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Abstract

Background: In their 2021 lung cancer screening recommendation update, the US Preventive
Services Task Force (USPSTF) evaluated strategies that select individuals based on their personal
lung cancer risk (risk model-based strategies), highlighting the need for further research on the
benefits and harms of risk model-based screening.

Objective: To evaluate and compare the cost-effectiveness of risk model-based lung cancer
screening strategies vs. the USPSTF recommendation and to explore optimal risk thresholds.
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Design: Comparative modeling analysis.

Data Sources: National Lung Screening Trial; Surveillance, Epidemiology, and End Results
program; US Smoking History Generator.

Target Population: 1960 US birth cohort.
Time Horizon: 45 years.
Perspective: US health care sector.

Intervention: Annual low-dose computed tomography in risk model-based strategies that start
screening at age 50 or 55, stop screening at age 80, with 6-year risk thresholds between 0.5%
-2.2% using the PLCOmM2012 model.

Outcome Measures: Incremental cost-effectiveness ratio (ICER) and cost-effectiveness
efficiency frontier connecting strategies with the highest health benefit at a given cost.

Results of Base-Case Analysis: Risk model-based screening strategies were more cost-
effective than the USPSTF recommendation and exclusively comprised the cost-effectiveness
efficiency frontier. Among the strategies on the efficiency frontier, those with a 6-year risk
threshold of 1.2% or greater were cost-effective with an ICER less than $100,000 per quality-
adjusted life year (QALY). Specifically, the strategy with a 1.2% risk threshold had an ICER of
$94,659 (model-range: $72,639-$156,774), yielding more QALYs for less cost than the USPSTF
recommendation, while having a similar level of screening coverage (person ever-screened 21.7%
versus USPSTF’s 22.6%).

Results of Sensitivity Analyses: Risk model-based strategies were robustly more cost-
effective than the 2021 USPSTF recommendation under varying modeling assumptions.

Limitations: Risk models were restricted to age, sex, and smoking-related risk predictors.

Conclusion: Risk model-based screening is more cost-effective than the USPSTF
recommendation, thus warranting further consideration.

Funding Source: NCI.

Introduction

In 2021, the US Preventive Services Task Force (USPSTF) issued their updated
recommendation on lung cancer screening that lowers the starting age from 55 to 50

years and the minimum cumulative smoking exposure from 30 to 20 pack-years relative

to its 2013 recommendation.(1) As part of their lung cancer screening update, the USPSTF
reviewed the performance of strategies that select individuals based on their personal lung
cancer risk (hereon referred to as risk model-based strategies)(1, 2), in addition to strategies
that select individuals based on categorical age and smoking history (hereon referred to as
categorical age-smoking strategies) such as their final recommendation. Risk model-based
strategies use validated risk prediction models to estimate the personal lung cancer risk of
individuals within a prespecified time horizon, based on a set of risk factors associated with
lung cancer.(3-5)
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Several prior studies have evaluated the performance of risk model-based screening

for lung cancer.(2, 4, 6-13) To inform the 2021 USPSTF recommendation update, the
Cancer Intervention and Surveillance Modeling Network (CISNET) Lung Working Group
conducted a comparative modeling study and reported that risk model-based strategies
avert more lung cancer deaths and result in fewer radiation-related deaths than categorical
age-smoking strategies.(2, 14) Interim findings from the International Lung Screening Trial
demonstrated that risk model-based lung cancer screening programs improve sensitivity
versus categorical age-smoking strategies.(15) Several international trials and pilot studies
announced their plans to evaluate the feasibility of risk model-based screening strategies for
lung cancer, with some of them reporting encouraging preliminary findings.(15-20)

Despite the potential for risk-model based screening to improve screening performance,
comprehensive evaluations of the cost-effectiveness of risk-model based screening programs
have been largely lacking. Prior studies have estimated the cost-effectiveness of categorical
age-smoking strategies for lung cancer.(21-25) Kumar and colleagues conducted an analysis
comparing the cost-effectiveness across different subgroups stratified by estimated risk
scores,(26) but was limited to the National Lung Screening Trial (NLST) study population,
thus not generalizable to the U.S. population. The cost-effectiveness of risk model-based
screening was evaluated for the UK,(27) Canada,(28) and Australia,(29) but no study to date
has compared the cost-effectiveness of risk-model based screening versus the 2021 USPSTF
recommendations.

The cost-effectiveness of risk model-based screening could depend on the risk threshold
used to select individuals for screening given the differences in health outcomes associated
with screening individuals from different risk strata.(3, 4) Several studies evaluated the
effectiveness of risk model-based screening programs by assessing lung cancer mortality
reduction or life-years gained.(15, 16, 30-34) These studies used the PLCOmM2012 model
and considered specific risk thresholds (e.g., 6-year risk of 1.3%, 1.5%, or 1.7%) that were
shown to yield similar sensitivity or eligibility as compared to past screening trials or to
the USPSTF recommendations. However, the optimality of these risk threshold from a
cost-effectiveness perspective cannot be determined.

In this study, we evaluated and compared the cost-effectiveness of risk model-based
strategies versus the 2021 USPSTF recommendation using a range of clinically meaningful
risk thresholds discussed in the literature or implemented in contemporary international lung
cancer screening programs(4, 15, 16, 34).

We used a comparative modeling approach involving four validated microsimulation models
of the CISNET Lung Working Group that informed the USPSTF recommendations on lung
cancer screening, to assess the cost-effectiveness of risk model-based screening strategies
(Supplemental Table 1).(2, 14, 35)
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CISNET Model Description

Four microsimulation models of the CISNET Lung Working Group [the Microsimulation
Screening Analysis (MISCAN)-Lung Model from Erasmus University Medical Center,(36)
the Lung Cancer Policy Model from Massachusetts General Hospital,(37) the Lung Cancer
Outcomes Simulation from Stanford University,(38, 39) and the model from University of
Michigan(40)] were independently developed to evaluate lung cancer screening strategies.
Because the models differ in modeling assumptions and mathematical formulation of lung
cancer development and progression, the comparative analysis allows us to assess the impact
of model specification uncertainty. All models were calibrated to lung cancer incidence and
mortality data from the NLST and the Prostate, Lung, Colorectal, and Ovarian (PLCO)
cancer screening trial.(41) An overview of the models and their assumptions is provided in
Supplemental Methods, Supplemental Table 2 and the literature.(14, 35, 41, 42)

Study Population and Smoking Histories

Lung cancer related events for 1 million men and women were simulated separately, using
smoking patterns of the 1960 U.S. birth cohort that is representative of the U.S. population
targeted by screening. Smoking histories and age at death from competing causes of death
were obtained from the CISNET’s smoking history generator (Supplemental Methods).(43—
45) Simulated individuals entered the study at age 45 and were followed until age 90 or
death, whichever occurred first, corresponding to a study horizon between 2005-2050.(2,
21)

Risk Prediction Models

We assessed individuals’ lung cancer risk using the PLCOm2012 risk prediction model

and the Lung Cancer Death Risk Assessment Tool (LCDRAT).(12, 46) We selected these
models since they are ranked among the best performing externally validated risk prediction
models for lung cancer and allowed evaluation of screening programs that select individuals
based on their risk of being diagnosed with lung cancer (PLCOm2012) versus risk of

dying from lung cancer (LCDRAT).(4, 11) We used simplified versions for both models
restricted to age, sex, and smoking-related risk predictors to estimate the personal risk

of ever-smoked individuals, which maintained high predictive performance (Supplemental
Methods, Supplemental Tables 3-4).(4, 30) We considered a set of clinically meaningful
6-year lung cancer risk thresholds ranging from 0.5%-2.2%, because programs within that
range yielded a positive net benefit versus the NLST eligibility criteria.(2, 4, 15, 16, 30,

34) Individuals were eligible to undergo annual lung cancer screening if they satisfied the
age eligibility criteria and their risk was above the 6-year risk threshold specified by each
screening strategy.

Health Utility and Cost Inputs

We evaluated the cost-effectiveness of screening programs using the U.S. health care sector
perspective.(21, 23) We adjusted the remaining life-years of simulated individuals for
quality of life using published health utilities associated with aging, lung cancer screening,
screening findings, lung cancer stage at diagnosis, and terminal care (Supplemental Table
5).(47-50)
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Costs associated with screening and diagnostic procedures were obtained from the

2020 Centers for Medicare and Medicaid Services reimbursement rates based on their
corresponding Current Procedural Terminology code (Supplemental Table 6). Downstream
treatment costs associated with specific phases of lung cancer treatment were adopted from
a published analysis of SEER/Medicare data and converted to 2020 U.S. dollars using a
3% annual inflation rate (Supplemental Table 7).(23, 51) Health utilities and costs were
standardized, discounted using a 3% annual rate, and shared across the four models.

Outcome Measures

Primary outcome measures included: (1) the cost-effectiveness efficiency frontier, i.e., the
line segments connecting strategies that yield the highest health benefit at a given level of
cost, and (2) the incremental cost-effectiveness ratios (ICER) of each screening strategy
relative to the strategy preceding it on the efficiency frontier.

Each model estimated the sex-specific health benefits and costs associated with each
strategy. We normalized the results to 100,000 individuals alive at age 45 with no history

of lung cancer and derived the overall population outcomes for each of the CISNET models
by aggregating the sex-specific results. We calculated the arithmetic mean for the costs

and quality-adjusted life-years (QALYS) for each screening strategy from the model-specific
results for the overall population, and then estimated the ICER of strategy i relative to
strategy j as follows:

Cost;— Cost;

ICER; = ALY, = QALY,

where strategy i corresponds to the strategy that is being evaluated, and strategy j denotes
the reference strategy.

Screening strategies were considered cost-effective if they (i) were on the cost-effectiveness
efficiency frontier and (ii) had an ICER less than $100,000 vs the preceding strategy on the
efficiency frontier(52-54).

Secondary outcomes included lung cancer mortality reduction, life-years gained from
screening, number of LDCT screening exams, overdiagnosis rates, and strategies’ net
monetary benefit(55). Results are presented per 100,000 individuals from the general
population (including individuals who were ineligible for screening, e.g. never-smoking
individuals) alive at age 45 with no history of lung cancer, unless stated otherwise.

Base-case and Sensitivity Analyses

For the base-case analysis, we used the PLCOm2012 and LCDRAT risk models to estimate
the lung cancer risk of ever-smoked individuals(12, 46). We assigned a one-time disutility
of 0.01 (3.65 days)(22) per indeterminate finding (that is a Lung-RADS category 3 or 4A
finding(56)) applied from the time of detection up until the next follow-up exam, and a
one-time disutility of 0.001 (8.75 hours)(50) per LDCT exam assuming perfect adherence to
screening.
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For practicality, all sensitivity analyses were conducted using the PLCOm2012 risk

model. We examined the robustness of our findings to changes on the disutility levels
associated with indeterminate findings (disutility range: 0.005-0.02(22)) and regular LDCT
exams (disutility range: 0-24 hours(50)). We evaluated the cost-effectiveness of screening
assuming age-specific adherence rates observed in current clinical practice (Supplemental
Table 8).(57) To incorporate potential implementation challenges associated with risk
model-based programs, we also considered a scenario with lower adherence rates for the
risk model-based strategies relative to the adherence rate used for categorical age-smoking
strategies (Supplemental Methods). To reflect current practice that discourages screening
for high comorbid individuals, we evaluated the cost-effectiveness of risk model-based
strategies when individuals with short life expectancy (less than 5 years from the time of
the LDCT screening exam assessed annually) were ineligible for screening.(2, 21) Also, we
evaluated the cost-effectiveness of screening accounting for the additional cost associated
with the risk assessment (Supplemental Table 6). Finally, univariate, and probabilistic
sensitivity analyses were conducted to assess the sensitivity of our findings to changes in the
values of key model input parameters (Supplemental Methods).

Base-Case Analysis

The results of our base-case analysis using the PLCOm2012 are shown in Tables 1 and
Figure 1A. Risk model-based screening strategies were more cost-effective than the 2021
USPSTF recommendation. Notably, all the categorical age-smoking strategies—including
the 2021 and the 2013 USPSTF recommendations—were strongly dominated (i.e., more
costly yet yielded fewer QALYS) by risk model-based strategies. The cost-effectiveness
efficiency frontier derived from the analysis using the PLCOmM2012 model included 12 risk
model-based strategies that started screening at age 50 years. Among the 12 strategies on the
cost-effectiveness efficiency frontier, the 6 strategies with a 6-year risk threshold of 1.2% or
greater were cost-effective (i.e., an ICER less than $100,000). Notably, the strategy using a
1.2% 6-year threshold yielded the highest health benefit among the cost-effective strategies
(ICER=$94,659 per QALY gained; on the frontier of 3 out of 4 models, ICER range across
models: $72,639-$156,774) (Supplemental Tables 9-12). The 1.2% PLCOm2012 strategy
yielded higher reduction in lung cancer mortality than the 2021 USPSTF recommendation
(12.4% vs. 11.7%), while maintaining a similar level of screening coverage (21.7% vs
22.6% individuals ever screened) (Table 2).

The analysis using the LCDRAT model—that predicts the risk of 6-year lung cancer
mortality (vs. 6-year lung cancer incidence in PLCOmM2012)—yielded findings similar to the
PLCOmM2012, although the cost-effective screening strategy that yielded the highest QALYs
used a 1.1% 6-year LCDRAT risk threshold (vs. 1.2% risk threshold with the PLCOmM2012)
with an ICER of $97,284 per QALY gained (ICER range across models: $67,728-$143,125)
(Figure 1B and Table 3).

Model-specific results showed that the efficiency frontiers were still comprised of only
risk model-based strategies across all CISNET models, although the range of cost-effective
risk thresholds varied across the models from 0.9% or greater to 2.2% or greater for the
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PLCOmM2012 model (Supplemental Tables 9-12) and from 1.0% or greater to 2.2% or
greater for the LCDRAT model (Supplemental Tables 13-16).

Our findings using the net monetary benefit (to replace the ICERS) are presented in
Supplemental Tables 17-18.

Sex-specific analyses showed that the efficiency frontiers were still comprised of only risk
model-based strategies, and both risk model-based and categorical age-smoking strategies
were more cost-effective for women than for men (Supplemental Tables 19-20). The
analysis performed using unadjusted life-years (versus QALY with the PLCOmM2012 model
yielded similar results to the base-case (Supplemental Table 21).

Sensitivity Analyses

When we assumed maximum disutility values associated with LDCT exams and
indeterminate findings, the efficiency frontier was still comprised only of risk model-based
strategies that initiate screening at age 50 years (Supplemental Table 22, Supplemental
Figure 1). However, among the strategies on the efficiency frontier, only risk model-based
strategies with a 6-year risk threshold (PLCOmM2012) of 2.0% or greater (versus 1.2%

or greater in the base-case) remained cost-effective under the maximum disutility values.
Specifically, the strategy with a 2.0% 6-year risk threshold was cost-effective and yielded the
highest health benefit with a mean ICER of $84,113 (on the frontier of all models, ICER
range: $53,951-$980,439). When directly compared against the 2021 USPSTF strategy, the
2.0% risk model-based strategy was estimated to screen fewer people (15.8% vs 22.6% of
the general population ever screened), requiring about half the screening exams compared
with the USPSTF (1.9 million vs. 4.0 million LDCT per 100,000 people) but yielded lower
lung cancer mortality reduction (9.8% vs. 11.8%) (Table 3).

When we incorporated imperfect adherence rates into screening (see Supplemental
Methods), the efficiency frontier was still comprised only of risk model-based strategies
and the range of cost-effective risk threshold remained unchanged even when the risk
model-based strategies were assumed to have lower adherence (up to 85% level) than the
USPSTF recommendations (Supplemental Tables 23-26). When we used the lower and
upper bounds for the age-specific adherence rates, the strategies on the efficiency frontier
remained unchanged but the range of cost-effective risk thresholds changed, with cost-
effective screening programs becoming more inclusive (i.e. using lower risk thresholds) as
adherence rates decreased (Supplemental Tables 27-28). Sensitivity analyses that excluded
individuals with limited life expectancy from screening (see Methods) showed improved
cost-effectiveness, with overall lower ICERs (Supplemental Table 29) compared to the base-
case analysis (Table 2); the cost-effectiveness efficiency frontier was still comprised of risk
model-based strategies, thus dominating the 2021 USPSTF recommendation. The analyses
that directly compared each strategy including individuals with low life-expectancy versus
the same strategy excluding them are presented in Supplemental Table 30. The sensitivity
analyses that incorporated the costs associated with annual risk assessment showed that risk
model-based strategies remained cost-effective versus the 2021 USPSTF recommendation,
especially when the risk assessment costs were incurred by individuals who previously
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didn’t undergo screening and satisfied the age eligibility criteria (Supplemental Tables 31—
32).

The univariate sensitivity analyses for the risk model-based strategy that starts screening at
age 50 with 6-year PLCOmM2012 risk threshold of 1.2%—which was chosen as the most
cost-effective strategy in the base-case analysis using the PLCOm2012 model—showed that
the ICERSs were sensitive to changes to the values of the health utility associated with Stage
I non-small cell lung cancer, and the discounting factor (Figure 2, Supplemental Tables 33—
50). The probabilistic sensitivity analysis demonstrated that the strategy with 1.2% 6-year
risk threshold was cost-effective relative to the 1.3% 6-year risk threshold strategy with 31%
probability using $100,000 willingness-to-pay threshold (Supplemental Figure 2).

Discussion

In this study, we evaluated the cost-effectiveness of risk model-based lung cancer screening
strategies that use validated risk prediction models to select individuals for screening. We
found that risk model-based screening strategies consistently yielded more QALY's and cost
savings compared to the 2021 USPSTF recommendation. The cost-effectiveness efficiency
frontier included only risk model-based screening strategies that start screening at age 50
regardless of whether the risk assessment was based on lung cancer incidence or mortality.
Among the strategies on the efficiency frontier, the strategies with a 6-year risk threshold

of 1.2% or greater (with the PLCOmM2012) were cost-effective under the base-case analysis.
Particularly, the strategy with a 1.2% PLCOm2012 risk threshold yielded more QALY for
less cost than the USPSTF recommendation, while having a similar level of screening
coverage (person ever-screened 21.7% for the 1.2% PLCOmM2012 versus 22.6% for the 2021
USPSTF recommendation).

Of note, risk model-based screening strategies were consistently more cost-effective than
the 2021 USPSTF recommendation under varying modeling assumptions, including when
a minimum of 5-year life expectancy was included as an eligibility criterion and when
imperfect adherence was implemented. However, the range of cost-effective risk thresholds
for selecting individuals for screening was sensitive to the risk models used, to the
adherence rate, and to the disutility levels associated with regular screening LDCT exams
and indeterminate findings. For example, when we used the LCDRAT model that predicts
6-year lung cancer mortality (vs. 6-year lung cancer incidence using PLCOm2012), the
cost-effective risk model-based strategies used a 6-year risk threshold of 1.1% or greater
(1.2% or great in PLCOmM2012). Discrepancies in the optimal risk-thresholds between
PLCOmM2012 and LCDRAT highlight the importance for lung cancer screening programs
to use model-specific risk-thresholds. Further, when we assumed the maximum disutility
levels for LDCT screening and indeterminant findings, the cost-effective risk model-based
screening strategies used more stringent 6-year risk thresholds (2.0% PLCOmM2012 or
greater versus 1.2% or greater in the base-case). However, the maximum disutility levels
(i.e., 24 hours for LDCT screening and 2% for indeterminant findings) used for our
sensitivity analyses may be regarded as conservative compared to the literature.(22, 58, 59)
Furthermore, using the cost-effective risk thresholds of 2.0% or greater estimated under the
maximum disutility assumption would lead to reduced screening coverage versus the 2021
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USPSTF recommendation (person ever-screened 15.8% vs. 22.6%) and lower lung cancer
mortality reduction (9.8% vs. 11.8%). If expanded eligibility is one of the key considerations
in implementing lung cancer screening programs, the range of cost-effective PLCOmM2012
risk thresholds of 1.2% or greater (that include the range of 2.0% or greater) estimated

under the base-case—with more moderate but realistic levels of disutility (8 hours for
LDCT screening(50) and 1% for indeterminant findings(22))—could present a reasonable
solution. The strategy with a 6-year PLCOm2012 risk threshold of 1.2% could lead to a
similar level of screening coverage as the USPSTF recommendation (person ever-screened
21.7% vs. 22.6% according to the 2021 USPSTF recommendation), with greater lung cancer
mortality reduction (12.4% vs. 11.8%). Ultimately, optimal risk thresholds must be tailored
to specific settings based on practical considerations, benefits and harms trade-offs, and
resource constraints.

This study is the first to comprehensively evaluate the cost-effectiveness of risk model-
based lung cancer screening relative to the 2021 USPSTF recommendation for the US.
Although our modeling study that informed the 2021 USPSTF recommendation on lung
cancer screening showed that risk model-based strategies offer a modicum of life-year
benefit relative to categorical age-smoking programs,(2, 14) in this study we showed that
when we consider the quality-adjusted life-years gained from screening and the costs of
screening, diagnostic, and treatment modalities then risk model-based screening strategies
offer a substantially higher benefit relative to the categorical age-smoking strategies. The
comparative modeling approach and comprehensive sensitivity analyses conducted proved
the robustness of the main study findings under varying modeling assumptions. We showed
that risk model-based lung cancer screening programs despite generally shifting screening
eligibility to older ages when lung cancer risks, as well as comorbidity risks, are higher,(2,
4) remain more cost-effective than the 2021 USPSTF recommendation. Findings from this
study are aligned with prior studies, which demonstrated the need to use risk-thresholds that
are specific to the risk model used,(4, 30) that lung cancer screening is more cost-effective
in women than men,(21-23, 25) and that the cost-effectiveness of lung screening programs
is sensitive to the disutility of indeterminate findings.(22) Exploring optimal risk thresholds
from a cost-effectiveness perspective identified a range of risk thresholds that could be used
as a potential guide for the development of cost-effective risk model-based lung cancer
screening policies under different settings and healthcare resources.

Our study has limitations. We used simplified versions of the risk prediction models

to assess the lung cancer risk of individuals as done in prior CISNET studies.(2, 4)
Consequently, we may have underestimated the cost-effectiveness of risk model-based
screening strategies as the full models would be expected to better identify high risk
individuals. Modeling additional covariates for the risk assessment (such as family history
or race/ethnicity) is challenging because it requires their joint simulation at the population
level, accounting for their correlations and time trends(60). We assumed that adherence to
annual screening was independent of sex, race/ethnicity, and socioeconomic status.(61-64)
Our current models do not incorporate potential issues regarding availability of resources to
satisfy the expected increase in the number of LDCT exams, (5, 65-67) nor contemporary
treatment modalities. We used the health care sector perspective and ignored productivity
loss, impact on the quality of life of caregivers, and physician and facility costs. We assessed
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the cost-effectiveness of lung cancer screening for the general US population, but the
recommended risk-threshold may not be the optimal for every region/state/heath system
given potential differences in the prevalence of lung cancer, sociodemographic risk factors,
and practice patterns. Lastly, we did not consider the benefit of offering smoking cessation
interventions at the time of lung cancer screening, which have been shown to improve the
cost-effectiveness of screening programs(68—71), and assumed that lung cancer risk and
false-positive rates were independent(72).

In conclusion, lung cancer screening strategies that select individuals based on their personal
lung cancer risk are robustly more cost-effective than the 2021 USPSTF recommendations.
Risk model-based screening is cost-effective under a wide range of risk-thresholds, offers
flexibility for implementation across different settings, and warrants further consideration.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations: QALY, quality-adjusted life-years; USPSTF, U.S. Preventive Services Task
Force; WTP, willingness-to-pay threshold; CISNET, Cancer Intervention and Surveillance
Modeling Network.
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from the base-case analysis.

*minimum utility was -1 day per LDCT exam; maximum utility was 0 days per LDCT exam
Tminimum utility was —0.02 per indeterminate finding; maximum utility was —0.005 per

indeterminate finding

*minimum discounting factor was 1%; maximum discounting factor was 5%
The screening strategies are labeled as follows: frequency (A-annual)—age start—age stop—
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Abbreviations: ICER, incremental cost-effectiveness ratio; PLCO, Prostate, Lung,

Colorectal and Ovarian Screening Trial, LDCT, low-dose computed tomography; NSCLC,
non-small cell lung cancer; Tx, treatment; LC, lung cancer; SCLC, small cell lung cancer;
OCM, other causes of mortality.
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