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Abstract

Motivation: In most tissue-based biomedical research, the lack of sufficient pathology training images with well-
annotated ground truth inevitably limits the performance of deep learning systems. In this study, we propose a con-
volutional neural network with foveal blur enriching datasets with multiple local nuclei regions of interest derived
from original pathology images. We further propose a human-knowledge boosted deep learning system by inclu-
sion to the convolutional neural network new loss function terms capturing shape prior knowledge and imposing
smoothness constraints on the predicted probability maps.

Results: Our proposed system outperforms all state-of-the-art deep learning and non-deep learning methods by
Jaccard coefficient, Dice coefficient, Accuracy and Panoptic Quality in three independent datasets. The high segmen-
tation accuracy and execution speed suggest its promising potential for automating histopathology nuclei segmen-
tation in biomedical research and clinical settings.

Availability and implementation: The codes, the documentation and example data are available on an open source
at: https://github.com/HongyiDuanmu26/FovealBoosted.

Contact: jkong@gsu.edu or hduanmu@cs.stonybrook.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Pathology image analysis is a crucial step to support accurate cancer
mechanism research, disease grading, diagnosis and treatment planning
(Elmore et al., 2015). Although there is a high demand for precise nuclei
morphology analyses, nuclei segmentation, the prerequisite step, very
often is completed manually by pathologists in practice. In spite of a
large number of studies on this topic (Hayakawa et al., 2021), there is
still a lack of robust, accurate and efficient methods that can be widely
deployed. Thus, it remains high demands and priority to develop effect-
ive and precise nuclei segmentation methods.

By far, numerous studies have been initiated for robust nuclei seg-
mentation (Hayakawa et al., 2021). Thresholding is an easy and
straightforward method for segmentation (Kumar et al., 2017).
However, neither simple Otsu thresholding nor advanced methods such

as adaptive thresholding can accommodate crowded nuclei that chal-
lenge these methods on touching nuclei division (Kumar et al., 2017).
With the usage of efficient radial line scanning, system mRLS (multi-
scale Radial Line Scanning) improves segmentation performance but
cannot meet the accuracy requirement for clinical use (Xu et al., 2017).
The use of such watershed-based algorithms as MOW (Jung and Kim,
2010) and IVW (Xu et al., 2014) was reported to segment nuclei with
promising results (Veta et al., 2013). Representing the input image as a
topographic surface, watershed methods simulate the flooding process
from all markers defined either by manual annotations or other auto-
mated algorithms. Thus, their performances highly depend on the mark-
er initialization and can be significantly deteriorated by over-
segmentation (Kumar et al., 2017). Active contour model (ACM)-based
algorithms are also widely used for pathology nuclei segmentation
(Zhang et al., 2019). Although promising segmentation performance
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can be achieved, it is time-consuming for such algorithms as RACM
(Xing et al., 2014) to complete segmentation.

Recently, deep learning methods have drawn dramatic attention
in numerous fields and achieved great progress in a large variety of
analysis tasks including medical image analysis (Kumar et al., 2017;
Naylor et al., 2017). Thanks to its outstanding ability to automatic-
ally capture image patterns, Convolutional Neural Network (CNN)
has been reported effective for image related analysis tasks (LeCun
et al., 1998). For example, U-Net, one classic segmentation system
has demonstrated inspiring performance in numerous segmentation
tasks and evolved to multiple variations (Ronneberger et al., 2015).
In addition, DeepLab and its variants enabled by numerous
advanced techniques such as Atrous Convolution, Atrous Spatial
Pyramid Pooling and fully connected Conditional Random Field
(CRF) module, have achieved great success in multiple semantic seg-
mentation tasks (Chen et al., 2018). Generative adversarial network
(GAN) is another successful type of CNN design for segmentation
systems. Its advanced variant, conditional GAN (cGAN), has shown
great potential for medical image analysis (Shin et al., 2018). Mask
R-CNN and YOLACTþþ are two representative segmentation
models derived from two- and one-stage detector, respectively. They
have been successfully used in numerous challenges with promising
segmentation precision and effectiveness (Bolya et al., 2019a,b; He
et al., 2017). Based on these general CNN architectures, numerous
deep learning systems are specifically designed to tackle the chal-
lenge in nuclei segmentation. For example, a famous nuclei segmen-
tation system CIA-Net uses a newly designed information
aggregation module and the bootstrapped loss, achieving first place
in MICCAI’18 MoNuSeg challenge (Zhou et al., 2019). In addition,
HoVer-Net achieves inspiring performance in segregating overlap-
ping nuclei instances by predicting both horizontal and vertical dis-
tances of nuclear pixels to nuclei centers (Graham et al., 2019).
Another such representative state-of-the-art method is Bi-directional
O-shaped CNN (BiO-Net) (Xiang et al., 2020). Thanks to its recur-
rent usage of convolutional blocks, it produces promising segmenta-
tion results.

Although multiple studies report inspiring segmentation per-
formance, deep learning systems generally have two main draw-
backs. First, performances of deep learning segmentation systems
highly depend on the scale of the dataset and the quality of the
ground truth for training (Naylor et al., 2017). As it is difficult to
collect sufficient high-quality image data and precise ground truth
from experts in most cases, the development of effective solutions
that can assure and boost the training success with limited annotated
data becomes an important but challenging research subject.
Second, it is noted that most conventional energy-based methods,
such as watershed and ACM algorithms, can explicitly use such
morphology information as shape prior for enhanced nuclei contour
identification (Zhang et al., 2019). By contrast, CNN models cannot
explicitly leverage the prior knowledge on nuclei shapes. It remains
an unsolved and challenging problem to explicitly integrate nuclei
morphological knowledge into CNN models.

To address these two problems critical to CNN performance and
usability, we have developed two methods for better nuclei segmen-
tation performance. (i) We propose to enrich the limited datasets
and boost the CNN training process by foveal blur, a blurring
method emulating human vision behaviors. To our best knowledge,
this is the first time that foveal blur is introduced for nuclei segmen-
tation with a clear algorithm description. With foveal blurring for
each nucleus in a histopathology image, it can efficiently scale up
the training dataset by producing a large number of foveal-blurred
nuclei-level image instances. Thus, our foveal blur-based solution
ensures effective deep learning training when the training image set
is limited. (ii) To explicitly inform the CNN model of nuclei mor-
phological knowledge, we design two new loss function terms on
shape prior and smoothness constraints. Specifically, we create a nu-
clei shape prior dictionary that penalizes prediction results aberrant
from nuclei shape priors. In this way, it encourages the CNN system to
predict nuclei contours compatible with representative nuclei shapes.
The second new term evaluates the smoothness of the predicted prob-
ability map by the first- and second-order gradient. By explicitly

teaching deep learning system nuclei segmentation principles, we pro-
pose our human-knowledge boosted deep learning system for enhanced
model learning. Our method is tested with three independent datasets.
Results from all three datasets show that our method outperforms other
state-of-the-art non-deep learning and deep learning systems for com-
parison by both segmentation accuracy and speed. With the promising
segmentation accuracy and computational efficiency, our proposed
human-knowledge boosted deep learning system presents its promising
potential for accurate and efficient nuclei segmentation for biomedical
research and clinical practice.

2 Materials and methods

2.1 Foveal blurred image generation
Enlightened by research findings in neuropsychology and psycho-

physics, foveal blur was originally proposed to simulate human vis-
ual attention in digital image processing research (Perry and Geisler,
2002). The relative spatial frequency map representing human vi-
sion acuity over the gaze direction has been modeled and idealized
in image processing tasks in 2002 (Perry and Geisler, 2002). It is
noticed that the resolution close to the gaze point is high and regions
divergent from the gaze point are gradually blurred due to the de-
crease in the vision acuity. We illustrate in Figure 1, a typical relative
spatial frequency map and multiple sample foveal blurred pathology
image patches focusing on different nuclei.

No study has provided an accurate and clear algorithmic descrip-
tion of foveal blur image generation to our best knowledge.
Therefore, we provide the detailed procedure of our complete foveal
blurring process below. For different levels of blurring effect on each
pixel, the original image is first convoluted with one Gaussian kernel
with a standard deviation of 0.248 (Jiang et al., 2015). Blurred
images at six different levels are generated recursively and used to
form the multi-resolution pyramid. The distance between the fix-
ation (xc, yc) and blur pixel (x, y) is measured by the angle between
two sight trajectories to these two points from one person in dis-

tance p: h ¼ atanð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðy� ycÞ2

q
=pÞ. We set p¼7.5 to lead

to a comfortable and natural experience (Jiang et al., 2015). Using
such computed angles, we produce the spatial frequency based on
the relative spatial frequency map. The idealized function is F ¼ a

aþh,

where a is set 2.5 for compliance with the actual acuity of the
human retina (Pointer and Hess, 1989). Next, we calculate blending
coefficients for the linear combination of the blurred images in the
multi-resolution pyramid. As we have six images in the multi-
resolution pyramid, we partition the spatial frequency range into

five intervals by six cutoff values: 0, 1
5 ;

2
5 ;

3
5 ;

4
5 ;

5
5. The spatial fre-

quency F determines the image level in the multi-resolution pyramid.

If the pixel has a spatial frequency F in 2
5 ;

3
5

� �
level, for example, the

blurred representation of this pixel is a linear combination of the
third and the fourth image in the multi-resolution pyramid with

weight jF � 2
5 j, and jF � 3

5 j, respectively. The detailed algorithmic

descriptions are given in Algorithm 1.
Processed by the proposed foveal blur method with a focus on

nuclei centroids, numerous images focusing on individual nuclei can
be derived from each pathology image. On average, there are more
than 100 nuclei in each histopathology image patch from all our

Fig. 1. We present an idealized spatial frequency map (top left), a raw histopath-

ology image patch (bottom left) and multiple foveal blurred sample images (right)

derived from the raw histopathology image patch
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three testing datasets. Therefore, this process can readily scale up
each dataset by more than 100 times. In addition to the proposed fo-
veal blurred image generation for the system input module, we have
also proposed methods for better learning nuclei contour ground
truth explicitly on the system output side. As the foveal blurred
histopathology images are images focusing on individual nuclei, we
‘down-sample’ the ground truth annotations to the nuclei level and

only retain the corresponding nucleus mask to train the CNN seg-
mentation system. The proposed methods for both system input and
output modules are designed to make the system learn nuclei infor-
mation on a one-by-one case rather than as a whole, enabling a
boosted learning from a given small-scaled dataset.

2.2 Shape prior generation
We have created a shape reference library to explicitly teach the
CNN model the prior knowledge on nuclei shapes. Although it is
easy to acquire numerous nuclei samples, it is not straightforward to
identify representative shapes to be included in the shape library.
Taking the computational efficiency into account, we cluster N nu-
clei samples from a large number of histology images into K groups
where K� N. Following the method in prior research work, K is
set to 100 in this work, and it can be changed depending on the spe-
cific task and dataset (Zhang et al., 2019). All training nuclei sam-
ples are aligned by the generalized Procrustes analysis (Goodall,
1991). In this way, we exclude rotation effect from the shape learn-
ing process. We identify representative nuclei instances capturing as
much group representative morphology information as possible by
solving the following optimization problem.

d̂ ¼ arg min
d
kwi � Bdik2

2 þ kkdik1s:t:dii ¼ 0 (1)

where di denotes the linear combination coefficients to the ith nu-
cleus sample; w denotes the distance map of the centered nucleus
binary mask that presents the distance from each pixel to the nearest

edge pixel of a nucleus sample; B ¼ fw1;w2;w3 . . . wNg denotes the
library consisting of the N nuclei samples distance maps with size
32�32 in pixels. By minimizing the difference between the nucleus
sample and the optimal linear combination of all other nuclei sam-
ples in the shape library, we obtain distance coefficients between all
sample pairs. Given d̂i is the best linear combination coefficient vec-
tor for shape reconstruction of nucleus sample i, we denote d̂ij as the
jth entry of d̂i . Each element Dij of the symmetric distance matrix D
representing the distance between ith and jth nucleus sample is com-
puted as the average of the distance coefficients:

Dij ¼ ðd̂ ij þ d̂ jiÞ=2 (2)

After the distance similarity matrix D is formulated, the un-
normalized spectral clustering method is used to partition the shape
priors into K clusters (Mohar, 1997). Then, The cluster representa-
tive nucleus is calculated by pixel-wise average in each cluster. The
resulting K nuclei W ¼ W1;W2;W3; . . . ;WK encoded by the distance
map are the most cluster representative nuclei samples for the shape
library. Finally, we transfer these distance map representations to
binary nuclei masks. We demonstrate a panel of representative nu-
clei and the resulting nuclei shape library in Figure 2.

2.3 Loss function
A deep learning segmentation system f ð�Þ having a large set of hyper-
parameters h maps a given image x to its segmentation prediction
f ðxjhÞ. Its loss function L measures the performance of the segmen-
tation by the difference between the system predictions f ðxjhÞ and
golden standard y provided. The segmentation system updates its
trainable parameters to minimize such loss function over the train-
ing set by computing the gradient of the loss function with respect to
each parameter in the deep learning system with back-propagation.

ĥ ¼ arg min
h

XN
i¼1

Lðf ðxijhÞ; yiÞ (3)

To make our system explicitly learn nuclei shape prior know-
ledge and follow shape constraints, we have designed two new terms
in the loss function in addition to the cross entropy loss.

2.3.1 Term of cross entropy

Cross entropy is widely used in the loss function for segmentation
tasks, measuring the difference between two probability
distributions:

LCE ¼ �
XN
i¼1

ð
z2X

yi logðf ðxiðzÞjhÞÞdz (4)

where X denotes the image domain and N is the total number of
image patches in the training batch. In addition to cross entropy,
this component of loss can be replaced with some other loss function
such as Dice loss, one common loss function option in segmentation
tasks (Zhou et al., 2019). This term serves as a fundamental compo-
nent in our loss function measuring the difference between ground
truth and system prediction.

However, both cross entropy and Dice loss treat all pixels equal-
ly and individually. It can explicitly capture neither human prior
knowledge of the nuclei morphology nor local information on

Fig. 2. Representative nuclei and the resulting nuclei shape prior library

Algorithm 1: Algorithm for foveal blurred image generation.

Data: Raw image I(x, y), and fixation (xc, yc).

Result: Foveal blurred image ~Iðx; yÞ.
Initial: # of images in multi-resolution pyramid: k, retina

configuration: a, p, and Gaussian kernel: G.

/* multi-resolution pyramid images */

Pi  f
I ifi ¼ k
Piþ1 �G ifi ¼ 1; . . . ; k� 1

/* relative spacial frequency map */

hðx; yÞ  atanð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðy� ycÞ2

q
=pÞ

Fðx; yÞ  a
aþ h

/* blending coefficients */

Bi  jF � i� 1

k� 1
j if

i� 2

k� 1
< F <

i

k� 1
0 else;

(

/* linear combination of pyramid images with

blending coefficients */

~Iðx; yÞ  
Xk

i¼1

BiPi

Nuclei segmentation with shape prior knowledge and probability map constraints 3907



relationships across neighboring pixels. To address these problems,
we next propose two additional terms in the loss function.

2.3.2 Term of shape prior

As we intend to make our system prediction results similar to repre-
sentative nuclei W in the shape prior library by shape, we have devel-
oped a new loss function term on shape compatibility assessed by
the convolution operation. By traversing all samples in the shape
prior library, we find the nucleus presenting the maximum autocor-
relation with the prediction nucleus, and take it as the shape prior
representation of the prediction. The closer the prediction is to the
shape priors in the library, the less the loss term is. Therefore, this
shape prior term penalizes the system when predictions are divergent
from nuclei samples in the shape library.

LSP ¼ �
XN
i¼1

max
k

ð
z2X

Wk � f ðxiðzÞjhÞdz (5)

where the operator � represents the convolution operation.

2.3.3 Term of smoothness in the prediction map

To further constrain the morphological smoothness of the resulting
prediction map, we have designed a new loss function term to restrain
the system from producing sharp or irregular prediction probability
maps. This smoothness term is enlightened by the fact that similar
inputs for a robust system lead to similar outputs. Notably, the predic-
tion result for each image pixel by CNN systems is primarily deter-
mined by the corresponding local receptive image field, while
predictions for neighboring pixels are determined by local overlapped
receptive image fields. Thus, similar input local receptive image fields
would lead to similar prediction results for neighboring pixels in a
robust CNN system. However, local drastic changes in the prediction
result can deteriorate CNN system robustness. Therefore, our smooth-
ness term is designed to strengthen the system robustness by means
of penalizing such local drastic changes in the prediction results.
Specifically, we constrain magnitudes of the first and second-order gra-
dient of the predicted probability maps for guided nuclei segmentation.
Any dramatic change in the prediction map over the nuclei regions is
penalized by this term, encouraging the CNN system to pay attention
to the local information of pixels in close proximity. The hyperpara-
meter a is introduced to balance the first and second-order components
in the prediction smoothness term:

LSM ¼
XN
i¼1

ð
z2X
ðkrf ðxiðzÞjhÞk1 þ akr2f ðxiðzÞjhÞk1Þdz (6)

Combining all these components, the overall loss function in our
proposed human-knowledge boosted deep learning system has three
individual terms. We have a basic cross entropy term measuring the
pixel-wise difference between the prediction and the ground truth. In
addition, two human-knowledge-based terms are designed, one on nu-
clei shape prior learning and another on smoothness regulation penal-
izing morphological irrationality in the predicted probability map.
Making balance over the different restrictions on the system, the over-
all loss function is a linear combination of these three loss terms:

Lðxjh; yÞ ¼ LCE þ kSPLSP þ kSMLSM (7)

where kSP and kSM are two weights to balance the loss function
terms, making three different terms approximately on the same scale
by numerical values. In our experimental configuration, weights are
set as a ¼ 0:1; kSP ¼ 0:5 and kSM ¼ 0:5, respectively.

2.4 The deep learning model architecture
We illustrate the schema of the proposed deep learning-based seg-
mentation system in Figure 3. Before the deep learning system train-
ing, the shape prior library is built to capture representative nuclei.
Next, training image pairs, i.e. one foveal blurred image and the cor-
responding fixation nucleus mask, are provided to the CNN back-
bone. Finally, three loss terms are computed. By backpropagation,

weights of the CNN backbone are updated until the system con-
verges to the best performance. Note that testing images in our
experiments are not processed with foveal blur. In the testing phase,
the inputs to our proposed system are raw histopathology images
that are neither pre-processed nor manually labeled.

A large pool of deep learning models is open to serve as the
CNN backbone based on our approach design. In our experiments,
we use one classical version of U-Net (Ronneberger et al., 2015) to
demonstrate the effectiveness of our proposed method for enhanced
model training. However, the U-Net model can be replaced with
other deep learning architectures. The paired symmetric down-
sampling and up-sampling procedure is the signature characteristic
of the U-Net model. In the down-sampling component, there are
four convolutional blocks, each consisting of two convolutional
layers and one maxpooling layer. Likewise, the deconvolutional
block consisting of two convolutional layers and one deconvolu-
tional layer is repeated four times in the up-sampling part, making
the system output of the same size as that of the input. Four inter-
mediate connections between the down-sampling and the up-
sampling module are deployed to avoid critical information loss due
to sampling. In addition, we keep the number of channels the same
as that of the original U-Net architecture (Ronneberger et al., 2015).

Because the proposed deep learning system is a segmentation sys-
tem rather than an instance segmentation system, post-processing is
needed to segregate all contoured nuclei. After our deep learning sys-
tem produces the binary nuclei segmentation masks, distance trans-
form, h-minima transform and watershed are used to generate final
instance-level nuclei segmentation results (Malpica et al., 1998).

3 Results and discussion

3.1 Data description
In this study, we comprehensively test our proposed systems with
three independent datasets, namely GBM (local images and local
annotations), TCGA (public images and local annotations) and
MoNuSeg dataset (public images and public annotations), respect-
ively. Three independent datasets include in total 41 960 nuclei
boundary annotations from 119 histopathology images.

GBM dataset This dataset includes 40 H&E histopathology
image regions of interest of glioblastoma tissues produced at Emory
University Hospital at 40� magnification. Each pathology image re-
gion has a size of 512�512 in pixels and contains on average 150
nuclei with their contours delineated by our domain experts. We
randomly split the dataset into seven images for training and the
remaining for testing. To demonstrate the merit of our system that
can be trained with a very limited number of images, we intentional-
ly choose a small portion of the dataset as the training set.

TCGA dataset This is a publicly available dataset that includes 36
pathology image patches from nine brain tumor patients at 40� mag-
nification from TCGA public archive (TCGA, 2020). Each patch is in
512�512 pixels and contains on average 122 nuclei that are well
annotated by our domain experts. This dataset is randomly divided
into nine and 27 images for training and testing, respectively.

MoNuSeg dataset The third dataset comes from the
MICCAI’2018 Multi-organ Nuclei Segmentation Challenge
(MoNuSeg) (MoNuSeg Challenge, 2018). This public dataset pro-
vides H&E stained tissue images captured at 40� magnification
from the TCGA archive. All nuclei boundary annotations are

(a) (b)

Fig. 3. We present the system schema with details of (a) the proposed system, and

(b) CNN backbone architecture
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provided by the Challenge hosts. In total, 44 images are produced
with seven distinct organs (i.e. Breast, Kidney, Liver, Prostate,

Bladder, Colon and Stomach) from 44 patients. Training and testing
sets are split by the Challenge hosts. Specifically, the training dataset
contains 30 images of size 1000�1000 in pixels and around 22 000
nuclear boundary annotations, while the testing set has 14 path-
ology images of size 1000�1000 in pixels with additional 7000 nu-
clear boundary annotations.

3.2 Progressive performance improvement from

backbone
For model training, stochastic gradient descent (SGD) is used as the
learning strategy. Nesterov momentum is used and set with 0.9. The
learning rate is initiated with 0.001 and gradually decayed by one-tenth
every 1000 epochs. The loss function of the system converges after 3000
epochs. The training and testing are completed on a computer cluster
with NVIDIA Tesla V100 GPU and 88 Intel Xeon CPUs. Three models
are fully trained to the best performance, including (i) only foveal blur
component (named as FB-Net), (ii) the combination of foveal blur in
training image patches with shape prior learning in the loss function
(FBþSP) and (iii) foveal blur, shape prior term and morphology smooth-
ness term in the loss function (FBþSPþSM).

We compare performances of our proposed three systems with the
three independent datasets, and present qualitative and quantitative
results in Figure 4 and Table 1, respectively. Multiple evaluation metrics
are used for performance assessment, including Jaccard Coefficient (J),
Precision (P), Recall (R), Dice Coefficient (DC), Accuracy (Acc),
Panoptic Quality (PQ) and Hausdorff distance (HD) (Bertels et al.,
2019; Graham et al., 2019; Kirillov et al., 2019; Rockafellar and Wets,
2009). The first five metrics are pixel-level segmentation metrics. By con-
trast, Hausdorff distance evaluates the system performance at the
instance-level. Notably, Panoptic Quality is a metric assessing method
performance at both the pixel and instance-level. The averages by these
metrics are computed with all three testing datasets. We notice that per-
formances from the U-Net systems trained with cross entropy and Dice
loss are approximately the same. Thus, while the cross entropy term in
our proposed systems can be replaced with Dice loss, the resulting

(a) (b) (c) (d) (e)

Fig. 4. Typical segmentation results of our proposed systems. (a) original pathology images, (b) ground truth and results from (c) FB-Net, (d) FBþSP and (e) FBþSPþSM; The

first, the second and the last two rows present images from GBM, TCGA and MoNuSeg datasets, respectively

Table 1. Progressively improved results from our proposed sys-

tems are compared with the backbone U-Net model

Metrics U-NetþDC U-NetþCE FB-Net FBþSP FBþSPþSM

GBM J (%) 68.70 70.96 75.36 77.92 80.02

P (%) 83.76 82.90 87.04 90.32 91.75

R (%) 83.48 83.16 84.91 85.11 86.27

DC (%) 83.57 83.01 85.94 87.59 88.90

Acc (%) 90.83 92.14 93.58 94.43 95.03

PQ (%) 56.72 58.91 61.76 68.25 69.13

HD (pixels) 41.07 41.12 39.47 39.02 37.21

TCGA J (%) 72.60 72.26 76.78 78.28 81.80

P (%) 86.81 83.23 86.50 87.13 91.32

R (%) 85.07 84.30 87.10 88.52 88.90

DC (%) 85.93 83.73 87.09 87.81 89.95

Acc (%) 92.75 93.10 93.86 94.96 95.74

PQ (%) 58.38 57.96 61.86 65.73 68.57

HD (pixels) 49.56 49.02 48.37 46.72 44.98

MoNuSeg J (%) 65.02 65.64 69.81 70.11 72.59

P (%) 85.29 70.06 76.87 77.13 79.86

R (%) 73.64 91.40 88.57 88.72 88.85

DC (%) 78.71 79.21 82.17 82.38 84.03

Acc (%) 90.34 89.63 91.66 91.77 92.66

PQ (%) 47.35 50.43 55.48 54.01 60.84

HD (pixels) 56.77 57.37 55.93 56.72 55.17

Note: The average Jaccard coefficient (J), Precision (P), Recall (R), Dice co-

efficient (DC), Accuracy (Acc), Panoptic Quality (PQ) and Hausdorff distance

(HD) for three independent datasets are presented, respectively. The best per-

formance by each metric and dataset is bolded.

Nuclei segmentation with shape prior knowledge and probability map constraints 3909
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system performances remain similar. As U-Net is the backbone of our
proposed systems, our proposed systems, consistent with our anticipa-
tions, are better than U-Net trained with either cross entropy loss or
Dice loss. Overall, we notice a strong trend of progressive improvements
by all performance metrics in all three datasets as we gradually add FB,
SP and SM components into our system. This manifests that all our three
major contributions to the human-knowledge boosted deep learning
model play an important role in system performance enhancement.
Specifically, our FBþSPþSM system achieves the best segmentation
results both by visual inspections and quantitative metrics, with nearly
5% improvement from FB-Net system by Jaccard coefficient for the
GBM and TCGA dataset, and 3% improvement for the MoNuSeg data-
set. Because of the large image size and high cellular density in the
MoNuSeg dataset, the performance of systems for the MoNuSeg dataset
is worse than that for the other two datasets. As the MoNuSeg dataset
contains pathology images of seven different organs, such diversity
makes it more difficult for segmentation. However, with the MoNuSeg
dataset, our best system (i.e. FBþSPþSM) demonstrates a 7%, 4% and
10% improvement from the baseline U-Net model by Jaccard coeffi-
cient, Dice coefficient and Panoptic Quality.

As a biology terminology, the foveation and foveal blur were
first introduced into the image processing field in 2002 (Perry and
Geisler, 2002). Multiple studies have reported the foveal blur is
beneficial to numerous tasks, such as image coding (Wang et al.,
2001), video detection (Boccignone et al., 2005) and visual search
(Zelinsky et al., 2019). In the medical image analysis field, only one
study was inspired by foveal blur to our best knowledge (Ciresan et
al., 2012). This study reports that neuronal membrane segmentation
in electron microscopy images can achieve better performance by fo-
veal blur (Ciresan et al., 2012). This study uses foveal blur only at
the center of each input image, while we utilize foveal blur to gener-
ate individual images focusing on each nucleus for dataset enrich-
ment and boosted training. It is well known that the dataset scale is
a decisive factor in the final system performance in the deep learning
field. In addition to the perspective of biomimetics on simulating
human vision acuity (Perry and Geisler, 2002), another more
straight-forward explanation on the resulting superior performance
of our systems is that foveal blurring can produce multiple images of
different attention modes from the original image. Note that foveal
blur is only utilized for enhanced model training in the training
phase by dataset augmentation. With such a mechanism, our
method provides an effective vehicle to fully extract information
from each nucleus and enables deep learning models to effectively
learn information critical for nuclei segmentation even with a very
small scaled image dataset. Thanks to the minor modification to the
architecture and no additional computing burden in the testing
phase, the foveal blur strategy is demonstrated to be more effective
and efficient. More experiments and quantitative analysis are illus-
trated in Supplementary Section S1 of Supplementary Materials.

The merits of our proposed two loss function terms unfold in
mainly two aspects. (i) Although CNN is specially designed to cap-
ture the local image information on the relationships among

neighboring pixels, its commonly used loss function treats all pixels
equally and individually, such as cross entropy, Dice loss or mean
square error loss. Thus, we have proposed a new loss function to en-
hance the inter-pixel relationship characterizations by new terms on
shape priors and smoothness constraints. (ii) When pathologists
manually delineate nuclei, they avoid candidates that are not eligible
by size or shape, fully leveraging the prior knowledge they gain in
their medical training. By contrast, CNN cannot explicitly learn
these important characteristics or prior knowledge. To address this
problem, we explicitly make CNN models learn representative nu-
clei by the new loss function terms on shape priors and smoothness
constraint on the predicted probability map. In addition, it is noticed
that most deep learning systems tend to produce a large number of
small false positive segmentation results. By the inclusion of the new
loss function terms on shape priors and smoothness penalizing small
false positive contours, the proposed human-knowledge boosted
deep learning system can have substantially enhanced performance.
More experiments and quantitative analysis are illustrated in
Supplementary Section S2 of Supplementary Materials.

3.3 Comparison with state-of-the-art systems
We include numerous state-of-the-art nuclei segmentation systems
for performance comparison. Both conventional and deep learning
methods are selected for fair and comprehensive comparisons,
including mRLS (Xu et al., 2017), MOW (Jung and Kim, 2010),
IVW (Xu et al., 2014), RACM (Xing et al., 2014), U-Net
(Ronneberger et al., 2015), DeepLabV3þ (Chen et al., 2018), condi-
tional GAN (cGAN) (Mirza and Osindero, 2014), Mask R-CNN
(He et al., 2017) and YOLACTþþ (Bolya et al., 2019a,b).
Specifically, the first four systems are non-deep learning methods
using watershed, ACM and RLS-based algorithms. The last five sys-
tems are state-of-the-art deep learning-based models that have been
proved outstanding for nuclei segmentation. In Table 2, we compare
the results of four non-deep learning and five deep learning methods
with those from our best proposed method (i.e. FBþSPþSM) on
three independent datasets. For a fair comparison, the same data
augmentation (i.e. normalization, random shift, flip and rotation)
are deployed to all deep learning systems. All systems are fully
trained to their own best performances according to the hyperpara-
meter configuration and loss function from the original literature.
Deep learning methods are trained and tested with the same data
partitioning configurations, while non-deep learning methods, hav-
ing no training process, are applied to the same test set.

Within the non-deep learning method group, the multi-resolution
method derived from the radial line scanning model (i.e. mRLS) and a
variant of the active contour map algorithm (i.e. RACM) tend to gen-
erate a large number of false positive predictions that deteriorate
method performance. By contrast, the watershed-based methods, i.e.
MOW and IVW, achieve better performances than mRLS and
RACM. Of deep learning methods for comparison in this study, ex-
perimental results suggest that U-Net segmentation is less competitive
than DeepLabV3þ or conditional GAN by performance due to its
relatively simple architecture. Furthermore, YOLACTþþ, a one-
stage detector-based segmentation system derived from YOLO, is not
good at recognizing small or overlapped objects. Due to this weakness
shared by methods in the YOLO system family, YOLACTþþ does
not work as well with the MoNuSeg dataset as the other two datasets
because the MoNuSeg dataset includes a large number of small nuclei

Fig. 5. Jaccard coefficient comparison of our proposed method with the state-of-the-

art deep learning models specifically designed for nuclei segmentation evaluated by

the MoNuSeg dataset

(a) (b)

Fig. 6. Scatter plots of the average Jaccard coefficient and testing speed for the (a)

GBM and (b) MoNuSeg dataset
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in a high cellular density. In the GBM and MoNuSeg dataset, our pro-
posed system (FBþSPþSM) outperforms other methods by most met-
rics. For the TCGA dataset, our method and Mask R-CNN are the
best by three metrics each. Note the performance difference between
our method and Mask R-CNN is negligible when Mask R-CNN is
the best for the TCGA dataset. Our system outperforms all other
methods by most metrics for the GBM and MoNuSeg dataset.
Although in the TCGA dataset Mask R-CNN performs the best by
Jaccard coeffient, Dice coefficient and Accuracy, it is highly compar-
able to our method by these metrics, but at a much higher computa-
tional cost than ours. More segmentation results are demonstrated in
Supplementary Figures S4 and S5 in Supplementary Materials.

By evaluation results, conventional methods using watershed
and ACM techniques are not as competitive as deep learning meth-
ods in general. As the MoNuSeg dataset includes larger pathology
images of higher nuclei density, conventional methods have better
Precision but worse Recall compared to deep learning methods. This
suggests conventional methods tend to produce fewer false positive
nuclei than such generative models as deep learning methods. The
development of our new loss function terms on nuclei shape prior
knowledge and smoothness constraints, however, can help reduce
such false positive errors from deep learning methods. As each hist-
ology slide has about 5 mm in thickness and represents a two-
dimensional projection of tissues in a three-dimensional space, some
vague nuclei are inevitably found in the resulting scanned pathology
images. In practice, pathologists use personal and time-variant crite-
ria to decide if such nuclei belong to a tissue slide and are properly
focused by a digital scanner case by case. By contrast, our systems
tend to delineate these vague nuclei and result in more false positive
nuclei than human annotations, thus lowering the performance by
Recall. Note that such a property of our methods can be a valuable
merit for studies where all nuclei, including those out of focus, are
preferred for analysis.

3.4 Comparison with state-of-the-art nuclei segmenta-

tion systems on MoNuSeg challenge
For more in-depth performance comparisons, six other state-of-the-
art deep learning systems specifically designed for nuclei segmenta-
tion are compared with our system (FBþSPþSM) by the dataset
from the Multi-Organ Nuclei Segmentation Challenge (MoNuSeg).
MoNuSeg is a popular challenge that provides a large dataset of
pathology images and nuclei annotations (MoNuSeg Challenge,
2018). Numerous deep learning models specifically designed for nu-
clei segmentation have been evaluated by this gold standard dataset.
The comparison results in the metric of the Jaccard coefficient are
presented in Figure 5. Same data augmentation is deployed to all
deep learning systems. All systems are fully trained to their own best
performances according to the hyperparameter configuration and
loss function from the original literature.

CIA-Net is the winning model of MoNuSeg Challenge with
0.6907 by Jaccard coefficient (Zhou et al., 2019). It has two decoder
modules for nuclei and contour recognition separately. The resulting
two modules are further integrated with a Contour-aware
Information Aggregation module. By contrast, our system explicitly
incorporates information of nuclei shape priors from a well-defined
nuclei shape library. Although CIA-Net uses one smooth loss func-
tion (i.e. bootstrapped loss) to address noisy and incomplete labeling
issues, it is fundamentally different from our proposed smoothness
(SM) term that is designed to smooth the prediction probability
map. Bi-directional O-shaped CNN (BiO-Net) is another successful
deep learning nuclei segmentation system for our comparison study.
It yields 0.704 by Jaccard coefficient for the MoNuSeg Challenge
dataset (Xiang et al., 2020). With skip connections, BiO-Net is an
encoder-decoder system that fully recurrently utilizes building
blocks with a minor extra burden to the computation. For perform-
ance comparison, another nuclei segmentation focused deep learning
model S2L-Net is included. It is trained by manual- and pseudo-
annotations along with a specially designed loss function. The
trained system produces pseudo-annotation and achieves 0.6408 by
Jaccard coefficient for the MoNuSeg challenge dataset (Lee and

Jeong, 2020). The loss function of this network is specifically tail-
ored to combine manual- and pseudo-annotations. By contrast, our
novel contribution to the loss function in the proposed system is to
enable deep learning models to explicitly learn human-knowledge
boosted nuclei morphology information in a direct way.

We also include ISL-Net, a popular nuclei segmentation deep
learning method for comparison. In a self-supervised manner, ISL-
Net attempts to leverage the nuclei size and quantity information
with triplet learning and the count ranking loss, achieving 0.7063 by
Jaccard coefficient with the MoNuSeg challenge dataset (Xie et al.,
2020). Although ISL-Net and our proposed models both aim to util-
ize nuclei morphology information, our strategy is to explicitly teach
deep learning models with human prior knowledge of nuclei shape
and global morphology smoothness constraints on the resulting pre-
diction maps. By contrast, such information as nuclei size and count
is implicitly represented by the ISL-net model, which is not benefi-
cial to the system’s robustness and generalizability. BLR-Net is an-
other nuclei segmentation model we compare with. By adding one
loss term on the prediction blending energy, it yields 0.641 by
Jaccard coefficient with the same MoNuSeg challenge dataset
(Wang et al., 2020). Such a deep learning model attempts to utilize
nuclei morphology information by punishing the bad boundary pre-
dictions. By comparison, our model focuses on achieving the global
smoothness of the prediction map and explicitly learning human-
knowledge derived shape prior information. Finally, we also com-
pare our model with HoVer-Net, a popular nuclei segmentation sys-
tem based on deep learning architecture (Graham et al., 2019).
Tested in the MoNuSeg dataset, it achieves a Jaccard coefficient of
0.7089. By contrast, our best model (FBþSPþSM) achieves a
Jaccard coefficient of 0.7259. Compared with all these state-of-the-
art deep learning methods specifically tailored to nuclei segmenta-
tion, our developed model has demonstrated superior performance
with substantial result improvement.

3.5 Effectiveness and efficiency
In the testing phase, the inputs to our proposed system are raw histo-
pathology images that are neither foveal blurred nor manually
labeled. This good merit enables our proposed system to be promis-
ing for effectively and widely deployed to a large set of research
studies and clinical sites. We run all analyses on a cluster with one
NVIDIA GTX V100 GPU. Figure 6 presents the segmentation per-
formance in Jaccard coefficient and testing speed for image patches
of two sizes, i.e. 512�512 (GBM) and 1000�1000 (MoNuSeg).
Regardless of the image size, our proposed systems present the best
effectiveness and efficiency balance. It takes 0.05 s for our system
FBþSPþSM to process one 512�512 pathology image patch. By
contrast, the fastest system U-Net is nearly 10% worse than our
most advanced system FBþSPþSM by Jaccard coefficient. The most
competitive method DeepLabV3þ is two times slower and 5%
worse than our FBþSPþSM model by Jaccard coefficient. For image
patches of 1000�1000 pixels, similar result patterns are presented
for the effectiveness and efficiency investigations. In conclusion, our
proposed systems present a high potential for high-throughput nu-
clei segmentation in an accurate and efficient manner.
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