
SPECIAL ISSUE:
Cognitive Computational Neuroscience of Language

Surprisal From Language Models Can Predict
ERPs in Processing Predicate-Argument

Structures Only if Enriched by an
Agent Preference Principle

Eva Huber1,2 , Sebastian Sauppe1,2,3 , Arrate Isasi-Isasmendi1,2 ,
Ina Bornkessel-Schlesewsky4 , Paola Merlo5,6 , and Balthasar Bickel1,2

1Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
2Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich, Switzerland

3Department of Psychology, University of Zurich, Zurich, Switzerland
4Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments,

University of South Australia, Adelaide, Australia
5Department of Linguistics, University of Geneva, Geneva, Switzerland

6University Center for Computer Science, University of Geneva, Geneva, Switzerland

Keywords: artificial neural networks, computational modeling, event cognition, ERP, sentence
processing, surprisal, large language models (LLMs)

ABSTRACT

Language models based on artificial neural networks increasingly capture key aspects of
how humans process sentences. Most notably, model-based surprisals predict event-related
potentials such as N400 amplitudes during parsing. Assuming that these models represent
realistic estimates of human linguistic experience, their success in modeling language
processing raises the possibility that the human processing system relies on no other principles
than the general architecture of language models and on sufficient linguistic input. Here, we test
this hypothesis on N400 effects observed during the processing of verb-final sentences in
German, Basque, andHindi. By stacking Bayesian generalised additive models, we show that, in
each language, N400 amplitudes and topographies in the region of the verb are best predicted
when model-based surprisals are complemented by an Agent Preference principle that
transiently interprets initial role-ambiguous noun phrases as agents, leading to reanalysis when
this interpretation fails. Our findings demonstrate the need for this principle independently of
usage frequencies and structural differences between languages. The principle has an unequal
force, however. Compared to surprisal, its effect is weakest in German, stronger in Hindi, and
still stronger in Basque. This gradient is correlated with the extent to which grammars allow
unmarked NPs to be patients, a structural feature that boosts reanalysis effects. We conclude that
language models gain more neurobiological plausibility by incorporating an Agent Preference.
Conversely, theories of human processing profit from incorporating surprisal estimates in
addition to principles like the Agent Preference, which arguably have distinct evolutionary roots.

INTRODUCTION

The brain processes information through an incremental and probabilistic mechanism of
updating models of the world (Clark, 2013; Friston, 2010). Over the past twenty years, evi-
dence has accumulated that, in the case of human language, this processing mechanism is
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largely guided by the preceding linguistic context and previous experience with the statistical
distributions of linguistic structure (Hale, 2001; Levy, 2008) and units (Frank, Otten, et al., 2013).
In particular, models of such distributions based on artificial neural networks have been remark-
ably successful at predicting electrophysiological (Frank et al., 2015; Goldstein et al., 2022;
Michaelov et al., 2021; Szewczyk & Federmeier, 2022) and fMRI-BOLD (Brennan et al.,
2020; Caucheteux & King, 2021; Henderson et al., 2016; Hosseini et al., 2022; Lopopolo
et al., 2017; Schrimpf et al., 2020; Willems et al., 2016) responses during language processing.

However, it remains an unresolved question to what extent linguistic processing is also
directly guided by independent neurobiological constraints, such as the evolutionarily inher-
ited architecture of neural feedback loops (Cisek, 2022), sensory sampling frequencies (Friston,
2010; Ramstead et al., 2018), bodily states (Foglia & Wilson, 2013), prototypical cognitive
event schemata (Bornkessel-Schlesewsky & Schlesewsky, 2009), or nonlinguistic knowledge
and behavioural goals (Su et al., 2023). Is the probabilistic linguistic information that is cap-
tured by artificial neural network models sufficient to characterise language processing in
humans?

Here, we seek to shed light on this question by formalising probabilistic linguistic information
in terms of surprisal theory (Gibson et al., 2019; Hale, 2001; Levy, 2008) and neurobiological
constraints in the form of what has been called a general Agent Preference (Bornkessel-
Schlesewsky & Schlesewsky, 2020; V. A. D. Wilson et al., 2022). To this end, we turn to
the N400 event-related potential (ERP) component, which has been prominently associated
with the processing of probabilistic information and, accordingly, can be viewed as an indi-
cator of how this type of information is processed in real time (Kuperberg & Jaeger, 2016). The
N400 is an ERP component peaking around 400 ms post onset of a critical stimulus and is
found, among other areas of cognition, in sentence comprehension, where it has been linked
to processing difficulties of various types (cf. Kuperberg & Jaeger, 2016; Kutas & Federmeier,
2011, for reviews).

We specifically focus on the processing of predicate-argument structures as illustrated in the
German Example 1, where a more pronounced N400 amplitude has been found with stimuli
such as 1b compared to stimuli such as 1a. In the following, we will refer to this phenomenon
as the Predicate N400, because it relates to the integration of a predicate (typically a verb) with
its arguments (typically, noun phrases [NPs]) at the end of a sentence.

(1) a. … dass Julia alle grüßt.
… that Julia.SG.NOM/ACC/DAT everyone.PL.NOM/ACC/DAT greet.SG
… ‘that Julia greets them all.’

b. … dass Julia alle grüßen.
… that Julia.SG.NOM/ACC/DAT everyone.PL.NOM/ACC/DAT greet.PL
…‘that they all greet Julia.’

The Predicate N400 has been interpreted as reflecting a general Agent Preference. We expand
on this in what follows and then turn to a possible alternative interpretation in terms of
Surprisal Theory.

The Predicate N400 as the Reflex of an Agent Preference

The Predicate N400 has been interpreted as evidence of semantic role reanalysis. Under this
view, comprehenders transiently interpret a locally ambiguous initial NP (e.g., Julia in Example
1) as the agent of the verb. An N400 occurs with 1b because the initial NP is disambiguated to

Agent Preference:
A bias towards the more agent-like
participant as opposed to the more
patient-like participant in the
comprehension of language and the
observations of events.

Predicate N400:
Effect that has been observed when
a predicate, typically a verb,
disambiguates the role of a preceding
noun phrase.

Semantic Role:
The underlying relationship of an
argument and its predicate, which
can be conceptualised at the level of
macro-roles (agent vs. patient) or at
the level of micro-roles (hitter vs.
hittee).
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be a patient rather than an agent by grüßen “greet (plural).” Thus, the human parser arguably
prefers initial unmarked NPs to be agents (as opposed to patients) at the level of proto-roles
(Bickel, 2011; Dowty, 1991; Primus, 1999) or macro-roles (Van Valin, 2001; Van Valin &
Foley, 1980). In other words, the parser expects these NPs to accumulate the most agent prop-
erties, such as “volitional,” “sentient,” “causing an event,” or “independently existing” in their
event semantics. An alternative way of capturing this is in terms of a preference for initial sub-
jects (Bader & Meng, 1999; Fanselow et al., 1999; Frazier & Flores d’Arcais, 1989; Hemforth
et al., 1993), which leads to the same result as long as the sentences are transitive and in active
voice (but see Bornkessel et al., 2003, for evidence that the preference operates in terms of
semantic roles rather than syntactic functions).

These effects have been demonstrated in German (Haupt et al., 2008), Basque (Erdocia
et al., 2009), and Austrian Sign Language (Krebs et al., 2018), using transitive stimuli of the
kind illustrated by Example 1. A study on Swedish found the same effect with a slightly differ-
ent design in which the second NP in a [NP V NP] structure served as the disambiguating
region (Hörberg et al., 2013).

Another experimental design was used in Turkish (Demiral et al., 2008), Hindi (Bickel et al.,
2015), Chinese (Wang et al., 2009), and Äiwoo (an Oceanic language, Sauppe et al., 2023). In
these studies, an initial ambiguous NP was subsequently disambiguated to an agent or a
patient by the verb, i.e., in [NP V] structures. Because of frequent omission of agents and word
order variation, a [Patient Verb] interpretation of the structure is very probable in these lan-
guages. In Hindi, this trend is further strengthened by the fact that agents are marked with
ergative case in the perfective aspect, increasing the frequency of unmarked NPs as patients.
In Äiwoo, the trend is even stronger, because the syntax of the language builds on a basic
object-verb-subject (OVS), that is, patient-initial, order (Næss, 2015, 2021). However, in all
four languages, an N400 was found when the unmarked NP in an [NP V] sequence was dis-
ambiguated to a patient.

While these studies relied on transitive sentences, experiments on Basque also revealed an
N400 for a disambiguation towards the patient role with intransitive verbs (e.g., “The boy fell”
as opposed to “The boy danced”; Isasi-Isasmendi et al., 2024). This suggests that the Agent
Preference holds independently of transitivity.

The Agent Preference is not limited to animate NPs but has been shown to generalise to
inanimate NPs in Chinese, Turkish, and Hindi. Only two exceptions to this generalisation are
known. First, the effect was reversed in [NPinanimate NP V] sentences in Chinese, arguably
because here an initial agent reading requires two fronted NPs, which is an overly complex
structure with strong contextual constraints (Wang et al., 2012). Second, [NPinanimate V NP]
sentences reversed the effect in Äiwoo, arguably because the inanimate NP further strengthens
its syntactic default interpretation as a patient in this language. This seems to override the
Agent Preference observed for human referent NPs in Äiwoo (Sauppe et al., 2023).

The Predicate N400 as the Reflex of Linguistic Surprisal

Previous research has not examined to what extent the Predicate N400 effect could alterna-
tively be explained by the human experience with probabilistic and contextual information of
incoming words. We consider this possibility as part of the larger framework known as
Surprisal Theory (Hale, 2001; Levy, 2008). According to this theory, the human parser assigns
a probability distribution to possible continuations. This is chiefly formalised in terms of
linguistic surprisal, the logarithm of the inverse probability of a word given its preceding
context. Alongside other probabilistic measures such as entropy reduction or linear word

Ergative:
A case marker that signals the agent
role of a noun phrase.

Linguistic surprisal:
The information conveyed by any
linguistic event defined in bits:
S(xi) = −log2p(xi|hi−1).
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probabilities, linguistic surprisal mirrors some kind of graded prediction or expectation
(Armeni et al., 2017).

The gradedness of the measure parallels the theoretical models of the N400 effect in which
the negative amplitude of the negative ERP component is assumed to mirror precision-
weighted prediction errors (Bornkessel-Schlesewsky & Schlesewsky, 2019). Similarly, it is
consistent with models that simulate the N400 as a change evoked by the implicit and prob-
abilistic meaning representation of an incoming stimulus (Lopopolo & Rabovsky, 2021;
Rabovsky et al., 2018).

Surprisal Theory has taken different forms through the years. Earlier work uses surprisal as a
linking function between the predictions of any theoretical model with the neurophysiological
or behavioural signals (Hale, 2001; Levy, 2008). More recent work eschews built-in knowl-
edge of syntactic structures and estimates linguistic surprisal with language models based
on artificial neural networks. These networks model the distribution of words in context and
are constrained only by their general architecture of information flow, and not by specifically
linguistic knowledge. Surprisal from such language models thus estimates the predictability of
words in context rather than in linguistic structures (e.g., the probability of a verb phrase
projecting a noun phrase instead of a complementiser phrase). The more recent approach
of Surprisal Theory thus offers a parsimonious account of the precision-weighted prediction
errors or changes in probability that the N400 is thought to reflect. If successful, this version
of Surprisal Theory would recast the N400 as purely driven by usage and whatever linguistic
structures can be estimated from usage, in the context of the specific artificial neural network
architecture (Hewitt & Manning, 2019).

Indeed, many studies converge in finding wide-ranging similarities between such models
and human processing behavior in, for example, the processing of island constraints (Wilcox
et al., 2023), long-distance agreement concord (Gulordava et al., 2018), and garden path
effects (Futrell et al., 2019). Intriguingly, recent work has shown that model-based linguistic
surprisal can accurately predict electroencephalogram (EEG) amplitudes (Frank et al., 2015;
Michaelov et al., 2021; Szewczyk & Federmeier, 2022), reading times (Aurnhammer & Frank,
2019; Brothers & Kuperberg, 2021; Frank, Monsalve, et al., 2013; Goodkind & Bicknell,
2018), and fMRI-BOLD responses (Caucheteux & King, 2021; Schrimpf et al., 2020; Shain
et al., 2020).

Some of this work has focused on predicting the N400 amplitude for English words with
varying levels of expectability (Michaelov et al., 2021). Model-based linguistic surprisal
appears to accurately capture the N400 effect that occurs with nouns of lower lexical predict-
ability. Additionally, model-based linguistic surprisal has been shown to correlate with N400
amplitudes for individual words while reading whole English texts, such as excerpts from
novels (Frank et al., 2015; Szewczyk & Federmeier, 2022). Recently, surprisal-based measures
have also been shown to track trial-by-trial internal model adaptation during exposure to novel
linguistic probability distributions within an experimental context (Bornkessel-Schlesewsky
et al., 2022).

Taken together, this research demonstrates that linguistic surprisal estimated by language
models is a powerful tool to capture the effect of a human parser’s experience with the distri-
bution of words in usage. Importantly, the language models used in this work have access only
to probabilistic linguistic information, but no further knowledge about linguistic structure or
event structure, that is, no prior knowledge of such notions as “agent,” “patient,” “transitive
verb,” and so on. This allows us to directly assess whether the Predicate N400 can be

Language models:
Language models (based on artificial
neural networks) estimate the
probability distribution over a
sequence of words by predicting
future input based on previous input
(in the case of next-word prediction
as implemented in recurrent neural
networks or GPT-2) or by predicting
masked input (in the case of masked
language modelling as implemented
in BERT).
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sufficiently explained by probabilistic linguistic information (as measured by surprisal), or
whether we additionally need the Agent Preference to capture the Predicate N400.

The Agent Preference is a binary principle that is either fulfilled (when an initial, ambiguous
NP disambiguates to the macro-role agent) or violated (when an initial, ambiguous NP disam-
biguates to the macro-role patient). Thus, the principle does not follow any probabilistic infor-
mation as it should become active whenever a role-ambiguous NP is encountered. In contrast,
linguistic surprisal is a continuous measure that captures predictability at the level of lexical
choices, apart from morphosyntactic information. This includes the individual verbs with their
semantic and syntactic properties, specifically the micro-roles they assign to arguments. In a
sentence such as “The monkey eats a banana,” at the level of macro-roles, the monkey is the
agent and the banana is the patient. At the level of micro-roles, the monkey is the “eater” and
the banana is the “object-being-eaten.”

The Current Study

We ask whether the Predicate N400 is best explained by an Agent Preference principle as
previously suggested or whether a usage-based account in terms of model-based surprisal is
sufficient. To this end, we revisit previously conducted EEG experiments that showed a
Predicate N400 in German (Haupt et al., 2008), Hindi (Bickel et al., 2015) and Basque
(Isasi-Isasmendi et al., 2024).

The argument marking of agents and patients (as proto- or macro-roles) varies in these lan-
guages in ways that are crucial for our question (Table 1, focusing exclusively on active-voice
sentences). German assigns agents an unmarked case (nominative), Hindi flags them with a
special ergative marker under some conditions, and Basque flags them with an ergative marker
throughout. As for patients, German assigns them a marked (accusative or dative) case, Hindi
either a marked (accusative) or an unmarked (nominative) case, and Basque consistently an
unmarked case (nominative, also called absolutive). In German and Basque, some case forms
are formally identical with each other, a phenomenon technically known as syncretism, and
this allows role-ambiguous stimuli of the kind illustrated by Example 1 to assess the Predicate
N400 (where nominative and accusative have the same form).

These syncretisms aside, the case rules imply that unmarked NPs are rarely patients in
German, less rarely so in Hindi, and frequently so in Basque. This suggests that a language
model can easily learn to expect unmarked NPs to be agents in German, while this is harder
in Hindi and still harder in Basque. Accordingly, we hypothesise that the dominant effect of the
Predicate N400 is surprisal for German, surprisal in combination with the Agent Preference
principle for Hindi, and the Agent Preference alone for Basque.

We conduct two types of analyses. First, we estimate linguistic surprisal at the critical region
of the experimental stimuli with recurrent neural networks (RNNs; e.g., long short-term mem-
ory models [LSTMs]; Hochreiter & Schmidhuber, 1997) and transformer-based architectures
(Vaswani et al., 2017). By using hierarchical Bayesian models of surprisals, we compare their
estimates with the qualitative results found in the EEG analysis. We marginalise over the effects
of the experimental conditions which were set under the assumption that humans process sen-
tences on the macro-role level. This will reveal how surprisal estimates qualitatively compare
to the N400 effects found in the EEG experiments.

In a second step, we directly estimate the N400 amplitudes (in μV) measured in the EEG
experiments, using hierarchical Bayesian generalised additive models (GAMs). We fit several
models with different predictors: surprisal (derived either from LSTMs or transformers), an

Bayesian surprise:
Measures how any sensory input
affects an observer in terms of the
difference between prior and
posterior beliefs.
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Agent Preference principle, or both. By means of model stacking, we analyse which model
explains the variance in the EEG signal best. In other words, we intend to show whether
surprisal alone is sufficient to explain the Predicate N400 or whether the Agent Preference
principle is needed to model the EEG amplitudes.

MATERIALS AND METHODS

The EEG experiments contain different experimental designs in which, depending on the
language, different structures are exploited to create ambiguous initial NPs (Table 2).

EEG Experiments

German

The experimental stimuli and results for German come from the study by Haupt et al. (2008;
Table 3). German allows for both agent-initial and patient-initial sentences. Agent-initial sen-
tences are considered to follow the canonical, discourse-neutral word order in declaratives. In
the experiment, the design exploits bare plural feminine nouns (i.e., without articles) and
proper nouns which syncretise case, that is, the forms are ambiguous between nominative
subject and accusative or dative object functions. These were presented in subordinate
clauses, in which verbs are placed in the final position. The EEG signal was recorded at the
auxiliary verb, which disambiguated the initial NP to either an agent or a patient. The verb
categories were manipulated to test whether disambiguation towards patient-initial was func-
tionally the same irrespective of lexical factors. An N400 effect was found with patient-initial
sentences with both accusative and dative verbs.

Table 2. Overview of the study designs.

Language Condition 1 Condition 2 Critical region Disambiguating feature

German initial NP:
A-initial vs. P-initial

type of verb:
assigning dative vs. accusative to P

auxiliary A-agreement in number

Hindi ambiguity of P:
ambiguous vs. unambiguous

aspect:
imperfective vs. perfective

main verb lexical information of
the verb

Basque role of intrans. subject:
A vs. P

ambiguity of role:
ambiguous vs. unambiguous

main verb lexical information of
the verb

Note. German: Haupt et al. (2008), Hindi: Bickel et al. (2015), Basque: Isasi-Isasmendi et al. (2024). A = agent macro-role, P = patient macro-role.

Table 1. Relevant grammatical features for each language together with the hypothesised dominant effect for the Predicate N400.

Language Case system
Unmarked
patients

Hypothesised
dominant effect

German nominative A, accusative or dative P rare surprisal

Hindi nominative or ergative A, nominative
or accusative P

mixed mixed

Basque ergative A, nominative P common Agent Preference

Note. The German and Hindi studies concern only active voice transitives, the Basque study only intransitives. The accusative vs. dative split in German is
conditioned by the lexical verb choice. The nominative vs. ergative split in Hindi is conditioned by aspect, the nominative vs. accusative split by definiteness
and animacy. A = agent macro-role, P = patient macro-role.
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Hindi

The EEG experiment with Hindi speakers stems from Bickel et al. (2015) where a case ambiguity
was exploited to create sentences with ambiguous initial NPs (Table 4). In the stimuli, all critical
stimuli are patient-initial and the initial NP is always inanimate. These NPs are marked by accu-
sative case if they refer to a definite referent and by the unmarked nominative case if they refer

Table 4. 2 × 2 experiment design of Bickel et al. (2015) crossing Ambiguity and Aspect conditions.

Ambiguity Aspect NP1 V AUX NP2 N400

ambiguous imperfective

kitāb beca-tā hai Gopāl

yesbook.F.NOM sell-IPFV.M AUX Gopal.M.NOM

‘Gopal sells a book.’

unambiguous imperfective

kitāb ko beca-tā hai Gopāl

nobook.F.ACC sell-IPFV.M AUX Gopal.M.NOM

‘Gopal sells the book.’

ambiguous perfective

kitāb bec-ī hai Gopāl ne

yesbook.F.NOM sell-PFV.F AUX Gopal.M.ERG

‘Gopal sold a book.’

unambiguous perfective

kitāb ko bec-ā hai Gopāl ne

nobook.F.ACC sell-PFV.M AUX Gopal.M.ERG

‘Gopal sold a book.’

Note. The critical region is the main verb, shaded in grey.

Table 3. 2 × 2 experiment design of Haupt et al. (2008) crossing Initial Noun Phrase (NP) and Verb Type conditions.

Initial NP Verb Type NP1 NP2 V AUX N400

agent accusative

... dass Sandra ... Kolleginnen gebremst hat

no... that Sandra.SG colleagues.PL slowed down has.SG

‘... that Sandra slowed down colleagues.’

patient accusative

... dass Sandra Kolleginnen gebremst haben

yes... that Sandra.SG colleagues.PL slowed down have.PL

‘... that colleagues slowed down Sandra.’

agent dative

... dass Sandra Kolleginnen widersprochen hat

no... that Sandra.SG colleagues.PL disagreed with has.SG

‘... that Sandra disagreed with colleagues.’

patient dative

... dass Sandra ... Kolleginnen widersprochen haben

yes... that Sandra.SG colleagues.PL disagreed with have.PL

‘... that colleagues disagreed with Sandra.’

Note. ERPs were measured at the critical region, shaded in grey.
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to an indefinite referent. Unmarked nominatives are also used for agents in the imperfective
aspect. As a result of this, their role is locally unresolved until it is disambiguated by the verb.

The experiment design manipulated the ambiguity of the initial NP phrase by leaving it either
in the nominative (ambiguous condition) or marking it with the accusative case ko (unambigu-
ous condition). Additionally, aspect was manipulated because the perfective aspect restricts
nominative NPs to a patient role (since agents are assigned ergative case in this aspect). Hence,
the detection of a perfective morphology in the verb might strengthen signals of reanalysis. The
EEG signal was recorded at the main verb, the critical region, which disambiguated the initial NP
to a patient. To facilitate offline interpretation, the stimuli included a second NP after the critical
region, exploiting a common discourse structure in Hindi (with “afterthought” arguments).

The results involved an N400 for the ambiguous condition irrespective of aspect.

Basque

For Basque,we use the experiment from Isasi-Isasmendi et al. (2024), which studies the processing
of intransitives sentences (Table 5). Intransitive verbs generally fall into two groups, namely those
that take agent subjects (unergatives) and those that take patient subjects (unaccusatives) (Borer,
2005; Dowty, 1991; Friedmann et al., 2008; Perlmutter, 1978; Van Valin, 1990). In Basque, sub-
jects of unergative verbs are marked with ergative case, while subjects of unaccusative verbs are
marked nominative (Laka, 1996). However, a case syncretism in plural demonstratives creates
ambiguity between ergative and nominative cases. Hence, comprehenders reading NPs with plu-
ral demonstratives in Basque donot obtain information on the semantic role of the subject until the
verb position. The stimuli in Isasi-Isasmendi et al. (2024) exploited this case syncretism in a 2 × 2
design. The sentences differed in whether the initial NP denoted an agent or a patient (as assigned
by the two different classes of intransitive verbs) andwhether the role of the initial NPwasmarked
unambiguously or ambiguously. In the ambiguous conditions, the verb disambiguated the seman-
tic role of the initial NP to either agent or patient readings.

Table 5. 2 × 2 experiment design of Isasi-Isasmendi et al. (2024) crossing Semantic Role and Ambiguity conditions.

Role Ambiguity NP1 Adjunct1 V AUX Adjunct2 N400

patient ambiguous

Mutil haiek gaur goizean lesionatu dira kostaldean

yesBoy these.ABS/ERG today injure have.ABS coast.in

‘These boys got injured at the coast today.’

agent ambiguous

Mutil haiek gaur goizean bidaitu dute kostaldera

noBoy these.ABS/ERG today travel have.ERG coast.to

‘These boys travelled to the coast today.’

patient unambiguous

Mutil hura gaur goizean lesionatu da kostaldean

noBoy this.ABS today injure has.ABS coast.in

‘This boy got injured at the coast today.’

agent unambiguous

Mutil hark gaur goizean bidaitu du kostaldera
yes

Boy this.ERG today travel has.ERG coast.to

‘This boy travelled to the coast today.’

Note. The critical region is the main verb, shaded in grey.
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Isasi-Isasmendi et al. (2024) find that the disambiguation towards patient readings in the
verb elicit an N400. In the unambiguous case, however, the picture was reversed; a higher
N400 effect was found for agents. As suggested by the authors, a likely reason for this reversed
effect is that an unambiguous ergative case leads participants to predict a prototypical agent in
a two-participant, transitive scenario. Encountering an intransitive verb violates this prediction
and therefore requires revision. In contrast, the unambiguous nominative case marker is
expected to be continued by an intransitive verb.

Language Models

Predictions are shaped by the network architectures that determine how linguistic units are
processed, but little is known about how the performance of language models compares
across architectures in languages other than English. Therefore, in order to find the best pos-
sible estimator of surprisal, we compare language models of three types of architectures: RNNs
and both bidirectional and unidirectional transformer-based architectures (Aurnhammer &
Frank, 2019; Merkx & Frank, 2021; Michaelov & Bergen, 2020; Schrimpf et al., 2020). We
compare the performance of these architectures solely in order to maximise the quality of sur-
prisal estimates as reflexes of language use. It is irrelevant for our purpose whether any quality
differences in this reflect how similar a model might be to human language processing,
although these similarities vary, as we note in what follows.

RNNs process language incrementally, that is, they process word by word in a sequential
order. In this process, the hidden states (i.e., the nodes between the input and output node)
receive information from the previously encoded states. Thus, the current state feeds back into
the network, making the network recurrent. Hence, RNNs are equipped with a working mem-
ory, but the limited size of the hidden vector introduces a memory bottleneck to the
unbounded previous context. Due to their incremental processing and limited memory span,
RNNs are thought to reflect the human processing system (Frank et al., 2019).

Transformers, by contrast, process language very differently. They process the whole sen-
tence at once. An in-built attention mechanism allows the model to “look back” at previous
words directly. These models therefore implement some memory of words that is not limited
by temporal distance. A common finding across studies (Michaelov et al., 2021) is that trans-
formers outperform RNNs in terms of their predictive accuracy of EEG results, even when
models of both architectures achieve the same language model quality measured by next-
word predictability (Merkx & Frank, 2021). This challenges the opinion that transformers have
“little cognitive motivation” (Rogers et al., 2020, p. 842).

So far we lack a good cognitive explanation of the consequences of why one architecture
exhibits more similar processing behaviours to humans than another, leaving open any neu-
rocognitive interpretation (Armeni et al., 2017). In response to this, we estimate surprisal with
an LSTM (Hochreiter & Schmidhuber, 1997), the most successful variant of an RNN, as well as
pretrained transformer-based architectures (Devlin et al., 2019; Liu et al., 2019). For each
model, we calculate surprisal at the critical region of the EEG experiment, that is, where the
electrophysiological response was recorded.

LSTMs

We trained a two-layer, unidirectional LSTM on next word prediction for each language with
the code provided by Gulordava et al. (2018). The training data are mostly written texts from
OSCAR (Ortiz Suárez et al., 2019) and the Wikipedia Corpus for Hindi (∼100K tokens in the
training set), the Basque Multimedia Corpus for Basque (Agerri et al., 2020; 195K tokens in the
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training set), and the Wikipedia Corpus for German (cleaned and provided at https://github
.com/t-systems-on-site-services-gmbh/german-wikipedia-text-corpus; ∼189K tokens in the
training set. See S1 in the Supporting Information available at https://doi.org/10.1162/nol_a
_00121. The German corpus is reduced in size so that the number of tokens is comparable
to the Basque corpus while the Hindi corpus size is the smallest due to data availability. The
models are implemented in Python, using the library PyTorch (Paszke et al., 2019). We tune
several hyperparameters, such as the size of the hidden layers and the learning rate. The
models are trained for a maximum number of 10 epochs or when early stopping is reached
(see Supporting Information S1 for the full grid of hyperparameters and results).

Surprisal is calculated for the word at the disambiguating, critical region of the experiment. The
words for which the model has representations, that is, the vocabulary of the LSTMs, is limited to
the 50K most frequent words. Thus, some stimuli contained out-of-vocabulary (OOV) words. We
excluded all stimuli that contained OOV words up to and including the critical word. The number
of stimuli available for each language can be found in the Supporting Information S3.1.

Bidirectional transformers

For bidirectional transformer models, we use BERT architecture (Devlin et al., 2019) for Ger-
man and Hindi, and RoBERTa (Liu et al., 2019) for Basque. Both of these architectures belong
to the same subcategory of transformer models. They are trained on a masked language
modeling objective, that is they are trained to predict words, bidirectionally, where the words
are masked. We access the pretrained models through HuggingFace (n.d.), the respective pre-
trained models can be found in the Supporting Information S1. The decision to use this set of
models is opportunistically based on their availability. The word at the critical region is
masked with a special token, which has to be predicted by the model. Since bidirectional
transformers process the whole sequence at once, we only feed part of the sentence up to
the critical region so that the model cannot look at words coming after the critical region.

It has been questioned whether such bidirectional models can be evaluated on a unidirec-
tional task like sentence comprehension that is incongruent with the way in which they were
trained (Merkx & Frank, 2021). However, surprisal estimates from bidirectional transformers
have proven to be good predictors of both behavioural (Hollenstein et al., 2021; Merkx &
Frank, 2021) and neurophysiological (Michaelov et al., 2021) measures. Furthermore, while
human sentence comprehension is a unidirectional task, it is not necessarily the case that the
human parser is only trained unidirectionally. After all, listeners and readers are likely to have
access to vast amounts of the linguistic knowledge they have acquired, with no particular
sequential order necessarily imposed on memory. For these reasons we find it important to
include bidirectional transformer models.

Both BERT and RoBERTa use subword tokenisers: WordPiece (Schuster & Nakajima, 2012)
for BERT and Byte-Pair Encoding (Sennrich et al., 2016) for RoBERTa. Therefore, they represent
infrequent words at the subword level, and consequently there are no OOV words, so that all
words can be represented as vectors and no stimuli have to be excluded.

Unidirectional transformers

Lastly, we use GPT-2 models as representatives of unidirectional transformer models. GPT var-
iants have become the standard in the field, which is why it is particularly interesting to analyse
their predictive power for the EEG results. As opposed to bidirectional models, such as BERT,
GPT only considers the left context when predicting new words. As noted in the preceding sec-
tion, it is sometimes argued that this is closer to how humans process sentences. We again use
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pretrained GPT-2 models for Basque and German, accessed on HuggingFace (again, the respec-
tive pretrained models can be found in the Supporting Information S1). For Hindi, however, no
pretrained GPT-2 is available at the time of writing, which is why we opted for training our own
model. To this end, we follow de Vries and Nissim’s (2021) training scheme, which is well
suited when computational power and training data are relatively scarce. The training process
starts from the English GPT-2 model and unfolds over two steps. After training a new tokeniser
on the Hindi training data set, in the first step, only the lexical embeddings are trained while the
other layers are frozen. In the second step, the whole model is trained. The model was trained
on four NVIDIA A100 Tensor Core GPUs for four days. Again, GPT-2 uses a subword tokeniser
based on Byte-Pair-Encoding (Sennrich et al., 2016) so that no stimuli had to be excluded.

Evaluation of the language models

Evaluating the performance of language models is commonly done with perplexity (Jurafsky &
Martin, 2023), that is, in terms of the inverse probability of an unseen text, divided by the
number of words in the text. For our current purposes, perplexity is suboptimal as an evaluation
metric for two reasons. First, probability distributions and therefore the observable perplexity of
languages vary (Bentz et al., 2017; Coupé et al., 2019). Thus, while we can compare models of
the same language using perplexity, the measure is less useful to compare language models
across different languages. Second, it is still an open question whether language models with
lower perplexity are actually more human-like (Kuribayashi et al., 2021).

Instead, we opt for a grammaticality test that is tailored to each language, that is, measures
the model’s performance in relationship to the specific affordances of each language. We com-
pare the average surprisal of sentences with a grammatically correct syntactic structure to the
average surprisal of sentences that are scrambled into ungrammatical sentences. This means
that our evaluation metric is the surprisal of ungrammatical sentences minus the surprisal of
grammatical sentences (ΔSurprisal ), with larger differences indicating better performance. The
sentences are derived from the stimuli of the respective experiments on German, Hindi, and
Basque. The ungrammatical sentences are permutations of the original sentences based on two
to four ungrammatical word order variants; for example, ... dass Schwimmerinnen Stefan ge-
stoßen haben. “... that swimmers Stefan pushed have” (grammatical) versus *... dass Schwim-
merinnen haben Stefan gestoßen. “... that swimmers have Stefan pushed” (ungrammatical).
(The sentences are accessible at https://osf.io/hbj67/, directory grammaticality_test; see also
S1.4 in the Supporting Information). The surprisal values are calculated for each word one-
by-one in linear order. For BERT/RoBERTa models, we mask the word wi for which surprisal
is calculated and remove any words (wi+1+…+n) that occur after it. For each sentence, we then
calculate the average surprisal of the sentence.

Figure 1 shows posterior estimates (controlled for variation between sentences as a random
effect) of ΔSurprisal. Estimates larger than zero indicate that the model assigns higher surprisal
to ungrammatical sentences, that is, that it makes the same decision as humans.

For German, all models pass the grammaticality test (LSTM: mean = 0.32 with 89% credible
interval CI = [0.30, 0.34]; BERT: mean = 1.03, CI = [0.97, 1.1]; GPT: mean = 1.85, CI = [1.8, 1.9]).
ForHindi andBasque, this is only the case for BERT/RoBERTa (Hindi:mean=1.56,CI = [1.47, 1.6];
Basque: mean = 0.1, CI = [0.87, 1.1]) and GPT-2 (Hindi: mean = 0.86, CI = [0.81, 0.9]; Basque:
mean = 4.13, CI = [4.03, 4.2]). LSTMs perform at chance in the case of Hindi (mean=–0.03,
CI = [–0.06, 0.0] and only slightly above change in the case of Basque (mean = 0.048, CI = [0.02,
0.1]). This suggests that apart from German, the LSTM models do not seem to learn grammatical
structures sufficiently to determine between grammatical and ungrammatical sentences.

Neurobiology of Language 177

Surprisal and agent preference jointly predict the N400

https://doi.org/10.1162/nol_a_00121
https://osf.io/hbj67/
https://osf.io/hbj67/
https://osf.io/hbj67/
https://osf.io/hbj67/
https://osf.io/hbj67/
https://osf.io/hbj67/
https://osf.io/hbj67/
https://doi.org/10.1162/nol_a_00121
https://doi.org/10.1162/nol_a_00121
https://doi.org/10.1162/nol_a_00121


The different results of the LSTMs may be driven by the number of possible word orders in
each language. German has a relatively strict word order (Suitner et al., 2021) while Hindi and
Basque are much more permissive, making it harder to construct ungrammatical sentences by
word order permutation (Laka, 1996; Mohanan, 1994a, 1994b). Thus, a model of a language
with less ordering possibilities might show higher surprisal if the word order is ungrammatical
while the difference is not so clear in some language models if the language has free word
order. Interestingly, these differences in word order freedom have no impact on the transformer
models’s performance. Among the BERT models, Hindi shows the highest ΔSurprisal, and
among the GPT-2 models, Basque shows the highest ΔSurprisal. The numeric differences
between ΔSurprisal across languages is difficult to explain in detail; more research would
be needed on this.

Statistical Analysis

In our first analysis, we qualitatively assess whether surprisal estimated by the language
models corresponds to the EEG results reported in the studies (Bickel et al., 2015; Haupt
et al., 2008; Isasi-Isasmendi et al., 2024). To this end, we estimate the surprisal under the

Figure 1. For each language and model, the table shows the posterior estimates of differences in
surprisal values (ΔSurprisal) between ungrammatical and grammatical sentences with 50%, 80%,
and 90% credible intervals, controlling for differences in sentences. ΔSurprisal is calculated by sub-
tracting the mean surprisal of the grammatical sentence from the ungrammatical sentence. Values
are then estimated with a Bayesian model that controls for the variance in the stimuli as a random
effect and quantifies the estimates’ probabilities (see Supporting Information S1.4.4). LSTM = long
short-term memory models.
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experimental conditions with Bayesian hierarchical models using the brms (Bürkner, 2017,
2018) interface to Stan (Carpenter et al., 2017) in R (R Core Team, 2020). These models allow
us to estimate the differences in surprisal for the role-disambiguating words in the sentences
presented in the EEG experiments (disambiguating the initial NP towards agent or patient),
together with the probabilities of the differences. We fit three models per language, with sur-
prisals based on LSTMs, BERT/RoBERTa and GPT-2. Visual inspection of the raw surprisal
values suggests that there are many outliers, and so we model surprisal as drawn from a
Student-t distribution. We include the two conditions from the EEG experiments (Initial NP
and Verb Type for German, Ambiguity and Aspect for Hindi, and Semantic Role and Ambiguity
for Basque) and their interaction as main effects, and experimental stimuli as a random effect,
with varying random slopes for the two conditions.

We choose Gamma priors for the degrees of freedom of the Student-t likelihood (German
and Basque: Gamma(α = 2, β = 1), Hindi: Gamma(α = 2, β = 0.1)), half-Cauchy or exponential
priors for its standard deviation and also for the standard deviation of the random effects
(German: Exponential(λ = 1), Hindi and Basque: half-Cauchy( μ = 0, σ = 4)), and Normal or
Student-t priors for the intercept (German and Basque: Normal( μ = 0, σ = 2), Hindi: Student-
titt(ν = 2, μ = 0, σ = 2)). The different priors are selected based on diagnostics that indicate

convergence (effective sample size measures and R̂ statistic; see Supporting Information S3.2,
for details).

On request by reviewers, we also provide p values of paired t tests of the condition of
interest (Initial NP for German, Ambiguity for Hindi, Role for Basque) for each control condi-
tion and language.

Inour secondanalysis,wecompare surprisal and theAgent Preferenceaspredictors of theEEG
signal in μV directly. For this we focus on the time window of 300–500 ms post-critical region
because this is the commonly used timewindow forN400 analyses.We average μVvalues in this
window.We then applyGAMs to predict mean μVin response to the predictors while controlling
for signal topography across the entire scalp. By using GAMs we depart from traditional EEG
regressionmodels,which reduce thespatial informationof thedatabychoosing regionsof interest
(ROIs within which signals are averaged) or a small set of electrodes. This way, we avoid a priori
decisions on ROIs or electrode choice while at the same time preserving the spatial relationship
betweenelectrodes in anonlinearway (DeCat et al., 2015; Isasi-Isasmendi et al., 2024; Tremblay
&Newman, 2015). The main advantage of this approach is that it lets the data decide the topog-
raphy of the signal. This is particularly important when investigating different languages because
topographies might differ across them. In these regards, the GAM approach is similar in spirit to
traditional cluster-basedpermutation tests but unlike these tests,GAMsallowmultiplepredictors,
which is key to comparing effects of surprisal and the Agent Preference (De Cat et al., 2015;
Sauppe et al., 2023; Tremblay & Newman, 2015).

For each language, we fit five models of the N400 amplitude in μV with different predictors.
We fit one model with an Agent Preference predictor alone, three models with a surprisal pre-
dictor alone–estimated by LSTMs, BERT (RoBERTa, in the case of Basque) or GPT-2–and three
models with both the Agent Preference and surprisal predictors. Additionally, we fit a baseline
model that contains neither of the two predictors.

Table 6 lists the models in more detail, using code notation for GAMs in R. The predictors
Agent Preference condition (cond in Table 6) and surprisal (surp.lstm, surp.bert, and
surp.gpt) are modeled as fixed effects, together with trial number (trial.n) to control
for within-experiment effects. We expect the Agent Preference condition and surprisal effecs
to vary over the spatial distribution of the electrodes. To capture this variation, we use tensor
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products (the t2() function in Table 6) which smooth effects between the x- and y-coordinates
that represent electrode position. Since tensor products account for the marginalised effect of x
and y, there is no assumption of the smoothness being consistent between the two coordinates.
We let the smooth (tensor) function vary over themain predictors (implemented by thebyparam-
eter in Table 6,where, for instance,t2(x,y,by=surp.lstm) represents the smooth for elec-
trode position (indicated by x and y) for each surprisal value estimated by an LSTM).

We model the variation between stimuli and participant as random effects, smoothing over
the electrodes with random coefficients for each level of the participant or item ID. These
effects are again captured by tensor products (e.g., t2(x, y, item, bs = 0re0) in Table 6,
where bs = 0re0 declares a random effect). This allows for the nonlinear relations that are
needed to capture the topography. Due to convergence issues, we could not add random
slopes to the model. However, the posterior residuals are fairly constant across items and indi-
viduals and in fact do not diverge far from the population level estimates, thus not biasing
estimates in one or the other direction (cf. Supporting Information S6).

At the spatial resolution of EEG, GAMs cannot fully separate actual spatial trends in the EEG
signal from contingent residual autocorrelation (cf. Simpson, 2018). In response to this, we also
perform separate analyses on individual electrodes that show the strongest signal in the GAM
model (using the same model structure but replacing the tensor product smoother by random
slopes, see Supporting Information S7). This approach removes all residual autocorrelation
because no spatial structure is present in the data. However, we caution that single electrodes
capture only a limited part of the potentially relevant EEG signal, which is inherently distributed
over the scalp because it stems from cortical processes that are transported through the head’s
conductive volumes.

Table 6. Generalised additive models for estimating μV using R notation.

Model name Regression
Agent Preference alone μV ~ 1 + cond + trial.n + t2(x, y, by=cond) + t2(x, y, part, bs=’re’) + t2(x, y, item, bs

= ’re’)

surprisal lstm alone μV ~ 1 + surp.lstm + trial.n + t2(x, y, by=surp.lstm) + t2(x, y, part, bs=’re’) + t2(x,

y, item, bs = ’re’)

surprisal BERT/RoBERTa
alone

μV ~ 1 + revsurp.bert + trial.n + t2(x, y, by=revsurp.bert) + t2(x, y, part, bs=’re’) +

t2(x, y, item, bs = ’re’)

revsurprisal GPT-2
alone

μV ~ 1 + surp.gpt + trial.n + t2(x, y, by=surp.gpt) + t2(x, y, part, bs=’re’) + t2(x, y,

item, bs = ’re’)

surprisal lstm and Agent
Preference

μV ~ 1 + surp.lstm + cond + trial.n + t2(x, y, by=surp.lstm) + t2(x, y, by=cond) + t2(x,

y, part, bs=’re’) + t2(x, y, item, bs = ’re’)

surpisal BERT/RoBERTa
and Agent Preference

μV ~ 1 + surp.bert + cond + trial.n + t2(x, y, by=surp.bert) + t2(x, y, by=cond) + t2(x,

y, part, bs=’re’) + t2(x, y, item, bs = ’re’)

surpisal GPT-2 and
Agent Preference

μV ~ 1 + surp.gpt + cond + trial.n + t2(x, y, by=surp.gpt) + t2(x, y, by=cond) + t2(x, y,

part, bs=’re’) + t2(x, y, item, bs = ’re’)

baseline μV ~ 1 + trial.n + t2(x, y, part, bs=’re’) + t2(x, y, item, bs = ’re’)

Note. We include the Agent Preference condition (cond), surprisal values (surp.* for surprisal values estimated by LSTMs, RoBERTa, and GPT) and trial
number (trial.n) as linear main effects. The latter two are z-transformed. We additionally include tensors for smooths of the predictors cond and surp.* over
the electrode positions (indicated by their coordinates x and y). Random effects (bs = ’re’) are included as smooths for each participant (part) and item
(item). Condition (cond) is the binary Agent Preference condition (reanalysis or no reanalysis). LSTM = long short-term memory models.
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The Agent Preference condition is a binary variable that categorises the stimuli into whether
or not a reanalysis towards the patient is expected due to the Agent Preference taking effect.
The Agent Preference should lead to a reanalysis only when an ambiguous NP is disambigu-
ated towards a patient (Table 7).

Consequently, for German in both patient-initial conditions, a reanalysis is expected
(reanalysis), whereas no reanalysis is expected in the agent-initial conditions (no reanalysis).
In Hindi, ambiguous patients in both aspects should lead to a reanalysis (reanalysis) whereas
unambiguous patients should not lead to a reanalysis (no reanalysis). In Basque, a reanalysis
towards the patient is only expected with ambiguous patients (reanalysis), while the other
three conditions are assigned the no reanalysis condition. All continuous predictors (i.e., trial
number and surprisal) are z-scored.

As in the qualitative analysis, we fit the models in a Bayesian framework, in order to quan-
tify the probability of the estimates. We assume that the μV values are drawn from a normal
distribution, and we choose weakly informative priors for the slope, Normal ( μ = 0, σ = 2), and
an Exponential (λ = 1) for the standard deviation of the random effects (McElreath, 2020).

We compare models via their performance under leave-one-out cross-validation
(McElreath, 2020; Vehtari et al., 2017) in a technique known as stacking (Yao et al., 2018).
While traditionally used for improving predictions by ensembling different models, stacking
has excellent statistical behaviour also for comparing the relative performance of models
(guarding against under-fitting and over-fitting) and has come to serve as a substitute for
other approaches like the Akaike information criterion and variants thereof (Bürkner et al.,
2021; Höge et al., 2020). Model stacking allocates weights to models in such a way that

Table 7. Overview of the categorisation of the experiment conditions (Condition 1 and Condition
2) according to what they predict in terms of the Agent Preference, together with whether a stronger
N400 amplitude was observed.

Language Condition 1 Condition 2
Agent Preference

condition
N400 observed in
the original study

German agent initial accusative no reanalysis no

German patient initial accusative reanalysis yes

German agent initial dative no reanalysis no

German patient initial dative reanalysis yes

Hindi ambiguous imperfective reanalysis yes

Hindi unambiguous imperfective no reanalysis no

Hindi ambiguous perfective reanalysis yes

Hindi unambiguous perfective no reanalysis no

Basque patient ambiguous reanalysis yes

Basque agent ambiguous no reanalysis no

Basque patient unambiguous no reanalysis no

Basque agent unambiguous no reanalysis yes
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they jointly maximise prediction accuracy. Concretely, the weight for each model is
determined by maximising the log-probability under leave-one-out cross-validation, that is,

ŵ ¼ arg max
w

1
n

Pn
i¼1 log

PK
k¼1 wkP yi jy−i ;Mkð Þ, where n is the number of observations, K

the number of models in the stack, and P the probability density of yi when fitting model
Mk without that observation (“−i”), approximated by Pareto-smoothed importance sampling
from the posterior (Vehtari et al., 2017); ŵ is constrained to sum to 1.

As a result, higher weight of a model indicates that this model contributes better predictions
to the ensemble than models with lower weights. By stacking models with each predictor
alone and models with both together we can therefore assess their relative prediction success.
We then inspect the heighest-weight model(s) and report the effects of its predictors and the
posterior probability distributions of these effects.

Throughout, we only select the sentences from the experiments for which a surprisal esti-
mate is available from both LSTM and transformer language models.

RESULTS

Qualitative Comparison Between Surprisal Estimates and EEG Results

Figure 2 shows, for each experiment, the posterior distributions of ΔSurprisal estimates
between the condition that elicited the Predicate N400 minus the condition where it is not
expected (German: patient initial–agent initial; Hindi: ambiguous x unambiguous; Basque:
patient–agent) for each of the control condition (Condition 2 in Table 7) and language model.
Since the number of stimuli is lower for LSTM estimates than for transformer estimates for the
reasons mentioned above, we replaced missing stimuli with possible alternatives to improve
statistical power. The results of the stimuli set including the replaced stimuli are in line with the
original, limited set of stimuli. Here we only show the original stimuli, but see the Supporting
Information S3.4 for the expanded set.

German, Hindi, and Basque

German. The LSTM estimates higher surprisal values for patient-initial sentences than agent-
initial sentences although posterior credible intervals include 0 (LSTM/accusative: mean = 0.3,
89% CI = [–0.39, 1.1], paired t = –7.38, df = 287, p < 0.001; LSTM/dative: mean = 0.7, CI
[–0.01, 1.4], t = –2.87, df = 223, p = 0.004). ΔSurprisal is slightly larger with accusative verbs
than dative verbs. The smaller difference in dative verbs can be explained by the fact patient-
initial sentences are more common with dative verbs than accusative verbs (Bader & Häussler,
2010). Both the German BERT and GPT-2 models assign substantially higher surprisal values
for patient-initial than agent-initial sentences with both accusative and dative verbs, with pos-
terior credible intervals excluding 0 (BERT/accusative: mean = 2.2, CI = [1.84, 2.7], t = –29.95,
df = 1,343, p < 0.001; BERT/dative: mean = 2.3, CI = [1.86, 2.7], t = –31.58, df = 1,343, p <
0.001; GPT-2/accusative: mean = 1.5, CI = [1.16, 1.9], t = –12.45, df = 335, p < 0.001; GPT-2/
dative: mean = 1.6, CI = [1.10, 1.9], t = –10.46, df = 335, p < 0.001). Therefore, the surprisal
values estimated by these models are in line with the EEG results. The results are also in line
with the results from the grammaticality test in which BERT and GPT-2 performed better
than LSTM.

Hindi. The ΔSurprisal values estimated by the LSTM language model are higher for the crit-
ical unambiguous condition in both control conditions, but substantial proportions of the pos-
terior includes 0 (LSTM/imperfective: mean = 0.3, = CI [–0.11, 0.7], t = –1.93, df = 18, p =
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Figure 2. Posterior distributions of the estimated surprisal difference (ΔSurprisal) between the experimental conditions that elicited the
Predicate N400 (German: patient initial–agent initial; Hindi: ambiguous–unambiguous; Basque: patient–agent) across control conditions
(Condition 2 in Table 7). Horizontal bars indicate 50%, 80%, and 90% highest-density credible intervals. In order to show a substantial
difference between conditions, ΔSurprisal estimates are expected to exclude 0. The estimated ΔSurprisal on the sentence-level can be
found in the Supporting Information S2 (Analysis 1: Predicting Surprisal).
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0.07; LSTM/perfective: mean = 0.1, CI = [–0.31, 0.5], t = –0.76, df = 18, p = 0.46). The results
from the BERT model look similar, but the credible intervals overlap slightly less with 0 (BERT/
imperfective: mean = 0.8, CI = [0.16, 1.5], t = –2.77, df = 59, p = 0.007; BERT/perfective:
mean = 0.9, CI = [0.24, 1.6], t = –0.82, df = 59, p = 0.42). The surprisal values estimated
by GPT-2 show ΔSurprisal systematically higher than 0 (GPT-2/imperfective: mean = 0.5, CI =
[0.34, 0.6], t = –5.32, df = 59, p < 0.001; GPT-2/perfective: mean = 0.8, CI = [0.63, 1.0] t =
–6.92, df = 59, p < 0.001). This is in line with the EEG results and also with the results from
the grammaticality test in Figure 1. At the same time, the GPT-2 surprisal estimates differ from
the EEG results insofar as they suggest a difference between perfective and imperfective aspect
that was not present in the EEG data.

Basque. The ΔSurprisal estimated by the LSTM model indicates higher surprisal for patientive
subjects than agentive subjects in both conditions. However, the credible intervals strongly
overlap with 0, limiting the evidence (LSTM/ambiguous: mean = 0.4, CI = [–0.02, 0.7], t =
–1.11, df = 62, p = 0.27; LSTM/unambiguous: mean = 0.2, CI = [–0.23, 05], t = –0.26, df =
62, p = 0.79). The RoBERTa model estimates high ΔSurprisal in the unambiguous condition
(RoBERTa/unambiguous: mean = 2.0, CI = [1.46, 2.5], t = –5.74, df = 191, p < 0.001), but not
in the ambiguous condition (RoBERTa/ambiguous: mean = 0.0, CI = [–0.53, 0.5], t = 0.40, df =
191, p = 0.69), contrary to the EEG results where the results were reversed in the unambiguous
condition. The ΔSurprisal estimated by the GPT-2 model are in line with the EEG results in the
ambiguous condition (GPT-2/ambiguous: mean = 1.2, CI = [0.73, 1.7], t = –4.26, df = 191, p <
0.001), but they again estimate the opposite of the EEG results in the unambiguous condition
(GPT-2/unambiguous: mean = 1.1, CI = [0.62, 1.6], t = –4.0, df = 191, p < 0.001). GPT-2 was
the model for Basque that estimated the highest surprisal values for ungrammatical sentences,
yet it estimates surprisal values of the stimuli that are not in line with the EEG results.

Trends

Overall, we see some trends in line with the EEG experiment results. For German, the surprisal
values consistently correlate with the EEG findings, especially in the transformer models (BERT
and GPT-2). The Hindi results are also mostly in line with the EEG findings, but where the fit is
best (GPT-2 surprisals), the models also estimate a difference between aspect conditions that
was not present in the EEG data. The results in Basque are not in line with the EEG results
except for the surprisal values in the ambiguous condition estimated by GPT-2 models and
with reduced evidence in the LSTM models. The fact that both the LSTM and GPT-2 predict
higher surprisal for patients in the unambiguous condition, which was reversed in the EEG
experiment, may suggest that the predictions are mainly lexically driven. Nevertheless, the
models show that they assign, in most cases, distinct probabilities to ambiguous and unam-
biguous cases (Basque and Hindi) and initial NPs (German), which suggests that the models
are sensitive to morphosyntactic information.

Predicting N400 Amplitudes

Figure 3 depicts the relative weights determined by model stacking for each language. In each
language the best-performing model includes both surprisal and the Agent Preference as pre-
dictors. Figure 4 displays the grand mean difference in amplitudes between sentences with
reanalysis versus without reanalysis, as predicted by the Agent Preference principle, as well
as between sentences with high versus low surprisal verbs, as predicted by Surprisal Theory.
For display purposes in the figure, we bin the continuous surprisal values into high and low
surprisal verbs (larger than 0 and lower than 0).
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Figure 5 shows the fitted values for the highest-ranked model in model stacking (Figure 3).
The upper panels in each language (Figure 5A–B, E–F, and I–J) quantify effect size and
electrode regions through the posterior mean differences of smooth surfaces at each scalp
coordinate. The plots in the left column show posterior mean differences for sentences where
reanalysis due to the Agent Preference principle is expected versus where no reanalysis is
expected (Figure 5A, E, and I). The plots on the right-hand side show posterior mean differ-
ences for sentences with high versus low surprisal verbs (+2 vs. –2 standard deviations from
the z-scored mean; Figure 5B, F, and J). (The model captured surprisal as a continuous predic-
tor, but for display purposes we selected these differences; see Supporting Information for the
full results, S3.3, S4.3 and S5.3.) In the lower panels (Figure 5C–D, G–H, and K–L), the

Figure 3. Relative weights of models as determined by model stacking. Weights are allocated to models in such a way that they jointly
maximise prediction accuracy. Each model is a Bayesian generalised additive model with the following predictors (in addition to random
effects of sentence and participant and a main effect of trial number): surprisal alone, Agent Preference alone, surprisal and Agent Preference
together, or neither of the two (null). Agent Preference is a binary variable, categorising sentences into those where the Agent Preference
principle predicts role reanalysis at the position of the verb (because the initial ambiguous NP turns out to be a patient) vs. those where
no reanalysis is predicted (because the NP is indeed an agent). Surprisal is a continuous variable derived from LSTM, BERT/RoBERTa, or
GPT-2 models. For all languages, models with both Agent Preference and surprisal (estimated by BERT/RoBERTa models for Basque and Hindi,
and an LSTM model for German) leverage most of the weight. NP = noun phrase.
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evidence is quantified by the proportion of posterior draws with non-zero difference between
conditions. The Supporting Information S3.3, S4.3 and S5.3 show results of all models,
including those that receive little or no weight in model stacking.

German, Hindi, and Basque

German. The model with surprisal (LSTM) and Agent Preference condition leverages most of
the weight (70%) for predicting the N400 amplitude (Figure 3). The second-highest ranking
model has LSTM-based surprisal as its only predictor, but this model leverages only 18% of

Figure 4. Pair-wise grand mean differences of event related potentials in the N400 time window (300–500 ms relative to verb onset). (Left
column) Topography plots of observed grand mean differences in amplitudes between sentences with vs. without reanalysis as predicted by the
Agent Preference principle. (Right column) Topography plots of observed grand mean differences in amplitudes for sentences with high vs. low
surprisal verbs (>0 and <0), as estimated by the highest-weighted model (cf. Figure 3).
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the total weight. To some extent this is in contrast to what we would expect based on the
grammaticality test, where the LSTM performed slightly worse than the transformer models,
although it still passed the test.

The posterior mean difference between the predicted μV for the Agent Preference condition
shows an effect of reanalysis towards patients (i.e., more negative μV) in the right-posterior
region (Figure 5A). The effect of surprisal is more widely distributed across coordinates
(Figure 5B). The estimated effect size of the Agent Preference is only approximately one-sixth
(strongest mean estimate Δ μV = −0.95) of the one of surprisal (strongest mean estimate
Δ μV = −6.625), indicating that surprisal is a more important predictor. This is confirmed
by the probability mass of the posterior distributions of the mean difference, with consistently
high proportions of the probability mass below 0 across coordinates for surprisal (Figure 5D,
strongest effect with P(|Δ μV| > 0) = 1) but not for the Agent Preference (Figure 5C, strongest
effect with P(|Δ μV| > 0) = 0.90). An analysis of the electrodes with the strongest effects confirms
these results, although of course with reduced power. We estimate a much stronger effect and
higher support for surprisal (estimated mean effect at electrode CP5 Δ μV = −5.71, P(|Δ μV|

Figure 5. Pair-wise fitted differences of event related potentials in the N400 time window (300–500 ms relative to verb onset), drawn from the
highest-weighted model (cf. Figure 3). Upper panels in each language (A–B, E–F, I–J) quantify effect size and electrode regions through the
posterior mean differences of smooth surfaces at each scalp coordinate for sentences with vs. sentences without the predicted reanalysis (A, E,
and I) and for sentences with high vs. low surprisal verbs (+2 vs. –2 SD from the mean; B, F, and J). Mean differences with posterior probability
<0.8 are plotted grey. Lower panels (C–D, G–H, K–L) quantify the evidence through the proportion of posterior differences that are below or
above 0 at each coordinate. Proportions <0.8 are left white. In German, the Agent Preference principle has a considerably smaller (A) and less
supported (C) effect than surprisal (B and D), a difference that is less strong in Hindi and even weaker in Basque.
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> 0) = 0.98) than for the Agent Preference (estimated mean effect at electrode P8 Δ μV = − 1.01,
P(|Δ μV| > 0) = 0.82; cf. Supporting Information S7).

Hindi. For Hindi, the model that receives the highest proportion (53%) of the total weight is
the one incorporating both the Agent Preference condition and surprisal estimated by trans-
formers (Figure 3) , which were also the models that performed best in the grammaticality task
(Figure 1). This is followed by the model that has only the Agent Preference as a predictor
(38%). The posterior mean differences of the Agent Preference predictor show an effect in
the centroparietal region where the N400 is usually located (Figure 5E). Surprisal shows a
stronger effect in the posterior region (Figure 5F). Both the surprisal and the Agent Preference
conditions are well supported, with substantial amounts of the probability mass of the posterior
distribution below zero for both conditions (Figure 5G and 5H). The estimated effect size of the
Agent Preference is a bit less than half (strongest mean estimate Δ μV = −0.46) of the one of
surprisal (strongest mean estimate Δ μV = −0.99), suggesting that the difference is not as
pronounced as in German. The support is equally strong for both (strongest effects with both
close to 1, P(|Δ μV| > 0) > 0). Focusing on the electrodes with the strongest effects, the pattern is
similar butwith a stronger differencebetween the twoconditions (estimatedmeaneffect forAgent
Preference at electrode Cz Δ μV = −0.49, P(|Δ μV| > 0) = 0.85; estimated mean effect for
surprisal at electrode CP5 Δ μV = −1.65, P(|Δ μV| > 0) = 0.98; cf. Supporting Information S7.

Basque. The model including RoBERTa-based surprisal and the Agent Preference condition
leverages the highestweight (53%),which is followedby the one including LSTM-based surprisal
and the Agent Preference condition (29%) (see panel “Basque” in Figure 3). The RoBERTamodel
also performed better than the LSTM model in the grammaticality test (Figure 1). But there, the
GPT-2 model performed still far better while it does not predict EEG results well.

In both conditions, the best-fitting model estimates negative μV difference values across a
large part of the scalp coordinates. The estimated relative difference of the Agent Preference
effect (strongest mean estimate Δ μV = −1.33) is a bit more than half of that of surprisal
(strongest mean estimate Δ μV = −2.43), diminishing the difference slightly more than in
Hindi. The support for the estimates is equally strong, with P(|Δ μV| > 0) close to 1 in both
conditions (Figure 5K and 5L). The single-electrode analyses confirm these results (estimated
mean effect for Agent Preference at electrode Cz Δ μV = −0.963, P(|Δ μV|> 0) = 0.98; esti-
mated mean effect for surprisal at electrode P8 Δ μV = −1.76, P(|Δ μV| > 0) = 0.99).

Differences

Consistently across languages, the models with both the Agent Preference condition and sur-
prisal have considerably better predictive performance than simpler models. Thus, the Agent
Preference is indeed required to accurately capture the EEG signals, and correspondingly,
surprisal is not sufficient to capture the Predicate N400 observed with German, Hindi and
Basque speakers. There are some interesting differences between the languages, however.
For German, surprisal estimated by the LSTMs was a better predictor of the EEG signal than
surprisal estimated by the transformer models. For both Basque and Hindi, the models includ-
ing surprisal estimated by transformers yield a better model fit.

We further find different effect sizes and support for the predictors. In German, the Agent
Preference principle has a smaller (only about one-sixth of the estimated effect size of surprisal)
and less supported effect, which indicates that surprisal captures most of the variance in the
EEG signal. In Hindi, the estimated effect size of the Agent Preference principle is a bit less
than half of the one of surprisal, showing that surprisal is a stronger predictor than the Agent
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Preference, but the picture is more balanced than for German. In Basque, the estimated effect
size of the Agent Preference is a bit more than half that of surprisal, that is, the relative effect
size of the Agent Preference is slightly higher than in Hindi and much higher than in German.

At first sight, this result seems in conflict with the picture that emerges from the model
stacking. In Hindi, the second highest-weighted model only contains the Agent Preference
predictor, whereas in Basque, the second highest-weighted model contains both the Agent
Preference and surprisal (LSTM) as predictors. This seems at odds with a relatively slightly
lower effect of the Agent Preference in Hindi compared to Basque, a difference that is even
stronger in the single-electrode analysis. However, the contradiction is resolved by consider-
ing the way in which the weights are allocated by model stacking. In Hindi much of the
variance is already explained by surprisal in the top-ranking model, so that the next best
contribution to prediction comes from the Agent Preference. The difference between the
two predictors is weaker in Basque and so the next best contribution does not come from a
single-predictor model but from one where surprisal is estimated by a different model (LSTM
instead of RoBERTa).

DISCUSSION

We asked whether probabilistic linguistic information is sufficient to characterise human lan-
guage processing or whether additional principles are needed. To this end, we turned to what
we call the Predicate N400, an effect that has been observed with sentences such as … dass
Julia alle grüssen (“that they all greet Julia”), but not with … dass Julia alle grüsst (“that Julia
greets them all”). We formalised the probabilistic linguistic information grounded in language
experience in terms of a specific version of Surprisal Theory, according to which higher
surprisal, as estimated by language models, correlates with a larger N400 amplitude. We
contrasted Surprisal Theory with a theory claiming that the N400 amplitude difference
reflects a processing principle at the macro-role level: the Agent Preference, which predicts
an N400 whenever a verb disambiguates an NP to the dispreferred patient role, indepen-
dently of statistical distributions in the input.

We estimated surprisal with three different language model architectures and compared the
extent to which surprisal estimates capture the Predicate N400 both qualitatively (predicting
the presence of the amplitude difference) and quantitively (predicting actual amplitude
differences).

An Agent Preference and Surprisal Are Both Needed to Capture the Predicate N400

Our qualitative analysis indicates that verb surprisal tends to be higher in sentences in which
an N400 is expected under the hypothesis of an Agent Preference. While this would appear to
support Surprisal Theory, the evidence is not as crisp. Especially for Basque, even though sur-
prisals estimated by models are in line with the EEG results, this is true only in the ambiguous
condition (Figure 2). With the Basque GPT-2 model, surprisal estimates also predict a Predicate
N400 in the unambiguous condition. This is in contradiction to the experimental results,
where the N400 was found to be reversed. The amplitude was higher in agent-initial sen-
tences, a result that Isasi-Isasmendi et al. (2024) ascribe to the specific distribution of case
markers (see Basque in the EEG Experiments section). In Hindi, GPT2-based surprisal estimates
predict an additional contrast between the perfective versus imperfective conditions which
was not found in the EEG experiments.

Thus, our qualitative findings suggest that probabilistic linguistic information cannot fully
capture the Predicate N400. This is confirmed by our second analysis (see the Predicting N400
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Amplitudes section), which shows that the Agent Preference is necessary in addition to sur-
prisal to successfully predict N400 amplitudes. In all three languages (Hindi, Basque, and Ger-
man), the top-ranking model includes both surprisal and the Agent Preference as predictors
(Figure 3).

What do the respective contributions of surprisal and the Agent Preference imply for the
Predicate N400? The Agent Preference account differs from Surprisal Theory in two major
aspects. First, the Agent Preference targets processing at the level of macro-roles, that is, the
preference applies to semantic roles in a general way, independent of the lexical specifics of a
predicate-argument combination and independently of how well an argument approximates
the agent prototype (Dowty, 1991). By contrast, surprisal is based on specific lexical choices
and therefore targets predicate-argument combinations at the level of micro-roles (e.g., the
“eater” and the “object being eaten,” rather than the agent and the patient of “eat”). Second,
the Agent Preference account assumes that the bias is independent of linguistic experience. By
contrast, Surprisal Theory, as operationalised here, is based on language experience and thus
implies that the Predicate N400 is the product of a learned mechanism that arises in tandem
with the acquisition of the language.

Therefore, our results show that humans process predicate-argument structures not only at
the level of micro-roles but also at the level of macro-roles, where there appears to be a distinct
tendency to interpret initial, ambiguous NPs as agents. The contribution of surprisal indicates
that the Agent Preference may be modulated by specific predicate-argument combination and
the probabilistic contingencies of the particular language being processed.

Agent Preference in the Predicate N400

The Agent Preference has been considered a universal principle that is likely grounded in
general event cognition (V. A. D. Wilson et al., 2022) or in linguistic event conceptualisation
(e.g., in terms of minimal structures; Bornkessel & Schlesewsky, 2006; Bornkessel-Schlesewsky
& Schlesewsky, 2009). Research on event cognition has shown that agents play a role that is
distinct from other participants when we apprehend events. When viewing two-participant
events, subjects spontaneously extract participants and their corresponding roles from brief
depictions (less than 100 ms Dobel et al., 2007; Hafri et al., 2013; Hafri et al., 2018; Isasi-
Isasmendi et al., 2023), fixating on the agent earlier (Gerwien & Flecken, 2016; Isasi-Isasmendi
et al., 2023; Sauppe&Flecken, 2021; F.Wilson et al., 2011) and longer (Cohn&Paczynski, 2013)
thanon thepatient. Theparallels foundbetweenhuman sentenceprocessing andevent cognition
raise the possibility that the Agent principle is also recruited during event cognition and is poten-
tially shared with other primates (V. A. D. Wilson et al., 2022).

An alternative account derives the Agent Preference from an agent-initial principle in pro-
duction. Specifically, the Production-Distribution-Comprehension Theory (MacDonald, 2013)
assumes that comprehenders expect an agent in initial position because of a bias for agent-
initial utterances that has been found in production data (Futrell et al., 2015; Goldin-Meadow
et al., 2008; Schouwstra & de Swart, 2014). Like the Surprisal Theory, this theory predicts that
the Predicate N400 can be derived from the probabilistic information that comprehenders
learn from patterns in language use alone. In conflict with this prediction, our findings suggest
that N400 amplitudes can be explained only when probabilistic information is enriched by an
explicit Agent Preference that is not derived from usage patterns. Moreover, the Production-
Distribution-Comprehension Theory fails to account for the Predicate N400 found in Äiwoo,
an OVS language, where usage patterns directly violate an agent-initial principle in produc-
tion. Similarly, signers of emerging sign languages follow a human-initial and not agent-initial
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principle in their production (Meir et al., 2017), although we are not aware of EEG experiments
on the Predicate N400 in these languages. Finally, we note that the use of overt NPs varies
greatly across languages (Bickel, 2003; Stoll & Bickel, 2009). This is at odds with the robust-
ness of the Agent Preference against cross-linguistic variation in usage patterns.

Contributions of the Agent Preference and Surprisal Vary Between Languages

The varying effect sizes across languages can be interpreted based on their grammatical dif-
ferences. Different languages have different affordances, and so the experience with a partic-
ular language likely influences the processing of predicate-argument structures. This is
reflected in our results, where the contribution of the predictors (Agent Preference or surprisal)
varied across languages (Figure 2). The German surprisal estimates (especially when estimated
by transformer models) were much more in line with the EEG results than the estimates in the
other languages (see Qualitative Comparison Between Surprisal Estimates and EEG Results in
the Results section). Moreover, surprisal has a much stronger effect on the N400 amplitude
than the Agent Preference condition in German and the effect is also much more strongly sup-
ported, although the Agent Preference is still needed to provide the best model fit. In Basque
and Hindi, the surprisal estimates did not fully mirror the EEG results in the qualitative
comparison (Figure 2), and this was confirmed when predicting amplitudes, where the Agent
Preference was needed for good μV prediction (Figures 3 and Figure 5).

These difference between languages can be explained by the corresponding case systems
(Table 2). German usually marks patients with case (accusative or dative) which in turn makes
unmarked agents more predictable, hence easier to learn from probabilistic linguistic informa-
tion. This is different in Hindi and Basque where unmarked agents are less common because
agents are marked by ergative case. For Hindi, we predicted that the effect will be mixed due
to the split case system, while for Basque Agent Preference will be the dominant predictor. Our
results partially confirm this prediction: Compared to surprisal, the effect of the Agent Prefer-
ence is weaker in Hindi than in Basque, although the difference is small in the whole-scalp
(GAM) analysis and more noticeable only in the single electrode analysis.

An alternative explanation of the differences between languages invokes the fact that the
Basque and Hindi transformer models were trained on smaller data sets than German and that
the training data sets varied across languages. Such differences are particularly important for
our study because, unlike in the German experiment, in the Hindi and Basque experiments,
disambiguation relied on the selectional preferences and the argument structures of lexical
verbs. It is plausible that more training data are needed so that a model can predict such prop-
erties of lexical items. However, the transformer models all passed our grammaticality test, and
this makes it unlikely that the quality of the Basque and Hindi models is lower. Any quality
difference emerges only in the LSTMs. These passed the grammaticality test only in German
and, consistent with this, they received no weight in predicting EEG amplitudes in Hindi, and
less weight in Basque.

The Agent Preference and Surprisal From the View of Predictive Coding Theory

The interaction of the Agent Preference and language experience can be explained in a neu-
robiologically plausible theory based on predictive coding and free energy minimisation in the
brain (Bornkessel-Schlesewsky & Schlesewsky, 2019; Clark, 2013; Friston, 2010). From the
perspective of this theory, brains are “prediction engines” that constantly engage in matching
incoming, sensory information with top-down predictions. Possible prediction errors are mini-
mised in a hierarchical generative model instantiated within a bidirectional cascade of cortical

Predictive coding:
A theory on how the brain actively
constructs explanations for the
causes of its sensory inputs by
constantly testing an internal model’s
hypothesised sensory predictions
against actual sensory input.
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processing (Clark, 2013). Representations of the world consist of probabilities that are induced
by such hierarchical generative models, and these models are updated in a Bayesian fashion,
so that the input and prediction errors inform future predictions (Clark, 2013; Constant et al.,
2022; Knill & Pouget, 2004; Perconti & Plebe, 2020; Su et al., 2023). The N400 has been
associated with the processing of probabilistic linguistic information and model updating
(Kuperberg & Jaeger, 2016; Lindborg et al., 2023; Rabovsky et al., 2018). According to the
descriptive model of Bornkessel-Schlesewsky and Schlesewsky (2019, section N400 Effects
Reflect Precision-Weighted Prediction Errors), it reflects “precision-weighted prediction
errors,” with information that more strongly determines sentence interpretation in a given lan-
guage assigned higher precision weighting (Bornkessel-Schlesewsky & Schlesewsky, 2020).

Since predictive coding integrates the processing of any kind of information in a single
theoretical framework, an approach along these lines can incorporate both principles: one
(probabilistic linguistic information) that is based on the experience with a particular language
and another (Agent Preference) that is universal and potentially recruited in the processing of
events.

Considering the brain as a “Bayesian brain” that updates its priors based on previous pre-
diction errors raises the question of why the Agent Preference could not ever be overridden by
linguistic input. Particularly for Basque and Hindi speakers, we may ask why they still show an
Agent Preference despite the high frequency of patient-initial sentences. A possible answer
comes from the specific ways in which general cognitive mechanisms, such as those driven
by the Agent Preference, interact with language-specific processing mechanisms. For a lan-
guage like Basque or Hindi, where the canonical word order is agent-initial, an Agent Prefer-
ence may not be overridden; the overall probabilistic signal from agent-initial sentences is too
strong. This is strikingly different for an OVS language like Äiwoo, where the Agent Preference
is indeed overriden when the role-ambiguous initial NP has nonhuman reference (Sauppe
et al., 2023), or for Chinese, where it is overriden for inanimate referents when an agent-initial
interpretation is pragmatically extremely marked (Wang et al., 2009). Varying affordances
across languages result in different processing behaviours, and in the present case, the Agent
Preference principle may be resistant to the language input in German, Basque, and Hindi, but
not for inanimate NPs in Äiwoo and Chinese.

Predictive Coding and Language Models

Even though they are loosely inspired by neural connections in the brain (Perconti & Plebe,
2020; Rumelhart et al., 1986; Rumelhart & McClelland, 1987), artificial neural network
models are considered neurobiologically unrealistic models both at the level of implementa-
tion in the human brain (McClelland & Botvinick, 2020; Rosenbaum, 2022; Thomas &
McClelland, 2008) as well as in regard to their functional similarity to human language pro-
cessing (Arehalli et al., 2022; Arehalli & Linzen, 2020) and learning (Stevenson & Merlo, 2022;
Warstadt & Bowman, 2022). This notwithstanding, the engagement in constant next-word
prediction is an important functional property shared between language models and human
sentence processing (Goldstein et al., 2022).

However, in line with our findings, several studies have revealed shortcomings of surprisal
as a predictor of eye-tracking and EEG signals (Arehalli et al., 2022; Arehalli & Linzen, 2020;
Brennan & Hale, 2019; Nelson et al., 2017; Slaats & Martin, 2023; van Schijndel & Linzen,
2018; E. Wilcox et al., 2021). For instance, E. Wilcox et al. (2021) showed that language
models underestimate the difference in difficulty of processing grammatical versus ungram-
matical sentences. A similar finding is observed with garden-path effects which surprisal
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sytematically underestimates and fails to predict their relative severity across different con-
structions (van Schijndel & Linzen, 2021). Adding further processing principles into language
models may thus be conducive to creating neurobiologically more realistic models, in line
with other recent suggestions for enriching language models (Su et al., 2023; E. Wilcox
et al., 2021).

Such an endeavour would further allow us to disentangle different processing principles
and their respective contribution across languages. In the present study we demonstrated that
the Agent Preference is a necessary principle but that its effect differs across languages. Build-
ing such mechanisms into models might improve their inductive biases (van Schijndel et al.,
2019; E. Wilcox et al., 2021) and reduce the amount of data needed for a model to acquire
linguistic structures. Moreover, integrating neurobiological principles like the Agent Prefer-
ence could play well together with recent “down-scaling” efforts to create functionally more
plausible language models (Huebner et al., 2021; Warstadt & Bowman, 2022). Confirmation
for down-scaled approaches also comes from evidence showing that models trained on real-
istic amounts of data can predict functional magnetic resonance imaging (blood oxygen level
dependent) responses (Hosseini et al., 2022). A different approach for modelling the neurobi-
ology of language is suggested by Slaats and Martin (2023), who argue that surprisal should be
used as a cue representing distributional information in a model combined with other
mechanisms.

Our results further suggest that it is important to compare different neural network architec-
tures, despite the fact that transformer-based language models have been shown to predict
EEG signals better than RNNs (Michaelov et al., 2021). In our German results, LSTMs are better
at predicting the N400 amplitudes (Figure 5). For Basque and Hindi, by contrast, surprisal
values derived from bidirectional transformer models yield a better fit. Curiously, GPT-2,
despite yielding good results in the grammaticality test (see Figure 1), never leverages most
weight in the model stacking. This may be due to different reasons for each language. In Ger-
man and Hindi, GPT-2 may overestimate the difference between agent- and patient-initial
word orders. In Basque, the EEG results show an N400 with agentive subjects in the unambig-
uous condition, while GPT-2 shows the converse predictions and RoBERTa seems to be agnos-
tic about it. More cross-linguistic computational work is needed to assess the reasons for these
differences.

The unequal performance of RNNs can be explained by the frequency of overt agents in
these languages. In German, the frequent presence of an agent argument before the verb is
likely to yield structures that are more easily predictable by a sequential model like an
RNN. For Basque and Hindi, where overt agents are often dropped, accessing the morphosyn-
tactic information in previous and upcoming units may be more conducive to accurate word
prediction. The weights learned during training may then be helpful during testing when the
model only has access to the previous words.

Thus, comparing different architectures may reveal processing differences across languages
that are driven by systematic differences in usage patterns. While a German speaker might be
able to more strongly rely on sequential integration of upcoming units to build dependencies,
a Basque or Hindi speaker might have to directly access preceding units kept in memory,
similar to the attention mechanism in transformers.

Outlook

While the language models that we tested do not capture the amplitudes of the Predicate
N400 sufficiently well, the question arises whether this is because surprisal on its own is
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insufficient to provide the best predictor for human sentence processing or because the
estimation of surprisal has a shortcoming. In the present work we have estimated surprisal with
the best available language models for this task at hand and have validated their performance
in the grammaticality task. Improving these models is important but challenging in the absence
of a gold standard, that is, of the true surprisal that a subject experiences in a specific tasks.
Every observational or experimental estimate comes with assumptions and constraints, as is
indeed also the case for the N400 amplitudes measured in EEG experiments. For example,
observational methods like cloze probability tasks, are less suitable for modeling online
sentence processing measurements since the cloze task is carried out offline (Michaelov
et al., 2021).

An important issue is that the language models are generally trained on written texts
whereas humans frequently engage with spoken language. Future research may thus benefit
from training language models on data sets that better reflect the linguistic reality of a human.
This will be possible once corpora of spoken and signed language of sufficient size are
available.

Another open question is how to best conceptualise the Agent Preference predictor. An
alternative to our present approach is to reconceptualise this predictor as a gradient instead
of a binary principle. Previous experiments have shown that semantic features of the referents,
such as animacy or noun-specific properties, result in stronger or weaker reanalysis effects
(Frenzel et al., 2015; Gennari, 2008; Mak et al., 2002; Wang et al., 2012). Thus, the Predicate
N400 could be captured by only a subset of the semantic features entailed by a prototypical
agent role, and these subsets might be easier to learn from probabilistic linguistic information.

The fact that surprisal is, indeed, an essential predictor in all three languages has implica-
tions for the design of experiments on language comprehension. We suggest that it may be
useful to routinely account for surprisal in experiments on language comprehension. This is
particularly necessary to disentangle different drivers or mechanisms behind processing pat-
terns and to interpret results by taking into account the linguistic reality of humans.

CONCLUSION

Our study demonstrates that both probabilistic linguistic information (surprisal) and the Agent
Preference principle contribute to capturing the EEG signal in the processing of predicate-
argument structures. Given the striking centrality of agents in both the processing of sentences
and the processing of events, it is plausible that the Agent Preference is rooted in general prin-
ciples of event cognition, possibly continuing a preference shared with nonhuman primates
and other animals. Incorporating such universal processing principles may be conducive to
building neurobiologically more plausible models as well as to disentangling different process-
ing principles and their contribution across languages.

Our study further shows that processing principles may operate differently across lan-
guages: the importance of the Agent Preference in predicting the Predicate N400 compared
to that of surprisal correlates with the structure in each language. Thus, an essential endeavour
to advance our models of human sentence processing is to integrate a wider range of typolog-
ically diverse languages. Furthermore, our findings hinge on the assumption that the model-
based surprisals are sufficiently accurate representations of human linguistic experience. Thus,
in order to draw more final conclusions about the respective contribution of the Agent Pref-
erence principle and surprisal, more research will be needed to build language models of
spontaneous spoken or signed data and to seek ways of improving their performance while
staying at realistic levels of data size.
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