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Abstract

Sterile alpha and TIR motif-containing 1 (SARM1) is a protein involved in programmed

death of injured axons. Following axon injury or a drug-induced insult, the TIR domain of

SARM1 degrades the essential molecule nicotinamide adenine dinucleotide (NAD+), lead-

ing to a form of axonal death called Wallerian degeneration. Degradation of NAD+ by

SARM1 is essential for the Wallerian degeneration process, but accumulating evidence sug-

gest that other activities of SARM1, beyond the mere degradation of NAD+, may be neces-

sary for programmed axonal death. In this study we show that the TIR domains of both

human and fruit fly SARM1 produce 100–20 and 100–30 glycocyclic ADP-ribose (gcADPR) mol-

ecules as minor products. As previously reported, we observed that SARM1 TIR domains

mostly convert NAD+ to ADPR (for human SARM1) or cADPR (in the case of SARM1 from

Drosophila melanogaster). However, we now show that human and Drosophila SARM1

additionally convert ~0.1–0.5% of NAD+ into gcADPR molecules. We find that SARM1 TIR

domains produce gcADPR molecules both when purified in vitro and when expressed in

bacterial cells. Given that gcADPR is a second messenger involved in programmed cell

death in bacteria and likely in plants, we propose that gcADPR may play a role in SARM1-

induced programmed axonal death in animals.

Introduction

TIR (Toll/interleukin-1 receptor) domains are evolutionarily conserved protein domains that

play key roles in innate immunity and cell-death pathways in animals, plants, and bacteria [1–

4]. These domains frequently present catalytic activity targeting the molecule nicotinamide

adenine dinucleotide (NAD+) as a substrate [3, 5–9]. In both plants and bacteria, TIR domains

were shown to cleave NAD+ and process it into adenosine-containing molecules that act as
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second messenger immune signals, activating programmed cell death in response to infection.

For example, some plant TIR-containing immune receptors, once they recognize effectors of

plant pathogens, generate phosphoribosyl adenosine monophosphate (pRib-AMP), ADP-

ribose-ATP (ADPR-ATP), or di-ADPR molecules. These molecules bind and activate a com-

plex involving the protein EDS1, triggering a signaling cascade that leads to plant resistance

and cell death [7, 8]. Other plant TIR-containing immune proteins were shown to process

NAD+ into 100–20 glycocyclic ADP ribose (100–20 gcADPR) and 100–30 gcADPR molecules [5,

10, 11]. In bacteria, TIR domain proteins in an anti-phage system called Thoeris recognize

phage infection, and then process NAD+ into 100–30 gcADPR. This molecule activates a protein

called ThsA that leads to premature death of the infected bacterial cell prior to phage matura-

tion [9, 10, 12]. In other bacterial immune systems such as CBASS, Pycsar and prokaryotic

Argonaute systems, TIR domains serve as NAD+-depleting factors [13–17]. These highly pro-

cessive TIRs use their NAD+-processing capacity to eliminate NAD+ from the cell in response

to phage infection, thus depleting the cell of energy and aborting phage infection [15, 17–19].

In human cells, TIR domains are frequently associated with Toll-like receptors and other

immune adaptor proteins [1, 20]. These TIRs are considered catalytically inactive and they

transfer the immune signal via protein-protein interactions [21–23]. However, there is one

human TIR-domain containing protein, called sterile alpha and TIR motif-containing 1

(SARM1), in which the TIR domain is catalytically active [6]. SARM1 is a key player in a neu-

ronal programmed axon death pathway called Wallerian degeneration, in which injured axons

are degenerated in an orderly manner [24–26]. Wallerian degeneration is characterized by

granular disintegration of the axonal cytoskeleton, mitochondrial swelling, and axon fragmen-

tation [27]. The Wallerian degeneration pathway was shown to depend on the activation of

SARM1 [28] which, once activated, cleaves NAD+ and depletes it from the injured axon [6, 29,

30]. Indeed, cells in which SARM1 is mutated in the catalytic site do not undergo programmed

axonal death following axonal insult [6].

While NAD+ depletion by SARM1 is considered a key factor of Wallerian degeneration, the

precise mechanism by which SARM1 activity causes Wallerian degeneration is not yet fully

understood [25, 31, 32]. For example, the Axundead mutant in Drosophila is able to prevent

axon degeneration even with SARM1 activation, indicating that there are additional factors

downstream to SARM1-mediated NAD+ depletion that are required for programmed axonal

death [33]. Additionally, multiple studies showed that blocking Ca2+ influx into axons can pre-

vent axonal degeneration, suggesting a connection between SARM1 and Ca2+ signaling [34,

35]. It was shown that neuronal depletion of NAD+ by factors other than SARM1 does not

induce Wallerian degeneration [36–38], and, accordingly, it was suggested that factors other

than NAD+ depletion by SARM1 participate in orchestrating Wallerian degeneration [25, 32].

In this study, we provide evidence that the TIR domain of SARM1 is capable of generating 100–

20 gcADPR and 100–30 gcADPR molecules. We propose that these molecules might have a role

as signaling molecules in the Wallerian degeneration pathway.

Materials and methods

Bacterial strains

For the generation of cell lysates, E. coli strain BL21(DE3) (Agilent) was grown in MMB (LB

supplemented with 0.1 mM MnCl2 and 5 mM MgCl2) at 37˚C. Whenever applicable, media

were supplemented with chloramphenicol (30 μg mL−1) or kanamycin (50 μg mL−1), to ensure

the maintenance of plasmids. For protein purification, E. coli strain BL21(DE3) (Agilent) was

grown in 2YT media (1.6% Bacto-tryptone, 1% yeast extract, 0.5% NaCl) at 37˚C in the pres-

ence of ampicillin (100 μg mL−1) to ensure maintenance of plasmids.
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Plasmid and strain construction

The human SARM1 TIR and SARM1 TIR E642A used for the cell lysates experiments were

synthesized with codon optimization and cloned into a pET28 backbone by Twist Bioscience

(S1 and S2 Files). The Drosophila SARM1 TIR used for the cell lysates experiments was synthe-

sized with codon optimization by Genscript Corp and then cloned by Gibson assembly into a

pACYC backbone with a Twin Strep tag fused to the N-terminus (S3 File). The E919A muta-

tion was introduced using a KLD Enzyme Mix (NEB, no. M0554) with primers CCAGTCCTT
ACAATCTTCGTC and GTACATCGGGcGATCGTAGCGG (S4 File). The human and Drosophila
SARM1 TIR used for in vitro reactions were codon optimized for bacterial expression and

cloned from synthetic DNA fragments (Integrated DNA Technologies) by Gibson assembly

into a custom pET expression vector with an N-terminal 6× His tag and an ampicillin resis-

tance gene (S5 and S6 Files). cmTad1, AbTIRTIR, and ThsB’ were cloned similarly into pET

expression vectors with an N-terminal 6×His-SUMO tag (cmTad1, AbTIRTIR) or a C-terminal

6×His tag (ThsB0) as previously reported by Yirmiya et al., 2024. The human and Drosophila
SARM1 TIR used in this paper are based on UniProt accessions Q6SZW1 and Q6IDD9,

respectively. Only the TIR domain was used.

SARM1 TIR domains expression and lysate preparation for LC-MS

analyses

Overnight cultures of bacteria containing WT or mutated SARM1 TIR domains were diluted

1:100 in 200 mL MMB and incubated at 37˚C with shaking (200 r.p.m.) until reaching OD600 of

0.3. At this point, IPTG was added to a concentration of 1 mM and the temperature was

dropped to 30˚C for an additional 4 hours. 50 mL samples were collected and centrifuged at

4˚C for 10 min to pellet the cells. The supernatant was discarded and the tube was frozen at

−80˚C. To extract the metabolites, 600 μl of 100 mM Na phosphate buffer at pH 8 was added to

each pellet. The thawed samples were transferred to a FastPrep Lysing Matrix B 2 mL tube (MP

Biomedicals catalogue no. 116911100) and lysed using FastPrep bead beater for 40 s at 6 m s−1

in two rounds. Tubes were then centrifuged at 4˚C for 15 min at 15,000g. Supernatant was

transferred to Amicon Ultra-0.5 Centrifugal Filter Unit 3 kDa (Merck Millipore catalogue no.

UFC500396) and centrifuged for 45 min at 4˚C at 12,000g. Where specified, filtrate was incu-

bated with cmTad1 as previously described in Leavitt et al., 2022. Filtrate was taken and used

for ThsA activity assays and for liquid chromatography mass spectrometry (LC-MS) analyses.

In vitro production and purification of gcADPR molecules

100–20 and 100–30 gcADPR were produced and purified as previously described in detail [39]. In

brief, purified recombinant AbTIRTIR and ThsB0 were used to set up reactions with NAD+. Reac-

tions were carried out at room temperature for 24–48 hours before boiling at 95˚C for 10–15 min-

utes. Samples were clarified by centrifugation (13,500 g, 20 min), passed through a 10 kDa filter,

and cmTad1 was added to the filtrate. Mixtures were incubated at RT for 1 h to allow complex for-

mation before washing by successive concentration and dilution in a 10 kDa concentration unit,

first with PBS, then with water. Complexes were concentrated to>3 mM before boiling at 95˚C

for 10 minutes, centrifugation (13,500 g, 20 min), and filtering through a 3 kDa filter. For long-

term storage and shipment, samples were vacuum dehydrated and kept at –20˚C.

ThsA NADase activity assay

The NADase reaction was performed in black 96-well half area plates (Corning, 3694). In each

microwell, ThsA protein which was purified as previously described (Ofir et al., 2021), was
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added to cell lysate or to a positive control of 100 mM sodium phosphate buffer pH 8 supple-

mented with 100–30 gcADPR standards. ThsA was added to a final concentration of 100 nM

protein in a 50 μl final volume reaction. Five microlitres of 5 mM nicotinamide 1,N6 -ethenoa-

denine dinucleotide (εNAD, Sigma,N2630) solution was added to each well immediately

before the beginning of measurements and mixed by pipetting to reach a concentration of

500 μM in the 50 μl final reaction volume. Plates were incubated inside a Tecan Infinite M200

plate reader at 25˚C, and measurements were taken every 1 min at 300 nm excitation wave-

length and 410 nm emission wavelength. Reaction rate was calculated from the linear part of

the initial reaction.

Quantification of metabolites by LC-MS/MS

Quantification of metabolites in cell lysates or in the in vitro reactions was carried out using an

Acquity I-class UPLC system coupled to Xevo TQ-S triple quadrupole mass spectrometer (both

Waters, US). The UPLC was performed using an Atlantis Premier BEH C18 AX column with

the dimension of 2.1 × 100 mm and particle size of 1.7 μm (Waters). Mobile phase A was 20

mM ammonium formate at pH 3 and acetonitrile was mobile phase B. The flow rate was kept at

300 μl min−1 consisting of a 2 min hold at 2% B, followed by linear gradient increase to 100% B

during 5 min. The column temperature was set at 25˚C and an injection volume of 1 μl. An elec-

trospray ionization interface was used as ionization source. Analysis was performed in positive

ionization mode. Metabolites were analyzed using multiple-reaction monitoring with argon as

the collision gas, and detected based on retention times and MS/MS parameters of chemical

standards (S1 Fig). Quantification was made using standard curve in 0–1 mM concentration

range. 15N5-adenosine 50-monophosphate (Sigma) was added to standards and samples as inter-

nal standard (0.5 μM). TargetLynx (Waters) was used for data analysis.

SARM1 TIR domain purification for in vitro reactions

Human and Drosophila SARM1 TIR expression plasmids were transformed into E. coli BL21

(DE3) (Agilent). Bacterial colonies were grown on LB agar plates, and 15 mL of 2YT media

starter cultures were grown overnight at 37˚C with 230 rpm shaking from three picked colo-

nies. 1L of 2YT expression culture supplemented with 10 mM nicotinamide was seeded with

15 mL starter culture and grown at 37˚C with 230 rpm shaking to an OD600 of 2.5 before

expression induction with 0.5 mM IPTG. The temperature was then lowered to 16˚C, and cul-

tures were harvested by centrifugation after 16–20 h. Cell pellets from 2 L of culture were

resuspended in 120 mL lysis buffer (20 mM HEPES-KOH pH 7.5, 400 mM NaCl, 10% glycerol,

30 mM imidazole, 1 mM DTT), lysed by sonication, and clarified by centrifugation at 25,000g

for 20 min. Lysate was passed over a gravity column of 8 mL of Ni-NTA resin (Qiagen),

washed with 70 mL wash buffer (20 mM HEPES-KOH pH 7.5, 1M NaCl, 10% glycerol, 30 mM

imidazole, 1 mM DTT), and eluted with 20 mL of lysis buffer supplemented to 300 mM imid-

azole. Eluate was dialyzed against storage buffer (20 mM HEPES-KOH pH 7.5, 250 mM KCl, 1

mM TCEP) overnight at 4˚C, concentrated to>4 mg/mL, flash frozen, and stored at −80˚C.

Protein purity was assayed by SDS-PAGE. ~2 μg purified protein was separated on a 15%

bis-acrylamide SDS gel (S2 Fig), and sizes were estimated using Blue Protein Standard (New

England Biolabs). N-terminally 6×His-tagged fusions of human and Drosophila SARM1 TIR

have an expected molecular weight of 19.2 kDa.

In vitro SARM1 TIR domain reactions and sample preparation

Purified human and Drosophila SARM1 TIR recombinant proteins were used to set up 0.3 mL

reactions (10 μM protein, 1 mM NAD+, 50 mM HEPES-KOH pH 7.5, 150 mM NaCl, 1 mM
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TCEP). Reactions were carried out at 37˚C for 16 h, stopped by filtering through a 3 kDa filter

(Amicon), and stored at −20˚C.

Results

This study was initiated upon the surprising observation that lysates from cells expressing the

TIR domain of SARM1 are able to activate the bacterial ThsA protein (Fig 1A, 1B and S1

Table). ThsA is an anti-phage enzyme specifically activated by the molecule 100–30 gcADPR,

but not by the canonical cADPR, ADPR, or other ADPR derivatives [5, 10, 12], and we there-

fore suspected that SARM1 activity might generate 100–30 gcADPR. We cloned the TIR domain

of SARM1 from both human and Drosophila melanogaster (fruit fly) and overexpressed these

TIR domains within Escherichia coli cells. We then extracted cell lysates and filtered them

through 3 kDa filters to retain only small molecules. The in vitro activity of ThsA was triggered

by filtered lysates of both human and D. melanogaster SARM1 TIRs (Fig 1B). Lysates from bac-

teria expressing SARM1 TIR with mutations in the known catalytic glutamic acid residue did

not induce the in vitro activity of ThsA (Fig 1B), suggesting that the enzymatic activity of

SARM1 TIR is essential for producing 100–30 gcADPR. In agreement with the well documented

NADase activity of SARM1, cells expressing the SARM1 TIR domain were depleted of NAD+

(Fig 1C).

To further examine whether the molecule present within SARM1 TIR-expressing cells was

indeed gcADPR, we exposed the filtered cell lysates to Tad1, a phage-derived protein that is

known to specifically bind and sequester 100–30 gcADPR and 100–20 gcADPR molecules, but

not cADPR or ADPR [12]. Lysates from SARM1 TIR-expressing cells lost their ability to acti-

vate ThsA if pre-incubated with Tad1, suggesting that Tad1 had sequestered the 100–30

gcADPR molecule from these lysates (Fig 1B).

To substantiate that SARM1 expression produces 100–30 gcADPR, we subjected filtered cell

lysates from E. coli cells overexpressing the human and Drosophila SARM1 TIR domains to

targeted mass spectrometry analysis. Lysates from cells expressing both human and Drosophila
SARM1 TIR domains showed a clear presence of 100–30 gcADPR, while lysates of bacteria

expressing catalytic site mutations in these domains did not (Fig 1D). These results suggest

that when expressed in bacteria, the NADase activity of the SARM1 TIR domain generates 100–

30 gcADPR.

To test the extent to which SARM1 TIR domains produce 100–30 gcADPR, we purified the

TIR domains of SARM1 from human and Drosophila and incubated the purified proteins with

NAD+. As expected from previous studies [6, 40, 41], SARM1 TIR domains consumed NAD+

efficiently. The NAD+ molecules were largely converted into ADPR (in the case of human

SARM1) or into cADPR (for Drosophila SARM1), as previously shown for these two proteins

[6] (Fig 2). However, we were also able to detect the accumulation of 100–30 gcADPR as well as

the molecule 100–20 gcADPR in both human and Drosophila samples. In vitro, the recombinant

Drosophila SARM1 TIR produces about one 100–30 gcADPR molecule for every 300 cADPR

molecules it generates, and about 1:1000 100–20 gcADPR:cADPR molecules. The human

SARM1 TIR seems to generate roughly 1 gcADPR molecule for every 200 conversions in vitro.

Discussion

Our results demonstrate that the TIR domain of SARM1 generates 100–20 and 100–30 gcADPR

molecules as minor products when expressed in or purified from bacteria. Generation of

gcADPR molecules appears to be a conserved feature of SARM1 TIR activity, as this activity

was observed for both human and insect SARM1 TIR domains. Although the majority of

NAD+ processing by the SARM1 TIR generates ADPR and cADPR molecules as products,
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gcADPR molecules may accumulate in biologically meaningful concentrations in cells under-

going Wallerian degeneration. Human cells typically contain 0.2–0.5 mM of NAD+ molecules

[42], and if 0.1–0.5% of this NAD+ is converted by SARM1 into gcADPR, this activity could

generate high nanomolar to low micromolar levels of gcADPR in axons. We postulate that this

Fig 1. Detection of 10 0–30 gcADPR in lysates of bacteria expressing the SARM1 TIR domain. (a) Schematic representation of the experiment. Filtered lysates

of cells expressing SARM1 TIR or SARM1 TIR active site mutants were tested for activation of the ThsA protein. NADase activity of ThsA was measured using

a nicotinamide 1,N6-ethenoadenine dinucleotide (εNAD) cleavage fluorescence assay. (b) Activity of purified ThsA protein from B. cereus, incubated with

increasing concentration of 10 0–30 gcADPR as well as with lysates derived from bacteria that express the SARM1 TIR domain from human and D. melanogaster.
Data are also shown for lysates from bacteria expressing the SARM1 TIR domains with catalytic site mutations, as well as lysates that were pre-incubated with

Tad1. Bars represent the mean of three independent replicates, with individual data points overlaid. Asterisks indicate a statistically significant difference (one-

way ANOVA followed by pairwise multiple comparison analysis according to Tukey’s honest significant difference criterion, P< 0.05). (c) LC-MS analysis

showing concentrations of NAD+ in cell lysates extracted from E. coli expressing human and Drosophila SARM1 TIR domains. Control cells in this experiment

express SARM1 TIR domains with catalytic site mutations. Bar graphs represent the average of three independent replicates, with individual data points

overlaid. Asterisk marks statistically significant increase (Student’s t-test, two-sided, P<0.05). (d) LC-MS analysis showing concentrations of 10 0–30 gcADPR in

cell lysates extracted from E. coli expressing human and Drosophila SARM1 TIR domains. The cells used in this experiment are as in panel c. Bar graphs

represent the average of three independent replicates, with individual data points overlaid. Asterisk marks statistically significant decrease (Student’s t-test, two-

sided, P<0.05).

https://doi.org/10.1371/journal.pone.0302251.g001
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molecule may function as a second messenger, in which case it would bind a receiver protein

to trigger downstream activities contributing to programmed axonal death. Notably, intracel-

lular second messenger signaling molecules, and specifically those involved in immunity and/

or the activation of cell death, typically activate their cognate receptor in high nanomolar to

low micromolar concentrations [13, 15, 43]. An alternative explanation for our observations is

that gcADPR production by SARM1 may be a nonfunctional byproduct of highly processive

NADase activity of the SARM1 TIR domain. Notably, we observed production of gcADPR

when SARM1 TIR domains were overexpressed in bacterial cells, and it is possible that the full

length SARM1 protein does not generate these molecules when expressed at physiological lev-

els in the native animal cells.

In bacteria, 100–30 gcADPR molecules are produced by TIR domains in response to phage

infection. These molecules activate ThsA by specifically binding a domain called SLOG found

at the C-terminus of ThsA. Binding of 100–30 gcADPR to the SLOG domain results in confor-

mational changes that alter the oligomeric state of ThsA to activate the protein [9]. SLOG-like

domains are also found in human proteins, specifically in calcium channels from the TRPM

family where they were shown to bind ADPR derivatives [44, 45]. Given that activation of Ca2

+ influx has been linked to Wallerian degeneration downstream of SARM1 activity [34], it is

worth understanding if calcium channel receptors could potentially respond to gcADPR pro-

duced by SARM1.

Fig 2. LC-MS analysis of the products of in vitro reaction with purified SARM1 TIR domains. Concentrations of molecules in filtered in vitro reactions

containing purified human or D. melanogaster SARM1 TIR domains. 10 μM of protein was incubated with ~1 mM NAD+ for 16 hours. Controls in this

experiment had no protein added to the reaction. Bar graphs represent the average of three independent replicates, with individual data points overlaid.

Asterisk marks statistically significant difference (Student’s t-test, two-sided, P<0.05).

https://doi.org/10.1371/journal.pone.0302251.g002
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Although the NADase activity of SARM1 is well established as essential for Wallerian

degeneration, the mechanism linking NAD+ depletion to axonal degeneration is not yet

entirely clear [25, 31, 32]. Indeed, previous studies have suggested that additional factors acting

downstream to NAD+ depletion by SARM1 may be necessary for the orderly death of injured

axons [25, 33]. The gcADPR molecules revealed in this study as minor products of SARM1

TIR domains might be related to additional processes that could operate downstream of

SARM1. Whether these molecules indeed accumulate in axons during Wallerian degeneration,

and whether they have a biological function in axonal death, remains to be determined by

future studies.
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S1 Fig. Standards of NAD+, ADPR, cADPR and gcADPR molecules as measured via tar-

geted mass spectrometry. Extracted mass chromatograms of specified ions, detected in a sam-
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times. Peak height is normalized to the highest peak in frame.

(TIF)

S2 Fig. Protein purification of human and Drosophila SARM1 TIR proteins. ~2 μg purified

protein was separated on a 15% bis-acrylamide SDS gel and sizes were estimated using protein

standard. N-terminally 6×His-tagged fusions of human and Drosophila SARM1 TIR have an

expected molecular weight of 19 kDa (corresponding bands marked by asterisk).

(TIF)
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