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Abstract

Motivation: Intra-tumor heterogeneity is one of the key confounding factors in deciphering tumor

evolution. Malignant cells exhibit variations in their gene expression, copy numbers and mutation

even when originating from a single progenitor cell. Single cell sequencing of tumor cells has re-

cently emerged as a viable option for unmasking the underlying tumor heterogeneity. However,

extracting features from single cell genomic data in order to infer their evolutionary trajectory

remains computationally challenging due to the extremely noisy and sparse nature of the data.

Results: Here we describe ‘Dhaka’, a variational autoencoder method which transforms single cell

genomic data to a reduced dimension feature space that is more efficient in differentiating between

(hidden) tumor subpopulations. Our method is general and can be applied to several different

types of genomic data including copy number variation from scDNA-Seq and gene expression

from scRNA-Seq experiments. We tested the method on synthetic and six single cell cancer data-

sets where the number of cells ranges from 250 to 6000 for each sample. Analysis of the resulting

feature space revealed subpopulations of cells and their marker genes. The features are also able

to infer the lineage and/or differentiation trajectory between cells greatly improving upon prior

methods suggested for feature extraction and dimensionality reduction of such data.

Availability and implementation: All the datasets used in the paper are publicly available and

developed software package and supporting info is available on Github https://github.com/

MicrosoftGenomics/Dhaka.

Contact: ravip@microsoft.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Tumor cells are often very heterogeneous. Typical cancer progres-

sion consists of a prolonged clinically latent period during which

several new mutations arise leading to changes in gene expression

and DNA copy number for several genes (Andor et al., 2016; de

Bruin et al., 2014; Min et al., 2015). As a result of such genomic

variability, we often see multiple subpopulations of cells within a

single tumor.

The goal of effective cancer treatment is to treat all malignant

cells without harming the originating host tissue. Clinical

approaches should thus take into account the underlying evolution-

ary structure in order to identify treatments that can specifically
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target malignant cells while not affecting their normal cell of origin.

It is also important to determine if the ancestral tumor clones even-

tually disappear (chain like evolution) or if several genotypically dif-

ferent clones of cells evolved in parallel (branched evolution)

(de Bruin et al., 2014). Tumors resulting from these two evolution-

ary trajectories respond differently and ignoring the evolutionary

process when determining treatment can lead to therapy resistance

and possible cancer recurrence. Thus, characterization of the hidden

subpopulations and their underlying evolutionary structure is an im-

portant issue for both the biological understanding and clinical

treatment of cancer. Prior studies have mainly relied on bulk

sequencing to investigate tumor evolution (Navin and Hicks, 2010;

Russnes et al., 2011). In such experiments thousands of cells are

sequenced together, which averages out the genomic characteristics

of the individual cells making it hard to infer these subpopulations.

More recently, single cell sequencing has emerged as a useful tool to

study such cellular heterogeneity (Giustacchini et al., 2017; Tirosh

et al., 2016b; Venteicher et al., 2017; Zahn et al., 2017).

While single cell data are clearly much more appropriate for

addressing tumor heterogeneity and evolution, it also raises new

computational and experimental challenges. Due to technical chal-

lenges (e.g. the low quantity of genetic material and the coverage for

each of the cells sequenced) the resulting data are often very noisy

and sparse with many dropout events (Gawad et al., 2016; Zong

et al., 2012). These issues affect both scRNA-Seq and scDNA-Seq

experiments which are used for copy number and mutation estima-

tion. Given these issues, it remains challenging to identify meaning-

ful features that can accurately characterize the single cells in terms

of their clonal identity and differentiation state. To address this,

several methods have been proposed to transform the observed gene

expression or copy number profiles in order to generate features that

are more robust for downstream analysis. However, as we show

below, many of the feature transformation techniques that are usu-

ally applied to genomic data fail to identify the subpopulations and

their trajectories. For example, while t-distributed Stochastic

Neighbor Embedding (t-SNE) (Maaten and Hinton, 2008) and dif-

fusion maps (Roweis and Saul, 2000) are very successful in segregat-

ing cells between different tumor samples, they are less successful

when trying to characterize the evolutional trajectories of a single

tumor. Recently, several unsupervised feature transformation tech-

niques were proposed for analysis of single-cell RNA-seq data

(DeTomaso and Yosef, 2016; Li et al., 2017; Pierson and Yau,

2015; van Dijk et al., 2017; Wang et al., 2017). Among these tools,

ZIFA (Pierson and Yau, 2015) explicitly models the drop out event

in single cell RNA-seq data to improve the reduced dimension repre-

sentation whereas SIMLR (Wang et al., 2017) developed a new

similarity learning framework that can be used in conjunction with

t-SNE to reduce dimension of the data. MAGIC (van Dijk et al.,

2017) is another dimensionality reduction method that uses data dif-

fusion to denoise the cell count matrix and fill in missing transcripts.

In addition to dimensionality reduction methods, several single cell

clustering algorithms have been proposed as well (Fan et al., 2016;

Xu and Su, 2015). SNN-cliq (Xu and Su, 2015) constructs a shared

k-nearest neighbor graph across all cells and then finds maximal cli-

ques and PAGODA relies on prior set of annotated genes to find

transcriptomal heterogeneity. All these methods can successfully dis-

tinguish between different groups of cells in a dataset. However,

such methods are not designed for determining the relationship be-

tween the detected clusters which is the focus of tumor evolutionary

analysis. In addition, most current single cell clustering methods are

focused on only one type of genomic data (e.g. scRNA-Seq) and do

not work well for multiple types of such data.

Another direction that has been investigated for reducing the

dimensionality of scRNA-Seq data is the use of neural networks

(NN) (Gupta et al., 2015; Lin et al., 2017). In Lin et al. (2017), the

authors used prior biological knowledge including protein–protein

and protein–DNA interaction to learn the architecture of a NN and

to subsequently project the data to a lower dimensional feature

space. Unlike these prior approaches, which were supervised, we are

using NN in a completely unsupervised manner and so do not re-

quire labeled data as prior methods have. Specifically, in our soft-

ware ‘Dhaka’ we have used a variational autoencoder (VAE) based

approach that combines Bayesian inference with unsupervised deep

learning, to learn a probabilistic encoding of the input data. Another

VAE based single cell method was also proposed very recently for

RNA-seq data, scVI (Lopez et al., 2017). The method uses explicit

modeling of technical effects in RNA-seq data generation (batch ef-

fect, technical drop outs) and then uses t-SNE for visualization

(Lopez et al., 2017). In contrast, here we aim for a generalized

dimensionality reduction method across different platforms (RNA-

seq, copy number). Specifically, in this paper we have analyzed four

scRNA-Seq and two scDNA-Seq datasets. We used the VAE to pro-

ject the expression and copy number profiles of tumor populations

and were able to capture clonal evolution of tumor samples even for

noisy sparse datasets with very low coverage. We also compare the

performance of Dhaka with four generalized dimensionality reduc-

tion methods, principal component analysis (PCA) (Jolliffe, 1986),

t-SNE (Maaten and Hinton, 2008), non-negative matrix factoriza-

tion (NMF) (Lee and Seung, 2001), regular autoencoders (Hinton

and Salakhutdinov, 2006) and four specialized single cell dimension-

ality method, ZIFA (Pierson and Yau, 2015), SIMLR (Wang et al.,

2017), MAGIC (van Dijk et al., 2017) and scVI (Lopez et al., 2017).

While it is difficult to include all the existing methods for single cell

visualization for comparative performance analysis, we have tried to

compare to methods that are methodologically very different from

each other and have been shown to perform well on multiple single

cell datasets. Dhaka shows significant improvement over the prior

methods thus corroborating the effectiveness of our method in

extracting important biological and clinical information from cancer

samples.

2 Materials and methods

2.1 VAE
We used a VAE to analyze single cell genomic data. For this, we

adapted a VAE initially proposed by Kingma and Welling (2013).

Autoencoders are multilayered perceptron NN that sequentially de-

construct data (x) into latent representation (z) and then use these

representations to reconstruct outputs that are similar (in some met-

ric space) to the inputs. The main advantage of this approach is that

the model learns the best features and input combinations in a com-

pletely unsupervised manner. In VAEs unsupervised deep learning is

combined with Bayesian inference. Instead of learning an uncon-

strained representation of the data we impose a regularization con-

straint. We assume that the latent representation is coming from a

probability distribution, in this case a multivariate Gaussian

(Nðlz; rzÞ). The intuition behind such representation for single cell

data is that the heterogeneous cells are actually the result of some

underlying biological process leading to the observed expression and

copy number data. These processes are modeled here as distribution

over latent space, each having their distinct means and variances.

Hence the autoencoder actually encodes not only the means (lz) but

also the variances (rz) of the Gaussian distributions. The latent
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representation (z) is then sampled from the learned posterior distribu-

tion q/ðzjxÞ � Nðlz; rzIÞ. Here / are the parameters of the encoder

network (such as biases and weights). The sampled latent representa-

tion is then passed through a similar decoder network to reconstruct

the input �x � phðxjzÞ, where h are the parameters of the decoder net-

work. Although the model is trained to minimize the error between

the inputs and the reconstructed outputs, we are actually interested in

the latent representation z of the data since it represents the key infor-

mation needed to accurately reconstruct the inputs.

2.2 Model structure
Figure 1 presents the structure of the autoencoder used in this paper.

The input layer consists of nodes equal to the number of genes we are

analyzing for each cell. The input to the Dhaka package is log2 trans-

formed TPM counts. We have used Rectified Linear unit (ReLu) acti-

vation function in all the layers except the final layer of getting the

reconstructed output. We used sigmoid activation function in the final

layer (We have option of using ReLU activation in the final layer as

well. Performance with ReLU activation function can be found in the

Appendix.). We have used three intermediate layers with 1024, 512

and 256 nodes and a 3D latent layer. The latent layer has three nodes

for mean (lz) and three nodes for variance (rz), which generate the

3D latent variable z. The size of the latent dimension (i.e. the repre-

sentation we extract from the model) is a parameter of the model. As

we show in Section 3, for the data analyzed in this paper three latent

variables are enough to obtain accurate separation of cell states for

both the expression and copy number datasets. Increasing this num-

ber did not improve the results and so all figures and subsequent ana-

lysis are based on this number. However, the method is general and if

needed can use more or less nodes in the latent layer.

All datasets we analyzed had more than 5 K genes and the

reported structure with at least 1024 nodes in the first intermediate

layer (Fig. 1) was sufficient for them. We used three intermediate

layers to gradually compress the encoding to a 3D feature space. We

have also compared three different structures of autoencoders: (i)

the proposed three intermediate layers, (ii) one intermediate layer

and (iii) five intermediate layers in the Section 3.

2.3 Learning
To learn the parameters of the autoencoder, / and h, we need to

maximize logðpðxj/; hÞÞ, the log likelihood of the data points x,

given the model parameters. The marginal likelihood logðpðxÞÞ is

the sum of a variational lower bound (Kingma and Welling, 2013)

and the Kullback–Leibler (Joyce, 2011) divergence between the ap-

proximate and true posteriors.

logðpðxÞÞ ¼ Lð/; h; xÞ þDKLðq/ðzjxÞjjphðzjxÞÞ:

The likelihood L can be decomposed as following:

Lð/; h; xÞ ¼ Ez�q/ðzjxÞ½logðphðxjzÞÞ� �DKLðq/ðzjxÞjjphðzÞÞ:

The first term can be viewed as the typical reconstruction loss in-

trinsic to all autoencoders, the second term can be viewed as the

penalty for forcing the encoded representation to follow the

Gaussian prior (the regularization part). We then use ‘RMSprop’,

which relies on a variant of stochastic minibatch gradient descent, to

minimize—L. In ‘RMSprop’, the learning rate weight is divided by

the running average of the magnitudes of recent gradients for that

weight leading to better convergence (Tieleman and Hinton, 2012).

Detailed derivation of the loss computation can be found in Kingma

and Welling (2013). To demonstrate the robustness of the training,

we have shown the loss function plot from 50 independent trials on

the Oligodendroglioma dataset (Supplementary Fig. S2). The low

standard error (SE) in the plot corroborates the robustness of train-

ing in Dhaka.

An issue in learning VAE with standard gradient descent is that

gradient descent requires the model to be differentiable, however the

presence of stochastic sampling layer in VAE makes the model

undifferentiable. To enable the use of gradient descent in our model,

we use the reparameterization trick introduced in Kingma and

Welling (2013). We introduce a new random variable b. Instead of

sampling z directly from the Nðlz;rzIÞ, we set

z ¼ lz þ rz � b:

Where b is the Gaussian noise, b � Nð0; rbÞ. Using b we do not

need to sample from the latent layer and so the model is differenti-

able and gradient descent can be used to learn model parameters

(LeCun et al., 2015). rb is the standard deviation of the Gaussian

noise and is an input parameter of the model.

3 Results

3.1 Simulated dataset
We first performed simulation analysis to compare the Dhaka

method with prior dimensionality reduction methods that have been

extensively used for scRNA-Seq data: t-SNE (Maaten and Hinton,

2008), PCA (Jolliffe, 1986), ZIFA (Pierson and Yau, 2015), SIMLR

(Wang et al., 2017), NMF (Lee and Seung, 2001), regular autoen-

coder (Hinton and Salakhutdinov, 2006), MAGIC (van Dijk et al.,

2017) and scVI (Lopez et al., 2017). Due to space constraint, we

present the comparison with the first four methods here and the last

four in the Appendix (Supplementary Fig. S5).We generated a simu-

lated dataset with 3 K genes and 500 cells. In the simulated dataset,

cells are generated from five different clusters with 100 cells each.

There are a total of 3000 genes in the dataset. All the 3000 genes

contain variable amount of noise, among which 500 genes have clus-

ter specific expression to some extent and the remaining 2500 genes

does not have any cluster specific expression, i.e. completely noisy.

Detailed description of the simulated data generation can be found

in Appendix 1.2.

We have used a Gaussian Mixture Model to cluster the reduced

dimension data obtained from Dhaka and other competing methods

and Bayesian information criterion (BIC) to select the number of

Fig. 1. Structure of the VAE used in Dhaka. We have three intermediate dense

layers of 1024, 512 and 256 nodes between the input and latent layer. All the

layers in the encoder and decoder network use ReLu activation except the

output layer (sigmoid activation). The latent layer has three nodes each for

encoding mean and variances of the Gaussian distribution. The input of the

decoder network, the latent representation z is then sampled from that distri-

bution using the reparameterization trick (Kingma and Welling, 2013)
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clusters. We next compute the Adjusted Rand Index (ARI) metric to

determine the quality of resulting clustering for each dimensionality

reduction method. Figure 2 shows the result of Dhaka, PCA, t-SNE,

ZIFA and SIMLR projection for the simulated data. As can be seen,

the Dhaka autoencoder has the highest ARI score of 0.73. The clos-

est is SIMLR (ARI: 0.70) and the ZIFA (ARI: 0.58). Although the

Dhaka autoencoder identifies four clusters compared to SIMLR

identifying 5, the cluster labels are better preserved in Dhaka leading

to the higher ARI score. Among the comparing methods presented

in the Appendix (Supplementary Fig. S5) only the regular

Autoencoder has a high ARI score 0.72, with four identified clusters.

The other methods (NMF, MAGIC and scVI) have score below 0.2.

Implementation details of the competing methods can be found in

Appendix 1.6. The VAE in Dhaka is optimized with no guaranteed

global convergence. Hence we will see slightly different outputs with

each run of the algorithm. We analyzed the robustness of the

method to random initializations on the simulated dataset. With 10

random initializations we observed mean ARI of 0.73 with of 0.01.

This relatively low SE corroborates the robustness of the proposed

method.

We have also compared three different structures of the autoen-

coder (structure 1: Input! 1024 nodes! 512 nodes! 256

nodes! 3 latent dims, structure 2: Input! 1024 nodes!
3 latent dims and structure 3: Input! 1024 nodes!
512 nodes! 256 nodes! 128 nodes! 64 nodes! 3

latent dims) in terms of ARI and runtime (Table 1) on the simu-

lated data. The VAE structure 1 (Fig. 1) gives the best ARI score.

When we reduce the number of intermediate layers to 1, we see that

the runtime decreases slightly but the ARI also decreases from 0.73

to 0.5. We have also tested the effect of increasing the number of

intermediate layers to 5. We see that increasing the number of layers

increases the runtime significantly without improving the ARI score.

Hence, we used the proposed structure 1 in all of our analysis. We

have also compared the runtime with other competing methods,

PCA, t-SNE, ZIFA, SIMLR, NMF, MAGIC, scVI and Autoencoder

(see Appendix 1.2, Supplementary Table S2). We see that, PCA,

NMF and MAGIC are faster than the proposed method but has very

poor ARI score (below 0.20) compared to Dhaka (0.73).

3.2 Gene expression data
We have next tested the method on four single cell RNA-seq tumor

datasets: (i) Oligodendroglioma (Tirosh et al., 2016b), (ii)

Glioblastoma (Patel et al., 2014), (iii) Melanoma (Tirosh et al.,

2016a) and (iv) Astrocytoma (Venteicher et al., 2017). We discuss

the first three below and the fourth in the Appendix. We have com-

pared the performance of Dhaka with eight competing methods.

Due to space constraints, results from PCA, t-SNE, ZIFA and

SIMLR are presented here and results from MAGIC, NMF, regular

autoencoder and scVI are moved to the Appendix.

3.3 Analysis of Oligodendroglioma data
Oligodendrogliomas are a type of glioma that originates from the

oligodendrocytes of the brain or from a glial precursor cell. In the

Oligodendroglioma dataset the authors profiled six untreated

Oligodendroglioma tumors resulting in 4347 cells and 23 K genes.

The dataset is comprised of both malignant and non-malignant cells.

Copy number variations (CNV) were estimated from the log2 trans-

formed transcript per million RNA-seq expression data. The authors

then computed two metrics, lineage score and differentiation score

by comparing pre-selected 265 signature genes’ CNV profile for

each cell with that of a control gene set. Based on these metrics, the

authors determined that the malignant cells are composed from two

subpopulations, oligo-like and astro-like, and that both share a com-

mon lineage. The analysis also determined the differentiation state

of each cell.

Here we are using the RNA-seq expression data directly skipping

the CNV analysis. With only three latent dimensions our algorithm

successfully separated malignant cells from non-malignant micro-

glia/macrophage cells (Fig. 3a). We next analyzed the malignant

cells only using their relative expression profile (see Appendix 1.3),

to identify the different subpopulations and the relationship between

them. Figure 3b and c shows the projected Dhaka output, where we

see two distinct subpopulations originating from a common lineage,

thus recapitulating the finding of the original paper. Dhaka was not

only able to separate the two subpopulations, but also to uncover

their shared glial lineage. To compare the results with the original

paper, we have plotted the scatter plot with color corresponding to

lineage score (Fig. 3b) and differentiation score (Fig. 3c) from Tirosh

et al. (2016b). We can see from the figure that Dhaka can separate

oligo-like and astro-like cells very well by placing them in opposite

arms of the v-structure. In addition, Figure 3c shows that most of

Fig. 2. Comparison of the Dhaka method with t-SNE, PCA, ZIFA and SIMLR on

simulated dataset with 2500 completely noisy genes (83% of total genes)

without any cluster specific expression. (a) Dhaka, (b) PCA, (c) t-SNE, (d) ZIFA,

(e) SIMLR. The colors correspond to the ground truth cluster ids. (f) Plot of

BIC calculated from fitting Gaussian Mixture Model to the 3D projection of

the data to estimate number of clusters. The number with lowest BIC is con-

sidered as the estimated number of clusters

Table 1. Comparison between autoencoder structures

Structure 1 Structure 2 Structure 3

ARI 0.73 0.5 0.71

Runtime (s) 3.43 2.13 9.21

Note: Python 3.5, 32 GB RAM, 3.4 GHz Windows.
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the cells with stem like property are placed near the bifurcation

point of the v-structure. In this projection, Latent dim 1 and 2 corre-

lates with lineage score (correlation score 0.83 and 0.65, respective-

ly), whereas Latent dim 3 correlates with differentiation score

(correlation score 0.58). However, since VAEs are stochastic in

nature, there is no guarantee that same latent dimension will always

correlate with the same score unlike PCA. Although Dhaka can con-

sistently capture the v-structures, the correspondence between the

latent dimensions and lineage/differentiation score might change

from one run to the next (see Supplementary Fig. S3).

The analysis discussed above was based on the 265 signature

genes that were reported in the original paper. We next tested

whether a similar structure can be learned from auto-selected genes,

instead of using these signature genes. Malignant and non-

malignant cells were clearly separated in this scenario too

(Supplementary Fig. S4). Figure 4a shows the Dhaka projection of

the malignant cells only using 5000 auto-selected genes based on �A

score (see Appendix 1.1). As we can see from Figure 4a, Dhaka can

learn similar structure without the need for supervised prior

knowledge. We also compared the Dhaka output for this data to

PCA, t-SNE, ZIFA, SIMLR, MAGIC, NMF, scVI and regular

autoencoder (Fig. 4b–e, Supplementary Fig. S6-l). As can be seen,

PCA, ZIFA, regular autoencoder and NMF can separate the oligo-

like and astro-like structure to some extent, but their separation is

not as distinct as the autoencoder output. On the other hand, t-SNE,

SIMLR, scVI and MAGIC can recover clusters of cells from the

same tumor but completely fails to identify the underlying lineage

and differentiation structure of the data. To quantify how well the

lineage and differentiation metrics are preserved in the projections

we have computed Spearman rank correlation score (Zar, 1998) of

the scoring metrics (lineage and differentiation scores) with the pro-

jections of Dhaka and other comparing methods. Since the ground

truth is a 2D metric, we computed correlation with 2D projections

from Dhaka and other competing methods (see Supplementary Fig.

S8a for 2D projection from Dhaka). From the correlation scores we

can clearly see that Dhaka performs significantly better than the

other methods. We have also computed and compared the correl-

ation score on the 265 signature gene scenario (see Supplementary

Fig. S7). With using only signature genes the correlation score from

Dhaka is 0.76, whereas the nearest competing methods t-SNE and

SIMLR scores 0.57 and 0.52, respectively. Method of correlation

score computation can be found in Appendix 1.4.

3.4 Robustness analysis
A key issue with the analysis of scRNA-Seq data is dropout. In

scRNA-Seq data we often see transcripts that are not detected even

though the particular gene is expressed, which is known as the

‘dropout’. This happens mostly because of the low genomic quantity

used for scRNA-Seq. We have tested the robustness of Dhaka to

dropouts in the Oligodendroglioma dataset. We tested several differ-

ent dropout percentages ranging from 0 to 50% (Supplementary

Fig. S9a). Supplementary Figure S9c, e and g shows the histogram of

dropout fractions of the genes in the dataset after artificially forcing

20, 30 and 50% more genes to be dropped out. Note that we cannot

go beyond 50% in our analysis since several genes are already zero

in the original data. Supplementary Figure S9b, d, f and h shows the

projection of the Dhaka after adding 0, 20, 30 and 50% more drop

Fig. 3. Oligodendroglioma dataset. (a) Dhaka projection separating malignant cells from non-malignant microglia/macrophage cells. (b) and (c) Dhaka output

from relative expression profile of malignant cells using 265 signatures genes. (b) Each cell is colored by their assigned lineage score which differentiates the

oligo-like and astro-like subpopulations. (c) Each cell is colored by their assigned differentiation score, which shows that most stem like cells are indeed placed

near the bifurcation point

Fig. 4. Comparison of Dhaka with PCA, t-SNE, ZIFA and SIMLR on

Oligodendroglioma dataset with 5000 auto-selected genes. (a) Dhaka, (b)

PCA, (c) t-SNE, (d) ZIFA, (e) SIMLR projections colored by lineage score. The

Spearman rank correlation scores of the scoring metric (lineage and differen-

tiation score) and the learned projections are shown in tabular form. We can

see that Dhaka preserves the original scoring metric the best
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out genes, respectively. We observe that when the additional drop-

out rate is 30% or less, Dhaka can still retain the v-structure even

though the cells are a bit more dispersed. At 50% we lose the v-

structure, but the method can still separate oligo-like and astro-like

cells even with this highly sparse data.

3.5 Analysis of marker genes in the Oligodendroglioma

dataset
We further investigated the Dhaka learned structure to discover

genes that are correlated with the lineages. To obtain trajectories for

genes in the two lineages of the Oligodendroglioma dataset, we first

segmented the Dhaka projected output into nine clusters using

Gaussian mixture model (Fig. 5). Clusters 1–4 correspond to the

oligo-branch and clusters �4 to �1 correspond to the astro-branch,

while cluster 0 represents the bifurcation point. The choice to divide

the cells into nine clusters is arbitrary to show the difference be-

tween the two branches. After computing the average expression

profile of genes in the oligo and astro-branches, we performed two

tailed t-test to identify differentially expressed genes among the

group of cells in the two lineages. With Bonferroni corrected P-value

<0.05, we find 1197 differentially expressed genes among 23 K ori-

ginal genes. We have also separately identified genes that are up

regulated and down regulated in the two lineages (see list of genes in

the supporting website). Expression profiles of a few of these genes

are shown in Figure 5b–e. While a number of the genes found were

known to be related to Oligodendroglioma pathway, many were

only known to be related to other types of cancers or neurological

disorders, but so far have not been associated with

Oligodendroglioma. For example, TFG which is up regulated in the

oligo-branch was previously affiliated in neuropathy (Ishiura et al.,

2012). DDX39B gene is not directly related to cancer but is found

to be localized near genes encoding for tumor necrosis factor a and

b (Kikuta et al., 2012). Both HEXB and RGMA genes are up regu-

lated in the astro-branch. These genes were previously identified in

neurological disorders such as Sandhoff disease (Redonnet-Vernhet

et al., 1996) and multiple sclerosis (Nohra et al., 2010), respectively.

Our analysis suggests that they are key players in the

Oligodendroglioma pathway as well.

3.6 Analysis of Glioblastoma data
The next dataset we looked at is the Glioblastoma dataset (Patel

et al., 2014). This dataset contains 420 malignant cells with �6000

expressed genes from six tumors. In this relatively small cohort of

cells the authors did not find multiple subpopulations. However,

they identified a stemness gradient across the cells from all six

tumors (Patel et al., 2014), meaning the cells gradually evolve from

a stem-like state to a more differentiated state. When we applied the

Dhaka autoencoder to the expression profiles of the malignant

cells, the cells were arranged in a chain like structure (Fig. 6a).

To correlate the result with the underlying biology, we computed

stemness score from the signature genes reported in the original

paper (78 genes in total) (Patel et al., 2014). The score is computed

as the ratio of average expression of the stemness signature genes to

the average expression of all remaining genes (Patel et al., 2014).

When we colored the scattered plot according to the corresponding

stemness score of each cell, we see a chain like evolutionary struc-

ture where cells are gradually progressing form a stem-like state to a

more differentiated state. As before, PCA, t-SNE, ZIFA, SIMLR,

MAGIC, scvi and regular autoencoder projections (Fig. 6b–e,

Supplementary Fig. S6a–d) fail to capture the underlying structure

of this differentiation process. Only NMF can capture the linear

trend in the data but results in much lower correlation score. We do

see some outliers in Dhaka projections (blue dots near the yellow

ones), however these outliers are similarly visible in results of other

methods as well (Fig. 6). When we quantify the correlation of the

Dhaka projection with the stemness score we can see that it clearly

outperforms the other competing methods despite the outliers.

Fig. 5. New gene markers for astro-like and oligo-like lineages. (a) Segmenting autoencoder projected output to nine clusters. Clusters �4, �3, �2, �1 belongs to

astro branch and clusters 1, 2, 3, 4 belong to oligo-branch. Cluster 0 represents the origin of bifurcation. (b–e) Expression profiles of couple of the top differntially

expressed genes in the two lineages. (b) and (c) Up regulated in the oligo-branch, (d) and (e) up regulated in the astro-branch

Fig. 6. Comparison of Dhaka with PCA, t-SNE, ZIFA and SIMLR on

Glioblastoma dataset. (a) Dhaka, (b) PCA, (c) t-SNE, (d) ZIFA, (e) SIMLR projec-

tions colored by stemness score. The Spearman rank correlation scores of

the stemness score and the learned projections are shown in tabular form.

We can clearly see that Dhaka preserves the original stemness score the best
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After learning the structures we also wanted to see whether we

can identify new marker genes for the stemness to differentiated pro-

gram. For this, we reduced the latent dimension to 1 (since we see al-

most linear projection). Next, we computed Spearman rank

correlation (Zar, 1998) of the 1D projection with every gene in the

dataset. We have plotted a few of the top ranked positive (up regu-

lated in the stem-like cells) and negative correlated genes (down

regulated in the stem-like cells) (Fig. 7a). Despite the noisy expres-

sion profile, we do see a clear trend when a line is fitted (red).

Among the discovered markers, TPT1 was identified as one of the

key tumor proteins (Arcuri et al., 2004). Both RPS27 and TPT1

were found to be significant in other forms of cancer, such as

Melanoma (Dai et al., 2010) and prostate cancer (Arcuri et al.,

2004) and our results indicate that they may be involved in

Glioblastoma as well. Among the down regulated genes, CLU was

identified in the original paper (Patel et al., 2014) to be affiliated in

Glioblastoma pathway whereas CANX was previously not identi-

fied as a marker for Glioblastoma. A complete list of correlated

marker genes can be found in the supporting website.

3.7 Analysis of Melanoma data
The Melanoma cancer dataset (Tirosh et al., 2016a) profiled 1252

malignant cells with �23K genes from 19 samples. The expression

values are log2 transformed transcript per million. When we used

the relative expression values of 5000 auto-selected genes (based on
�A score) to the Dhaka autoencoder we saw two very distinct clusters

of cells, revealing the intra-tumor heterogeneity of the Melanoma

samples (Fig. 8a). In the original paper, the authors identified two

expression programs related to MITF and AXL genes that give rise

to a subset of cells that are less likely to respond to targeted therapy.

The signature score for these programs were calculated by identify-

ing genesets correlated with these two programs. The authors identi-

fied a total of 200 signature genes. We computed MITF-AXL

signature score by computing the ratio of average expression of the

signature genes and average expression of all remaining genes.

When we colored the scattered plot with the MITF-AXL score, we

indeed see that the clusters correspond to the MITF-AXL program,

with one cluster scoring high and the other scoring low for these sig-

nature genes. Again, as can be seen from the figures and the correl-

ation scores, such heterogeneity is not properly captured by t-SNE,

PCA, ZIFA, SIMLR, MAGIC, NMF, regular autoencoder and scVI

(Fig. 8b–e, Supplementary Fig. S6e–h).

For this case too, we see almost a linear projection. To find new

gene markers, we again computed 1D latent projection of the single

cells and computed gene correlation. We have plotted a set of new

marker genes both up and down regulated (Fig. 7b). The NEAT1 is

a non-coding RNA, which acts as a transcriptional regulator for nu-

merous genes, including some genes involved in cancer progression

(Geirsson et al., 2003). TIMP2 gene plays a critical role in

suppressing proliferation of endothelial cells and now we can see it

is also relevant in the Melanoma cells (Vairaktaris et al., 2009).

Among the down regulated genes, GPI functions as tumor-secreted

cytokine and an angiogenic factor, which is very relevant to any can-

cer progression (Funasaka et al., 2001). The last correlated down

regulated gene ENO1 is also known as tumor suppressor (Abu-

Odeh et al., 2014). We have also looked whether the projection can

recover some known gene marker dynamics or not. Four of the

known gene markers are plotted in Supplementary Figure S8 (in

Appendix). A complete set of gene markers can be found in the sup-

porting website.

We also investigated whether Dhaka can capture the same trends

in 2D projections as well. We have computed 2D projections of

Oligodendroglioma, Glioblastoma and Melanoma (Supplementary

Fig. S8). We can see that similar structure was captured in 2D pro-

jection as well. Although we see a decrease in correlation score for

Glioblastoma and Melanoma.

We have also analyzed another scRNA-seq tumor dataset,

Astrocytoma. For this dataset as well, Dhaka successfully separated

malignant and non-malignant cells. It also correctly projected the

cells in intermediate differentiation state as mentioned in the origin-

al paper of the dataset (Venteicher et al., 2017). Due to space con-

straint we have moved the analysis to the Appendix (Appendix 1.8,

Supplementary Fig. S12).

3.8 CNV data
To test the generality of the method we also tested Dhaka with CNV

data. We used copy number profiles from two xenograft breast

Fig. 7. New marker gene: (a) Glioblastoma stemness program (b) Melanoma

MITF-AXL program

Fig. 8. Comparison of Dhaka with PCA, t-SNE, ZIFA and SIMLR on Melanoma

dataset. (a) Dhaka, (b) PCA, (c) t-SNE, (d) ZIFA, (e) SIMLR projections colored

by MITF-AXL score. The Spearman rank correlation scores with the scoring

metric (MITF-AXL score) and Dhaka and the reported method projections are

shown in tabular form. We can clearly see that Dhaka preserves the original

MITF-AXL score the best
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tumor samples (xenograft 3 and 4, representing two consecutive

time points) (Zahn et al., 2017). A total of 260 cells were profiled

from xenograft 3 and 254 from xenograft 4. Both of these datasets

have around 20 K genomic bin count. Cells were sequenced at a

very low depth of 0.05X which results in noisy profiles. Copy num-

bers were estimated using a hidden Markov model (Wang et al.,

2007). When we analyzed the copy number profile for xenograft 3,

Dhaka identified one major cluster of cells and one minor cluster of

cells (Fig. 9a). The identified clusters agree with the phylogenetic re-

construction analysis in the original paper. Figure 9b shows the

copy number profiles of cells organized by phylogenetic analysis.

Even though the copy number profiles are mostly similar in most

parts of the genome, we do see that there is a small number of cells

that have two copies (as opposed to one in the majority of cells,

marked by red circle) in the x chromosome. Dhaka was able to cor-

rectly differentiate the minor cluster of cells from the rest. Next, we

analyzed the xenograft 4 samples. The projected Dhaka output

showed only one cluster which overlaps the major cluster identified

for xenograft 3. We believe that the minor cluster from xenograft 3

probably did not progress further after serial passaging to the next

mouse, whereas the major cluster persisted. This observation also

agrees with the claim stated in the original paper (Zahn et al., 2017)

that after serial passaging only one cluster remained in xenograft 4

which is a descendant of the major cluster in xenograft 3. We com-

pared the copy number performance with other generalized methods

as well, t-SNE, PCA, NMF and regular autoencoder (Supplementary

Fig. S11). We can see that the separation between the major and

minor clusters in xenograft 3 is most distinct in the projection from

Dhaka. Also, the alignment of xenograft 4 cells with the major clus-

ter from xenograft 3 is better preserved in Dhaka projection.

4 Discussion

In this paper, we have proposed a new way of extracting useful fea-

tures from single cell genomic data. The method is completely un-

supervised and requires minimal pre-processing of the data. Using

our method we were able to reconstruct lineage and differentiation

ordering for several single cell tumor samples. Dhaka successfully

separated oligo-like and astro-like cells along with their differenti-

ation status for Oligodendroglioma scRNA-Seq data and has also

successfully captured the differentiation trajectory of Glioblastoma

cells. Similar results were obtained for Melanoma and Astrocytoma.

Dhaka projections have also revealed several new marker genes for

the cancer types analyzed. The method is general and can be applied

to other types of genomic data as well. When applied to CNV data

the method was able to identify heterogeneous tumor populations

for breast cancer samples. In future, we will investigate larger single

cell copy number datasets with more cells and more subpopulations.

An advantage of the Dhaka method is its ability to handle drop-

outs. Several single cell algorithms require pre-processing to explicit-

ly model the drop-out rates. As we have shown, our method is

robust and can handle very different rates eliminating the need to es-

timate this value.

We have shown results for two different output activation layers

in our model, sigmoid and ReLU. Compared to sigmoid, ReLU acti-

vation function does not restrict the output between 0 and 1. Hence

we see a lower reconstruction loss while training the autoencoder.

However, the output projections using ReLU do not improve the

resulting correlations with the biological scoring metrics. We present

the results for ReLU activation in Supplementary Fig. S1. As can be

seen, for the Oligodendroglioma and Glioblastoma datasets we ob-

tain similar correlation scores for ReLU and sigmoid activation

(60:03). However for the Melanoma and simulated datasets the

scores for ReLU are lower (a difference >0.05), which means that

these correlations are similar to the ones we obtain for the methods

we compared to. While it is not entirely clear what leads to the

improved performance of sigmoid, we hypothesize that it may be a

function of the non-linear shape of the sigmoid function as opposed

to the linear shape of ReLU. This may enable the sigmoid function

to more strongly focus on significant genes which may be less noisy

than the more balanced weights obtained by ReLU.

While our focus here was primarily on the identification of subpo-

pulations and visualization, the latent representation generated by

Dhaka could be used in pseudotime ordering algorithms as well (Setty

et al., 2016; Trapnell et al., 2014). These methods often rely on t-SNE/

PCA as the first step and replacing these with the Dhaka method is

likely to yield more accurate results as we have shown. The VAE pro-

posed here does not only cluster the cells, it can also represent an evo-

lutionary trajectory, e.g. the V-structure for the Oligodendroglioma.

Hence it can also be useful in phylogenetic analysis. Potential future

work would focus on investigating the biological significance of the

learned features and identifying key genes that align with the progres-

sion and mutations that help drive the different populations.
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