
In vivo cell fate reprogramming for spinal cord repair

Wenjiao Tai1,2, Chun-Li Zhang1,2,*

1Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 
75390, USA

2Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern 
Medical Center, Dallas, TX 75390, USA

Abstract

Spinal cord injury (SCI) can lead to the loss of motor, sensory, or autonomic function due to 

neuronal death. Unfortunately, the adult mammalian spinal cord has limited intrinsic regenerative 

capacity, making it difficult to rebuild the neural circuits necessary for functional recovery. 

However, recent evidence suggests that in vivo fate reprogramming of resident cells that are 

normally non-neurogenic can generate new neurons. This process also improves the pathological 

microenvironment, and the new neurons can integrate into the local neural network, resulting 

in better functional outcomes in SCI animal models. In this concise review, we focus on recent 

advances while also discussing the challenges, pitfalls, and opportunities in the field of in vivo cell 

fate reprogramming for spinal cord repair.

Introduction

Spinal cord injury (SCI) often results in the permanent loss of neurons and the disruption of 

neural circuits, which can lead to behavioral dysfunctions and impose heavy burdens on both 

caregivers and society. Unfortunately, to date, effective treatment options for neurological 

recovery after SCI do not exist due to the lack of meaningful regenerative ability in the adult 

mammalian spinal cord [1]. Although considerable progress has been made in the fields 

of cell transplantation and axonal regeneration, one of the most significant challenges in 

repairing SCI remains how to reconstruct the broken neural circuits to achieve functional 

improvements.

An emerging regeneration-based strategy involves inducing new neurons from resident 

glia through cell fate reprogramming in vivo [2–5]. Unlike permanent neuron loss, SCI 

stimulates proliferation and recruitment of various cell types, including ependymal cells, 

astrocytes, Nerve/glial antigen 2 (NG2) glia, fibroblasts, microglia, and macrophages, 

around the injury site [6]. Although none of these cells have an inherent ability to 

produce new neurons in vivo [7,8], they could serve as a plentiful source for cell fate 

reprogramming. Such reprogramming may not only produce new neurons but also modify 
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the pathological environment for circuit reconstruction. In the following sections, we review 

recent publications on the adult spinal cord (Figure 1 and Table 1) and provide perspectives 

on this exciting research direction.

Neurons from resident neural stem cells

While spinal cord ependymal cells have shown neural stem cell (NSC) properties in culture 

[9], they primarily generate glial cells that form scars, rather than neurons, after an injury 

[10]. Additionally, there is still debate about the extent to which ependymal cell-derived 

NSCs can contribute to the formation of new cells around the lesion core after SCI [11–13]. 

Despite this controversy, a study by Yang et al. found that implantation of neurotrophin-3 

(NT3)-loaded chitosan biomaterial into completely transected rat spinal cords promoted 

activation, migration, and neuronal differentiation of endogenous NSCs [14]. The implanted 

biomaterial contained newly produced neurons, identified by BrdU labeling of proliferating 

cells and neuronal markers such as Tuj1. These NSC-derived neurons formed functional 

networks with preexisting neurons, connecting damaged ascending and descending axons 

and improving sensory, motor, and bladder functions [14–16]. For chronic SCI, it appears 

that removing cystic tissues and solid scars is essential for neurogenesis and regeneration 

induced by the NT3-chitosan [17]. Thus, biomaterial-elicited neurogenesis from resident 

NSCs could provide a much-needed therapeutic strategy for patients with severe SCI.

Patel et al. reported that endogenous NSCs can be activated by ectopic expression of key 

transcription factors such as Nkx6.1 or Gsx1, both after acute and chronic SCI [18,19]. 

The studies also found that ectopic Nkx6.1 or Gsx1 expression reduced reactive astrogliosis 

and glial scarring, and enhanced the generation of propriospinal interneurons, including 

glutamatergic and cholinergic neurons. These neurons were identified by virus-expressed 

red fluorescent protein under the cytomegalovirus promoter [18,19]. Although Nkx6.1 

expression failed to show functional consequences, Gsx1 was found to improve the activity 

of serotonergic neurons and locomotor function after SCI. Additionally, molecular analyses 

revealed factor-dependent gene expression changes related to stem cell activity, reactive 

gliosis, and neuroinflammation [18,19].

In a similar study, Fukuoka et al. used lymphocytic choriomeningitis virus-pseudotyped 

retroviruses with a tropism for NSCs and reported that the introduction of ectopic Neurod4 

could activate NSCs after SCI [20]. This led to the promotion of their differentiation into 

both inhibitory and excitatory neurons, which projected to motor neurons. The study also 

found that immature and mature neurons were present, as detected by co-expression of the 

viral AcGFP1 with doublecortin (DCX) and neuronal nuclei, respectively, surrounding the 

lesion core. Additionally, ectopic Neurod4 suppressed reactive astrogliosis marked by glial 

fibrillary acidic protein (GFAP) expression and greatly enhanced recovery of locomotion, as 

indicated by improved behavioral scores [20].

Neurons from resident astrocytes

In response to SCI, astrocytes undergo a reactive process, proliferate, and constitute a 

major component of the glial scar surrounding the lesion core [21,22]. They represent an 
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excellent source of cells for fate conversion in vivo. Through in vivo screening efforts, 

Niu et al. identified SOX2 as a stem cell factor capable of converting resident astrocytes 

into proliferative neural progenitors, which subsequently generate mature neurons in the 

adult mouse brain [23,24]. This finding was further examined in the context of injured 

adult mouse spinal cord [25]. Genetic lineage tracing and BrdU-labeling studies confirmed 

that astrocytes are the cell origin of new neurons. Marker expression studies indicated 

that these new neurons form synaptic connections with nearby endogenous motor neurons. 

Furthermore, Wang et al. found that SOX2-mediated neuronal reprogramming of astrocytes 

could be further enhanced by downregulating the p53–p21 pathway, as it normally inhibits 

the expansion of astrocyte-derived progenitors [26].

Several studies have also reported the conversion of resident astrocytes to neurons in the 

adult murine spinal cord by controlling key factors. For instance, Puls et al. reported 

that ectopic expression of Neurod1 efficiently converted reactive astrocytes into neurons 

in the dorsal horn of injured mouse spinal cord [27]. These converted neurons expressed 

molecular markers specific to local neuronal subtypes and functionally integrated into the 

neural networks. This conversion was also reported in a contusion SCI model, suggesting a 

potential therapeutic approach for SCI repair [27]. In another study, Liu et al. overexpressed 

Neurog2 (also known as Ngn2) in the adult mouse spinal cord with or without SCI and 

directly converted resident astrocytes into glutamatergic and GABAergic neurons [28]. 

These neurons were identified by the virus-expressed mCherry and exhibited mature 

neuron-like electrophysiological properties while receiving inputs from dorsal root ganglion. 

Similarly, Zhou et al. reported that the combination of Ngn2 and Isl1 efficiently converted 

resident spinal astrocytes into motor neurons that projected precisely into the sciatic nerves 

[29].

The NOTCH signaling pathway has recently been identified as a crucial regulator of 

astrocyte fate. Its downregulation is both necessary and sufficient for adult resident 

astrocytes in the mouse brain to convert into neurons [30,31]. Through analyzing 

the signaling pathways involved in Ascl1- and Neurog2-mediated reprogramming in 

culture, Tan et al. discovered that NOTCH1 acts as a suppressor of astrocyte-to-neuron 

conversion [32]. Moreover, shRNA-mediated knockdown of NOTCH1 in endogenous 

reactive astrocytes in the injured adult spinal cord resulted in the emergence of 

new neurons, as evidenced by BrdU incorporation and DCX expression. Excitingly, 

intraperitoneal injections of N-[N-(3, 5-difluorophenacetyl)-1-alanyl]-s-phenylglycinet-butyl 

ester, a chemical inhibitor of the NOTCH signaling pathway, also induced neurogenesis in 

the vicinity of the lesion site following SCI [32]. These newly formed neurons were mainly 

GABAergic inhibitory neurons expressing the presynaptic marker synapsin-1, indicating 

potential synaptic connections. This chemical approach could be highly relevant for clinical 

translation.

Neurons from resident NG2 glia

NG2 glia, which are also known as oligodendrocyte progenitor cells, are known to 

proliferate and become a major component of the glial scar under pathological conditions 

such as SCI. Although there are reports indicating their potential to differentiate into other 
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cell types such as astrocytes [33], their contribution to neurons is minimal [8,34–36]. 

However, recent research by Tai et al. using genetic lineage tracings has shown that resident 

NG2 glia can express markers of immature neurons such as DCX in response to various 

SCI types. Despite this, they failed to become mature neurons even in the presence of 

supplied neurotrophic factor brain derived neurotrophic factor (BDNF)-noggin (NOG) [37]. 

Nevertheless, the properties of NG2 glia in response to SCI make them an ideal cell source 

for in vivo reprogramming. In fact, Ohori et al. reported that retrovirus could transduce 

proliferating cells expressing NG2, OLIG2, and NKX2.2, and that retroviral expression of 

Ngn2 in combination with growth factors such as EGF and FGF2 promoted the generation 

of GABAergic neurons in adult rats after SCI. However, few of these neurons survived 

beyond 56 days, even when BDNF was supplied [38].

Through cell-type-specific genetic deletions, Tai et al. revealed that the injury-induced DCX 

expression in NG2 glia requires endogenous SOX2 [37]. Additionally, they found that 

ectopic SOX2 could reprogram NG2 glia into ASCL1+ neural progenitors, which further 

differentiated into DCX+ immature and neuronal nuclei+ mature neurons. The survival 

and maturation of these neurons were enhanced through the co-expression of neurotrophic 

factors such as BDNF-noggin (NOG) or a mutant form of NT3 (p75-2). These NG2 glia-

derived neurons persisted for more than six months and differentiated into either excitatory 

or inhibitory propriospinal interneurons. To examine the monosynaptic connections of 

SOX2-induced neurons, pseudotyped recombinant rabies virus was used. The analysis 

revealed that these neurons received inputs from endogenous propriospinal neurons, as well 

as those located in the dorsal root ganglion and the brain stem. Importantly, reprogrammed 

NG2 glia also produced oligodendrocytes, which may be crucial for myelination of new 

neurons and remyelination of exposed axons of endogenous neurons. Notably, in vivo 
reprogramming of NG2 glia significantly reduced the glial scar and improved functional 

recovery after SCI. These findings demonstrate the potential of a regeneration-based 

therapeutic strategy for SCI [37].

Pitfalls, challenges, and opportunities

The adult spinal cord comprises various cell types, including glial cells and numerous 

neurons that are formed during neural development. In vivo reprogramming experiments 

face a critical challenge of ensuring that the alleged new neurons are indeed derived from 

resident glial cells. To address this issue, Wang et al. utilized Neurod1 as an example 

and performed multiple lineage mapping experiments by using well-characterized mouse 

lines and a retrograde tracing method [39]. They convincingly demonstrated that viral 

reporter-labeled neurons in the Neurod1 group were mislabeled endogenous neurons rather 

than converted from glia. This was mainly because the cell-type-specific promoter activity 

in the virus can be influenced by the insert gene sequences, such as Neurod1 [39–41]. In 

agreement with previous comments [42–45], Xie et al. recently demonstrated that reducing 

the virus dosage, using an alternative AAV serotype, or changing the virus-injection route 

did not correct the transgene-dependent leakage of the viral reporter in endogenous neurons 

[40]. Consequently, a mere comparison of the viral reporter expression between the control 

and the experimental group is insufficient to draw a definitive conclusion. Cautions should 

also be paid to retrovirus-based studies. Although retrovirus itself does not transduce 
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postmitotic neurons, the virus-transduced microglia can fuse to and drive the viral reporter 

expression in nearby neurons [46], thereby resulting in an illusion of neuronal conversion of 

resident glial cells.

As such, genetic lineage tracing is essential for studying cell fate conversion in vivo 
[42,44,47,48]. For this purpose, the targeting cell type is uniquely and permanently 

tagged with a Cre-dependent reporter such that the cell fate can be followed by 

immunohistochemistry. The employed Cre- and reporter-containing mouse lines should be 

carefully characterized, because some mouse lines may exhibit region-dependent leakage of 

the reporter in neurons [39]. The tamoxifen-activatable CreERT2 (or CreERT or CreER™) 

lines are ideal such that the reporter could be only induced in the adult stage and before 

the reprogramming process. Owing to leaky expression in neurons, the virus-expressed 

Cre or Cre-dependent reporter is inappropriate for lineage tracing [39]. Of note, many 

reprogramming studies in the adult spinal cord cited in this concise review did not utilize 

appropriate lineage tracing methods, underscoring the need for future replication studies.

Another challenge of in vivo reprogramming is generating appropriate neuronal subtypes to 

improve spinal cord function. While some studies claim to obtain region-specific subtypes 

from resident glia, their true cell origin is debatable. As described above, endogenous 

neurons could be easily misidentified as glia-converted ones if not using stringent tracing 

methods. Because SCI frequently causes the loss of various neuronal subtypes critical 

for somatosensory and locomotive functions, the question arises whether it is possible to 

generate all these subtypes through cell fate reprogramming in vivo or whether one major 

subtype would suffice. It may be more practical to focus on the subtype that is most 

relevant to improving an SCI patient’s prime need. Alternatively, could the prime function 

be fulfilled with new neurons that are not subtype-specific but exhibit generic characteristics 

of excitatory or inhibitory neurons?

Propriospinal and brain–spinal connections form the cellular basis for neuronal function. 

Recent studies using virus-based transsynaptic tracings have demonstrated that glia-derived 

new neurons can establish synaptic connections with neurons located in the spinal cord and 

brain [37], indicating the potential for these new neurons to contribute to the repair of spinal 

cord injuries by forming neuronal relays [49]. However, the question remains as to how 

to promote such relays. One possible approach is to utilize the concept of ‘use it or lose 

it,’ whereby rehabilitation or targeted chemogenetic or optogenetic stimulation can further 

enhance the synaptic connections formed by new neurons.

Current reprogramming strategies mainly focus on targeting resident NSCs, astrocytes, 

and NG2 glia, which are closely related to neurons and may exhibit a lower barrier 

for conversion into neurons. However, scars formed after SCI contain various other cell 

types, including fibroblasts, microglia, and macrophages, which are in the lesion core and 

contribute to axonal regeneration failure and impaired functional recovery after SCI [7]. 

The question arises whether these cells are also susceptible to neuronal conversion in vivo. 

Given that these cells are lineagewise distinct from neurons, they may be more resistant to 

reprogramming into neurons. Although there is a report of neuronal conversion of resident 

microglia in the adult striatum [50], a follow-up study has questioned these findings [51].
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In summary, the in vivo reprogramming approach for spinal cord repair is still in its early 

stages of preclinical investigation, and there are some pitfalls and challenges that require 

attention. However, these challenges also present ample opportunities for future research. In 

addition to the challenges listed above, such as neuronal subtypes, synaptic integrations, and 

targeting cell types, there is still a lack of clear knowledge on the molecular mechanisms 

underlying the in vivo reprogramming process. As potential therapeutics, the virus-mediated 

delivery system may face safety issues such as toxicity, tumorigenesis, and mutagenesis. To 

address these concerns, delivery of the reprogramming factors through nanoparticles or other 

media may be potential strategies to consider.
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Figure 1. 
Cell fate reprogramming in the adult spinal cord. Spinal cord injury triggers activation 

and proliferation of various resident cells, including NSCs, astrocytes, NG2 glia, microglia/

macrophages, and fibroblasts. These cells are potential sources for in vivo reprogramming. 

By overexpressing key factors, it is possible to convert some of these resident cells into 

progenitors or immature neurons, ultimately leading to the formation of mature, functional 

neurons in the adult mammalian spinal cord.

Tai and Zhang Page 10

Curr Opin Genet Dev. Author manuscript; available in PMC 2024 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tai and Zhang Page 11

Ta
b

le
 1

In
 v

iv
o 

re
pr

og
ra

m
m

in
g 

fo
r 

sp
in

al
 c

or
d 

re
pa

ir.

C
el

l s
ou

rc
es

D
el

iv
er

y 
m

et
ho

ds
F

ac
to

rs
T

ra
ci

ng
 m

et
ho

ds
N

eu
ro

n 
ty

pe
s

F
un

ct
io

na
l p

ro
pe

rt
ie

s
R

ef
er

en
ce

s

N
SC

s
C

hi
to

sa
n

N
T-

3
B

rd
U

U
nd

ef
in

ed
N

eu
ra

l n
et

w
or

k,
 s

en
so

ry
 a

nd
 m

ot
or

 
fu

nc
tio

na
l r

ec
ov

er
y

Y
an

g 
et

 a
l. 

(2
01

5)
 [

14
]

N
SC

s
C

hi
to

sa
n

N
T-

3
B

rd
U

U
nd

ef
in

ed
E

le
ct

ro
ph

ys
io

lo
gi

ca
l a

nd
 m

ot
or

 f
un

ct
io

na
l 

re
co

ve
ry

Z
ha

o 
et

 a
l. 

(2
02

2)
 [

17
]

N
SC

s
L

en
tiv

ir
us

N
kx

6.
1

L
en

tiv
ir

al
 R

FP
C

ho
lin

er
gi

c 
in

te
rn

eu
ro

ns
R

ed
uc

tio
n 

of
 in

fl
am

m
at

io
n 

an
d 

gl
ia

l s
ca

r
Pa

te
l e

t a
l. 

(2
02

1)
 [

18
,1

9]

N
SC

s
L

en
tiv

ir
us

G
sx

1
L

en
tiv

ir
al

 R
FP

G
lu

ta
m

at
er

gi
c,

 c
ho

lin
er

gi
c 

in
te

rn
eu

ro
ns

R
ed

uc
tio

n 
of

 a
st

ro
gl

io
si

s 
an

d 
gl

ia
l s

ca
r, 

en
ha

nc
ed

 s
er

ot
on

in
 n

eu
ro

na
l a

ct
iv

ity
 a

nd
 

lo
co

m
ot

or
 f

un
ct

io
n

Pa
te

l e
t a

l. 
(2

02
1)

 [
18

,1
9]

N
SC

s
R

et
ro

vi
ru

s
N

eu
ro

d4
R

et
ro

vi
ra

l A
cG

FP
1 

or
 

ta
uA

cG
FP

1,
 B

rd
U

E
xc

ita
to

ry
 a

nd
 in

hi
bi

to
ry

 
ne

ur
on

s,
 m

ot
or

 n
eu

ro
ns

Fu
nc

tio
na

l s
yn

ap
se

s,
 im

pr
ov

ed
 lo

co
m

ot
or

 
fu

nc
tio

n
Fu

ku
ok

a 
et

 a
l. 

(2
02

1)
 [

20
]

A
st

ro
cy

te
s

L
en

tiv
ir

us
SO

X
2

L
en

tiv
ir

al
 G

FP
, B

rd
U

, m
G

fa
p-

C
re

;R
26

R
-t

dT
G

A
B

A
er

gi
c,

 g
lu

ta
m

at
er

gi
c 

in
te

rn
eu

ro
ns

Sy
na

ps
es

 w
ith

 p
re

ex
is

tin
g 

C
hA

T
+
 m

ot
or

 
ne

ur
on

s
Su

 e
t a

l. 
(2

01
4)

 [
25

]

A
st

ro
cy

te
s

L
en

tiv
ir

us
SO

X
2,

 s
hR

N
A

–
p5

3,
 a

nd
 B

D
N

F-
N

O
G

B
rd

U
, m

G
fa

p-
C

re
;R

26
R

-t
dT

G
lu

ta
m

at
er

gi
c 

80
%

, 
G

A
B

A
er

gi
c,

 g
ly

ci
ne

rg
ic

, 
se

ro
to

ne
rg

ic
, a

nd
 

ch
ol

in
er

gi
c 

in
te

rn
eu

ro
ns

Sy
na

pt
ic

 c
on

ne
ct

io
ns

W
an

g 
et

 a
l. 

(2
01

6)
 [

26
]

A
st

ro
cy

te
s

R
et

ro
vi

ru
s,

 
A

A
V

N
eu

ro
D

1
R

et
ro

vi
ra

l G
FP

, A
A

V
-

ex
pr

es
se

d 
m

C
he

rr
y

G
lu

ta
m

at
er

gi
c 

in
te

rn
eu

ro
ns

R
ep

et
iti

ve
 a

ct
io

n 
po

te
nt

ia
ls

 a
nd

 
sp

on
ta

ne
ou

s 
sy

na
pt

ic
 r

es
po

ns
es

Pu
ls

 e
t a

l. 
(2

02
0)

 [
27

]

A
st

ro
cy

te
s

A
A

V
N

eu
ro

g2
A

A
V

-e
xp

re
ss

ed
 m

C
he

rr
y

G
lu

ta
m

at
er

gi
c 

an
d 

G
A

B
A

er
gi

c 
in

te
rn

eu
ro

ns
R

es
po

ns
e 

to
 a

ff
er

en
t i

np
ut

s 
fr

om
 d

or
sa

l 
ro

ot
 g

an
gl

io
n

L
iu

 e
t a

l. 
(2

02
1)

 [
28

]

A
st

ro
cy

te
s

A
A

V
N

gn
2+

Is
l1

A
A

V
-e

xp
re

ss
ed

 G
FP

, h
G

FA
P-

C
re

E
R

T
2 ;

R
26

R
-t

dT
M

ot
or

 n
eu

ro
ns

E
le

ct
ro

ph
ys

io
lo

gi
ca

l a
ct

iv
iti

es
Z

ho
u 

et
 a

l. 
(2

02
1)

 [
29

]

A
st

ro
cy

te
s

L
en

tiv
ir

us
sh

N
O

T
C

H
1,

 
N

O
T

C
H

 in
hi

bi
to

r
B

rd
U

, l
en

tiv
ir

al
 G

FP
G

A
B

A
er

gi
c 

in
te

rn
eu

ro
ns

N
/A

Ta
n 

et
 a

l. 
(2

02
2)

 [
32

]

N
G

2 
gl

ia
L

en
tiv

ir
us

SO
X

2,
 p

75
-2

B
rd

U
, l

en
tiv

ir
al

 G
FP

, P
dg

fr
a-

C
re

E
R

™
;R

26
R

-Y
FP

, A
sc

l1
-

C
re

E
R

T
2 ;

R
26

R
-t

dT

G
lu

ta
m

at
er

gi
c,

 
G

A
B

A
er

gi
c,

 a
nd

 
gl

yc
in

er
gi

c 
in

te
rn

eu
ro

ns

Sy
na

pt
ic

 c
on

ne
ct

io
ns

, s
ca

rr
in

g 
re

du
ct

io
n,

 
an

d 
im

pr
ov

ed
 f

un
ct

io
na

l r
ec

ov
er

y
Ta

i e
t a

l. 
(2

02
1)

 [
37

]

Pr
ol

if
er

at
in

g 
ce

lls
R

et
ro

vi
ru

s
N

gn
2,

 E
G

F,
 F

G
F2

, 
an

d 
B

D
N

F
R

et
ro

vi
ra

l G
FP

, B
rd

U
G

A
B

A
er

gi
c 

in
te

rn
eu

ro
ns

N
/A

O
ho

ri
 e

t a
l. 

(2
00

6)
 [

38
]

Curr Opin Genet Dev. Author manuscript; available in PMC 2024 April 18.


	Abstract
	Introduction
	Neurons from resident neural stem cells
	Neurons from resident astrocytes
	Neurons from resident NG2 glia
	Pitfalls, challenges, and opportunities
	References
	Figure 1
	Table 1

