, or equivalently the Cox model score test, however, is calculated under a global
null hypothesis of equal hazard functions and therefore is a viable approach to test the null hypothesis of equal survival
functions. Rejection of this null hypothesis implies that there is at least some difference between two survival functions,
however, it does not provide an interpretation of how strong this difference is and it does not rule out effects being of
different sizes or even show into opposite directions at different time points.

As an alternative to the proposed multidimensional parametric approach, conclusions could also be drawn from over-
all inspection of the observed survival functions, and simultaneous inference could be based on confidence bands with
simultaneous coverage.38,44 This would correspond to a fully non-parametric approach. Simultaneous confidence bands
are typically considerably wider than simultaneous confidence intervals calculated specifically for a small set of predefined
time points. For illustration, an application of this method to the example data of Section 5 and a comparison to methods
proposed in this paper can be found in the Supplemental material. Such an approach may be suitable to inform the treatment
decision of an individual patient, however, it is not suitable to define success criteria regarding efficacy in a clinical trial or
when evaluating treatment strategies in clinical practice. To interpret and communicate the effects of drugs with a complex
pattern of efficacy over time, a set of quantifying parameters seems to be a good compromise between a single parameter,
such as the hazard ratio, and a completely non-parametric approach of regarding the overall survival curves.

The multiple testing procedures described in Section 3 may be extended towards more complex methods. A serial
gate-keeping procedure45 may be used to first show a difference between treatment and control by testing an intersection
hypothesis for a small set of parameters for which a high power is expected, and in case of success assess the survival
differences in detail with respect to a larger set of relevant parameters. For example, in the example of Section 5, the
intersection hypothesis test comprising the logrank test and the test for 2-year survival could be used to establish some
difference and act as gate-keeper for the subsequent analysis of the larger parameter set. Of note, the rejection of the gate-
keeping intersection hypothesis in the first step does not automatically imply the rejection of the corresponding elementary
null hypotheses of the first set, because these are not included in the closed testing procedure that corresponds to the
gate-keeping approach. To define more complex testing procedures with several levels, hierarchies or different weights for
the included tests, parametric graphical multiple testing procedures46–48 could be defined using the estimated covariance
matrix.
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The first step in our example is similar in spirit to the combined test proposed by Royston and Parmar.49 They suggested
to perform a MaxCombo test that includes the logrank test and RMST differences at several time points. Royston and
Parmar use permutation (or an approximation thereof) to calculate p-values. However, their test can as well be performed
within the asymptotic multivariate normal framework we presented, and may be supplemented by simultaneous confidence
intervals for the included RMST differences.

Though not covered in the present work, the simultaneous inference framework may be extended to include stratified
analyses. One way to do so would be to estimate the parameters of interest and their covariance matrix for each stratum
separately and then calculate a weighted average of the per-stratum estimates and the corresponding covariance matrix.
Weights could correspond to stratum size, however, further investigations into the ideal choice of weights may be warranted.

Also, weighted logrank statistics may be included in the inference framework as a further extension. One could also
consider performing interim analyses to allow for early stopping14,50 and adaptations such as sample size reassessment51

and modification of the set of parameters, for example, adding milestone analyses at later time points. Depending on which
type of data is considered for the adaptations,51,52 appropriate adaptive tests have to be implemented.

In summary, simultaneous inference for a predefined set of survival parameters allows for a robust assessment of treat-
ment efficacy under non-proportional hazards. The required multiplicity adjustments can be performed efficiently based
on their asymptotic joint normal distribution.
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Appendix A

A.1 R code for the example data analysis
#Install and load nph library
install.packages("nph")
library(nph)

#Load example data set
data(pembro)

#Primary hypothesis tests with closed-testing
#multiplicity adjustment for parameter set 1
set1<-nphparams(time=time, event=event, group=group,data=pembro,

param_type=c("score","S"),
param_par=c(3.5,2),
param_alternative=c("less","greater"),
closed_test=TRUE,alternative_test="one.sided")

print(set1)

#Quantification of differences via simultaneous 95\% confidence intervals
#for parameter set 2
set2<-nphparams(time=time, event=event, group=group, data=pembro,

param_type=c("S","S","S","Q","RMST"),
param_par=c(0.5,1,2,0.5,3.5))

print(set2)

#Recreate Figure 4 (survival curves and indication of chosen parameters)
plot(set2,trt_name="Pembrolizumab",ctr_name="Cetuximab",

showlines=TRUE)
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