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Abstract

Background

Although there is evidence that ribonucleotide reductase subunit M2 (RRM2) is associated

with numerous cancers, pan-cancer analysis has seldom been conducted. This study

aimed to explore the potential carcinogenesis of RRM2 in pan-cancer using datasets from

The Cancer Genome Atlas (TCGA).

Methods

Data from the UCSC Xena database were analyzed to investigate the differential expression

of RRM2 across multiple cancer types. Clinical data such as age, race, sex, tumor stage,

and status were acquired to analyze the influence of RRM2 on the clinical characteristics of

the patients. The role of RRM2 in the onset and progression of multiple cancers has been

examined in terms of genetic changes at the molecular level, including tumor mutational bur-

den (TMB), microsatellite instability (MSI), biological pathway changes, and the immune

microenvironment.

Results

RRM2 was highly expressed in most cancers, and there was an obvious correlation

between RRM2 expression and patient prognosis. RRM2 expression is associated with the

infiltration of diverse immune and endothelial cells, immune checkpoints, tumor mutational

burden (TMB), and microsatellite instability (MSI). Moreover, the cell cycle is involved in the

functional mechanisms of RRM2.

Conclusions

Our pan-cancer study provides a comprehensive understanding of the carcinogenesis of

RRM2 in various tumors.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0299949 April 18, 2024 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Wang Y, Chen R, Zhang J, Zeng P (2024)

A comprehensive analysis of ribonucleotide

reductase subunit M2 for carcinogenesis in pan-

cancer. PLoS ONE 19(4): e0299949. https://doi.

org/10.1371/journal.pone.0299949

Editor: Arthur J. Lustig, Tulane University Health

Sciences Center, UNITED STATES

Received: October 21, 2023

Accepted: February 19, 2024

Published: April 18, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0299949

Copyright: © 2024 Wang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the Jiangsu

Provincial Special Program of Medical Science

https://orcid.org/0009-0001-9452-2955
https://orcid.org/0000-0003-1606-7528
https://doi.org/10.1371/journal.pone.0299949
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299949&domain=pdf&date_stamp=2024-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299949&domain=pdf&date_stamp=2024-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299949&domain=pdf&date_stamp=2024-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299949&domain=pdf&date_stamp=2024-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299949&domain=pdf&date_stamp=2024-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299949&domain=pdf&date_stamp=2024-04-18
https://doi.org/10.1371/journal.pone.0299949
https://doi.org/10.1371/journal.pone.0299949
https://doi.org/10.1371/journal.pone.0299949
http://creativecommons.org/licenses/by/4.0/


Introduction

Given the complex causes of tumorigenesis such as genetic loss or alteration [1] and immune

infiltration [2], it is crucial to perform pan-cancer analyses of genes that may have potential

clinical value. Recently, with deeper research examining the initiation, development, and treat-

ment of tumors, many therapeutic concepts have emerged, including immune checkpoint pro-

teins [3] and immune infiltration [4]. Interestingly, the publicly funded TGCA project and

many powerful bioinformatics tools have allowed us to perform pan-cancer analyses.

Ribonucleotide reductase subunit M2 (RRM2), a subunit of ribonucleotide reductase, sup-

ports DNA synthesis and repair by catalyzing the formation of deoxyribonucleotides (dNTP)

[5]. RRM2 governs nucleotide metabolism in tumor cells [6] and is associated with multiple

cancers [7, 8]. Several studies have demonstrated that RRM2 is a potential diagnostic or prog-

nostic biomarker for Ewing sarcoma [9], liver cancer [10], glioma [11], and lung adenocarci-

noma [12]. Moreover, RRM2 is an important target of many factors and drugs that suppress

tumorigenicity in various cancers [13–16]. For example, DHS (trans-4,4’-dihydroxystilbene)

suppresses DNA replication and tumor growth by inhibiting RRM2 expression in pancreatic,

ovarian, and colorectal cancer [17].

Although the oncogenic role of RRM2 has been elucidated in several tumors, there is no

pan-cancer evidence regarding the relationship between RRM2 and various cancer types based

on big clinical data. In this study, we performed a pan-cancer analysis of RRM2. We also

explored the molecular mechanisms of RRM2 in the context of different cancers using a series

of factors, including gene expression, clinical correlation, survival analysis, genetic alterations,

immune infiltration, immune checkpoints, enrichment analysis, and potential drug

prediction.

Materials and methods

1. The expression of RRM2 in pan-cancer

To explore RRM2 expression in different cancers, Oncomine (https://www.oncomine.org/)

was used with the default parameters. Additionally, we downloaded gene expression RNA-seq

data of 33 cancers from The Cancer Genome Atlas (TCGA) dataset in UCSC Xena [18]. The

Perl language (https://www.perl.org/) was used to extract RRM2 expression data from 33 can-

cer samples. R language was used for further analysis and visualization.

2. RRM2 expression and its clinical correlation in pan-cancer

To explore the correlation between RRM2 expression and the clinical characteristics of patients

with tumors (tumor stage and survival outcome), we downloaded pan-cancer clinical data

from the TGCA database (https://www.cancer.gov/). R language with limma (version 3.38.3)

[19] was used for visualization.

3. Survival prognosis analysis and Cox regression models

Survival data for 33 cancers were downloaded from the TGCA database for survival analysis.

Kaplan–Meier (KM) and Cox regression models were used to explore RRM2 potential prog-

nostic value of in pan-cancer. To estimate the prognostic value of RRM2 comprehensively, we

performed overall survival (years) (OS), disease-free interval (years) (DFI), disease-specific

survival (years) (DSS), and progression-free interval (years) (PFI) analyses using R language

with limma, survival (version 3.1.12), forestplot (version 1.9), and survminer packages (version

0.4.7).
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4. Genetic alteration analysis

We selected the “TCGA Pan Cancer Atlas Studies” in the “quick select” section and entered

“RRM2” (NC_000002.12NC_000002.12) for queries regarding the genetic alteration character-

istics of RRM2 in the cBioPortal web (https://www.cbioportal.org/). In the “Cancer Types

Summary” module, we obtained the alteration frequency, mutation data (the type of mutation

tumors), and CNA data (copy number alteration) of RRM2 in all TGCA tumors. In the “Muta-

tions” module, the mutated site information of RRM2 was visualized in a schematic diagram of

the protein structure or the 3D structure. We used the R language with the fmsb package to

explore the correlation between RRM2 expression and tumor mutations in 33 TGCA cancers

downloaded from the TGCA database.

Tumor mutational burden (TMB) is a biomarker that represents the total number of muta-

tions in a tumor [20]. Microsatellite instability (MSI) reflects the loss or gain of nucleotides

from repetitive DNA tracts and is a diagnostic phenotype of many cancers [21]. We explored

the correlation between RRM2 expression and TMB and also MSI in pan-cancer using Perl

and R language with the fmsb package (version 0.7.0).

5. Immune infiltration analysis

We chose the “Immune” module of the TIMER2 webserver [22], and RRM2 and endothelial

cells were then selected for exploring the association between immune infiltrates of endothelial

cells and RRM2 expression in all TCGA. A partial Spearman’s correlation analysis was per-

formed using the Purity Adjustment” option. We further investigated the correlation between

RRM2 expression and the infiltration levels of the other 22 immune cells. The R language with

ggplot2 (version 3.3.2), ggpubr, and ggExtra (version 0.9) packages was used for analysis and

visualization.

6. Immune checkpoint analysis

Immune checkpoint molecules are costimulatory receptors on immune cells that regulate

immune cells through an immune response [23]. In this study, we used R language with the

limma, reshape2, and RColorBrewer packages to analyze the relationship between RRM2

expression and the expression levels of 47 common immune checkpoint genes in pan-cancer.

7. Enrichment analysis of RRM2-related gene

In the STRING website (https://string-db.org/), we input the protein name (“RRM2”) and

organism (“Homo sapiens”) in the “Protein by name” module. Subsequently, we changed the

basic settings as follows: meaning of network edges: evidence; active interaction sources:

experiments; minimum required interaction score: low confidence (0.150); maximum number

of interactors to demonstrate no more than 50 interactors in 1st shell. Eventually, RRM2-bind-

ing proteins that were authenticated by experiments were acquired. Cytoscape (version 3.6.1)

was used for integration and visualization [24]. In the “Similar Genes” section of GEPIA2

(http://gepia2.cancer-pku.cn/), we searched RRM2-correlated targeting genes by Gene

(“RRM2”), Top # (“100”) similar Genes, and all TGCA tumor and normal tissues. Meanwhile,

we used the “correlation analysis” module to explore the Pearson correlation between RRM2
expression and the top 5 RRM2-correlated targeting genes in all TGCA tumor and normal tis-

sues. The “Gene_Corr” module in TIMER2 was used to indicate the correlation between

RRM2 with the top 5 RRM2-correlated targeting genes in various cancer types. Subsequently,

we performed intersection analysis to compare the genes with which RRM2 binds and interacts

using Jvenn [25]. Furthermore, we performed Kyoto Encyclopedia of Genes and Genomes
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(KEGG) enrichment analysis for the two sets of data that were RRM2-binding and correlated

through the R language with clusterProfiler, ggplot2, and enrichplot packages.

8. Potential drug prediction for pan-cancer

The KEGG gene sets as Gene Symbols were downloaded from the GESE online dataset

(https://www.gsea-msigdb.org/). R language with colorspace, stringi, ggplot2, limma, and

enrichplot packages was used to explore RRM2-related KEGG enrichment analyses in pan-

cancer. Finally, enriched pathways were counted for further drug prediction. In the Therapeu-

tic Target Database (http://db.idrblab.net/), we selected the “Pathway Search” section of the

“Advanced Search” module [26]. Then, step1: KEGG and step2: CELL CYCLE were chosen to

identify pathway-associated drugs related to RRM2 expression in pan-cancer. Only approved

drugs were screened.

Results

1. The expression of RRM2 in pan-cancer

To explore the oncogenic role of human RRM2, we analyzed the expression pattern of RRM2
in different cancer types using the Oncomine database (Fig 1A). The results revealed that

RRM2 expression was significantly increased in most cancer groups, including bladder, brain,

breast, cervical, colorectal, esophageal, gastric, head and neck, kidney, liver, lung, lymphoma,

melanoma, ovarian, pancreatic, prostate, and sarcoma cancers. However, the expression of

RRM2 is decreased in leukemic cells. Furthermore, we identified the expression levels of

RRM2 in 33 different tumor and non-tumor tissues based on TCGA datasets. As presented in

Fig 1B, the expression levels of RRM2 were extremely different between the cancer and normal

groups. The expression levels of RRM2 were significantly higher in 19 tumor tissues than they

Fig 1. The expression level of RRM2 in pan-cancer. (A) The expression level of RRM2 in different pan-cancers as indicated in the Oncomine database. Gene

rank percentile (%). (B) RRM2 differential expression in pan-cancer in the TCGA database. *P< 0.05; **P< 0.01; ***P < 0.001.

https://doi.org/10.1371/journal.pone.0299949.g001
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were in the corresponding normal tissues, including BLCA (Bladder Urothelial Carcinoma),

BRCA (breast invasive carcinoma), CESC (cervical squamous cell carcinoma and endocervical

adenocarcinoma), CHOL (cholangiocarcinoma), COAD (colon adenocarcinoma), ESCA

(esophageal carcinoma), GBM (glioblastoma multiforme), HNSC (Head and Neck squamous

cell carcinoma), KIRC (kidney renal clear cell carcinoma), KIRP (kidney renal papillary cell

carcinoma), LIHC (liver hepatocellular carcinoma), LUAD (lung adenocarcinoma), LUSC

(lung squamous cell carcinoma), PCPG (Pheochromocytoma and Paraganglioma), PRAD

(prostate adenocarcinoma), READ (rectal adenocarcinoma), STAD (stomach adenocarci-

noma), THCA (thyroid carcinoma), and UCEC (Uterine Corpus Endometrial Carcinoma).

Overall, these results indicated that RRM2 is highly expressed in most cancers and plays a

potential oncogenic role.

2. RRM2 expression and clinical correlation in pan-cancer

We assessed the correlation between the expression of RRM2 and the clinical characteristics of

patients with pan-cancer, including age, race, tumor stage, and status. For age, significant cor-

relations with RRM2 expression were observed in 0–29 years group (BRCA, KIRP, LUAD,

PCPG, READ, STAD, TGCT (Testicular Germ Cell Tumors)), 30–49 years group (ESCA,

KIRC, LAML (Acute Myeloid Leukemia), LIHC, THYM (thymoma)), 50–70 years group

(LGG (brain lower-grade glioma)), LUSC), and over 70 years group (KICH (Kidney Chromo-

phobe), PAAD (pancreatic adenocarcinoma)) (Fig 2A–2D and S1A-S1L Fig in S1 File). As for

race, RRM2 expression was significantly correlated with BRCA, KICH and KIRP in asian

group, BLCA, LIHC and THYM in black group, and KIRC in white group (Fig 2E–2H and

S1M-S1O Fig in S1 File). Regarding the tumor stage, RRM2 expression was significantly asso-

ciated with Skin Cutaneous Melanoma (SKCM) in stage I group, BRCA, COAD, LUAD,

LUSC and PAAD in stage II group, KIRP, LIHC and THCA in stage III group, adrenocortical

carcinoma (ACC), KICH, KIRC and TGCT in stage IV group (Fig 2I–2L and S1P-S1X Fig in

S1 File). In terms of tumor status, RRM2 expression levels were significantly correlated with

COAD and OV (ovarian serous cystadenocarcinoma) in tumor free group, ACC, BLCA,

KICH, KIRC, KIRP, LGG, LUAD, PAAD, PCPG, PRAD and UVM (Uveal Melanoma) in

tumor group (Fig 2M–2P and S1Y-S1AG Fig in S1 File).

3. Survival analysis

To estimate the correlation between RRM2 expression and pan-cancer prognosis, we divided

the tumor cases into two groups based on high and low expression levels of RRM2. The

Kaplan–Meier method was applied to analyze the overall survival (years) (OS), disease-free

interval (years) (DFI), disease-specific survival (years) (DSS), and progression-free interval

(years) (PFI). As presented in Fig 3A–3E and S2A-S2I Fig in S1 File, OS analysis data revealed

high RRM2 expression was associated with poor prognosis for the TCGA cases of ACC

(P<0.001), KICH (P = 0.015), KIRC (P<0.001), KIRP (P<0.001), LGG (P<0.001), LIHC

(P = 0.005), LUAD (P<0.001), MESO (Mesothelioma) (P<0.001), PAAD (P = 0.006), PRAD

(P = 0.004), SARC (Sarcoma) (P = 0.04), UCEC (P = 0.021), and UVM (P<0.001). However,

low RRM2 expression was associated with poor OS in patients with THYM (P = 0.017). DSS

analysis data indicated a correlation between high RRM2 expression and poor prognosis in

TGCA cases of ACC (P<0.001), KICH (P = 0.001), KIRC (P<0.001), KIRP (P<0.001), LGG

(P<0.001), LIHC (P = 0.028), LUAD (P = 0.004), MESO (P<0.001), PAAD (P = 0.014), PRAD

(P = 0.03), and UVM (P<0.001) (Fig 3F–3J and S2J-S2O Fig in S1 File). For DFI (Fig 3K–3O

and S2P-S2R Fig in S1 File), high RRM2 expression was linked to poor prognosis for cancers

of KIRP (P = 0.007), LIHC (P = 0.038), LUAD (P = 0.005), PAAD (P = 0.022), SARC
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(P<0.001), TGCT (P = 0.043) and THCA (P = 0.001). Additionally, low RRM2 expression was

associated with poor DFI for OV (P = 0.022). For PFI analysis data (Fig 3P–3T and S2A, S2B

Fig in S1 File), high RRM2 expression was correlated with poor prognosis for ACC (P = 0.002),

KICH (P = 0.007), KIRC (P = 0.025), KIRP (P<0.001), LGG (P = 0.001), LIHC (P = 0.003),

LUAD (P = 0.003), MESO (P<0.001), PAAD (P = 0.002), PRAD (P<0.001), SARC

(P = 0.001), THCA (P = 0.011), and UVM (P<0.001). However, low RRM2 expression was

associated with poor PFI in COAD (P = 0.049) and STAD (P = 0.05).

Fig 2. The expression level of RRM2 and its clinical correlation in pan-cancer. (A-D) The clinical correlation between RRM2 expression level and age in

BRCA, ESCA KICH, and KIRC, respectively. (E-H) The clinical correlation between RRM2 expression level and race in BLCA, BRCA, KICH, and KIRC,

respectively. (I-L) The clinical correlation between RRM2 expression level and tumor stage of patients in ACC, BRCA, COAD, and KICH, respectively. (M-P)

The clinical correlation between RRM2 expression level and tumor status of patients in ACC, BLCA, COAD, and KICH, respectively. The number above the

horizontal line represents the p-value between the two groups.

https://doi.org/10.1371/journal.pone.0299949.g002
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Furthermore, we calculated survival data using Cox regression models (Fig 3U–3X). The

OS, DSS, and PFI results were similar to those calculated using the Kaplan–Meier method.

The difference in OS was that high RRM2 expression was not significantly correlated with

poor prognosis in UCEC. Additionally, high RRM2 expression was associated with poor DSS

in patients with SARC (P = 0.024). For PFI, high RRM2 expression was significantly correlated

with poor prognosis for PCPG (P = 0.006) but was not significantly correlated with poor

Fig 3. Prognostic value of RRM2 in pan-cancer. (A-E) Correlation between high expression level of RRM2 and poor OS in ACC, KICH, KIRC, KIRP, and

LGG using the Kaplan–Meier method. (F-J) Correlation between high expression level of RRM2 and poor DSS in ACC, KICH, KIRC, KIRP, and LGG using

the Kaplan–Meier method. (K-O) Correlation between high expression level of RRM2 and poor DFI in KIRP, LIHC, LUAD, PAAD, and SARC using the

Kaplan–Meier method. (P-T) Correlation between high expression level of RRM2 and poor PFI in ACC, KICH, KIRC, KIRP, and LGG using the Kaplan–

Meier method. (U-X) Correlation between RRM2 expression and OS, DSS, DFI, and PFI in pan-cancer using the Cox regression model. OS, Overall survival

(years); DSS, Disease-specific survival (years); DFI, Disease-free interval (years); PFI, Progression-free interval (years).

https://doi.org/10.1371/journal.pone.0299949.g003
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prognosis for STAD. For DFI, the data indicated that the high RRM2 expression was associated

with the poor prognosis for cancers that included BRCA (P = 0.036), KIRP (P<0.001), LIHC

(P = 0.021), LUAD (P<0.001), PAAD (P = 0.012), PRAD (P = 0.020), SARC (P = 0.002), and

THCA (P<0.001). These data suggest that RRM2 is differentially associated with the prognosis

of various cancers.

4. Genetic alteration analysis data

Next, we explored the genetic alteration status of RRM2 in 10,953 patients/10,967 samples

from 32 TGCA cohort studies. The analysis data revealed that RRM2 exhibited the highest

alteration frequency (>7%) in patients with uterine carcinosarcoma, among which "amplifica-

tion" was the main type. Notably, the genomic alteration types in all diffuse large B-cell lym-

phoma (DLBCL) and KICH cases were deep deletions in RRM2 (Fig 4A). We investigated the

types, sites, and numbers of RRM2 mutations (Fig 4B). The primary genetic mutation in

RRM2 was a missense mutation. The R298Q/W mutation in ribonucleotide reductase that was

detected in three cases of UCEC and one case of GBM was able to produce a missense muta-

tion in the RRM2 gene, thus causing translation from R (arginine) to W (tryptophan) or gluta-

mine (Q) at position 298 of the RRM2 protein. We visualized the R298 site in the 3D structure

of RRM2 (Fig 4C).

Moreover, we explored the correlation between RRM2 expression and tumor mutational

burden (TMB) and microsatellite instability (MSI) in all TCGA cancers. As presented in Fig

4D, RRM2 expression was positively correlated with TMB in ACC, BLCA, BRCA, CESC,

CHOL, COAD, KICH, KIRC, LGG, LIHC, LUAD, LUSC, MESO, OV, PAAD, PRAD, READ,

SARC, SKCM, and STAD but negatively correlated with THYM. As presented in Fig 4E, we

observed a positive correlation between RRM2 expression and MSI for COAD, LIHC, SARC,

STAD, TGCT, UCEC, and UCS (Uterine Carcinosarcoma) but a negative correlation for

LAML and SKCM. These results should be subjected to more in-depth analysis.

5. Immune infiltration

Immune cells, the primary components of the tumor microenvironment (TME), are involved

in the progression and metastasis of tumors and therapy resistance [23, 27]. Tumor-associated

endothelial cells have been reported to play a key role in sculpting the immune responses nec-

essary for tumor growth and metastasis [28]. First, we explored the association between RRM2
expression and the infiltration level of immune cells in TCGA cancers using the TIMER,

CIBERSORT, CIBERSORT-ABS, QUANTISEQ, XCELL, MCPCOUNTER, and EPIC algo-

rithms. As presented in Fig 5A, RRM2 expression levels in BRCA, KIRC, LUAD, LUSC,

STAD, THCA, and THYM were negatively correlated with the infiltration level of tumor-asso-

ciated endothelial cells but were positively correlated with KIRP and LGG. We then analyzed

the correlation between RRM2 expression levels and the immune infiltration of different

tumor-associated cells (B cells, plasma cells, T cells, NK cells, monocytes, macrophages, den-

dritic cells, mast cells, eosinophils, and neutrophils) and their subtypes in tumors. The results

indicated that RRM2 expression levels were significantly correlated with the immune infiltra-

tion of various tumor-associated cells in 24 tumor types. For example, RRM2 expression in the

ACC was negatively correlated with the infiltration of resting mast cells (Fig 5B). In BLCA,

RRM2 expression significantly correlated with the infiltration of five types of immune cells

(Fig 5C–5G). In BRCA, RRM2 expression was significantly correlated with the infiltration of

10 types of immune cells (Fig 5H–5Q). The correlation between RRM2 expression and

immune cell infiltration in other cancers is presented in S3A-S3CI Fig in S1 File.
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Fig 4. Mutation features of RRM2 in different tumors of TCGA. (A, B) The alteration frequency of RRM2 with mutation type and mutation site. (C) The

mutation site with the highest alteration frequency (R298Q/W) in the 3D structure of RRM2. (D) A radar map was used to reflect the correlation between

RRM2 expression and TMB. (E) A radar map was used to reflect the correlation between RRM2 expression and MSI. TMB, Tumor mutational burden; MSI,

Microsatellite instability.

https://doi.org/10.1371/journal.pone.0299949.g004
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6. Immune checkpoint analysis

We explored the correlation between RRM2 and immune checkpoint gene expression in vari-

ous cancers (Fig 6). The results revealed that the expression levels of more than 40 immune

checkpoint genes were significantly associated with RRM2 expression levels in TGCT and

THCA. Moreover, the expression levels of up to 30 immune checkpoint genes in BRCA,

HNSC, KIRC, KIRP, LGG, LIHC, PRAD, THYM, and UVM correlated with RRM2 expression

levels. Additionally, more than 20 immune checkpoint genes were associated with RRM2
expression in 10 cancer types.

7. Enrichment analysis of RRM2-related gene

To understand the molecular mechanism of action of RRM2 in the context of tumorigenesis,

we searched for RRM2 expression-correlated target genes and RRM2-binding proteins for

functional enrichment analysis. We identified 50 RRM2-binding proteins that were authenti-

cated using STRING. The protein-protein interaction network is presented in Fig 7A. We then

Fig 5. Correlation analysis between RRM2 expression and immune infiltration of cancer-associated cells. (A) The correlation between RRM2 gene

expression and the infiltration level of endothelial cells in all types of cancer in TCGA. (B-Q) The correlation between RRM2 gene expression and the

infiltration level of diverse immune cells in ACC, BLCA, and BRCA, respectively.

https://doi.org/10.1371/journal.pone.0299949.g005
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explored the top 100 RRM2 expression-correlated genes based on the TGCA datasets using

GEPIA2. The results indicated that the expression level of RRM2 was positively associated with

that of MKI67 (marker of proliferation Ki-67) (R = 0.79), ORC1 (origin recognition complex

subunit 1) (R = 0.78), CCNA2 (Cyclin A2) (R = 0.77), PLK1 (polo-like kinase 1) (R = 0.77),

and KIF11 (kinesin family member 11) (R = 0.76) (Fig 7B). The heatmap indicated a positive

correlation between RRM2 and the four genes in virtually all cancer types (Fig 7C). The above

two groups possessed four common genes that included PLK1, CDK1 (cyclin-dependent

kinase 1), DTL (Denticleless E3 ubiquitin protein ligase homolog), and ASF1B (anti-silencing

function 1 B histone chaperone) (Fig 7D). KEGG enrichment analyses were performed based

on the genes in the two groups. The result indicated that “cell cycle” may play a crucial role in

the effect of RRM2 on tumor pathogenesis (Fig 7E).

Fig 6. RRM2 expression level and immune checkpoint genes in pan-cancer. (A) Heatmap of the correlation between RRM2 expression and immune

checkpoint genes.

https://doi.org/10.1371/journal.pone.0299949.g006
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8. Potential drug prediction for pan-cancer

We performed a gene set enrichment analysis (GSEA) to explore the pathways regulated by

RRM2 in pan-cancer cells (S4 Fig in S1 File). The results revealed that the cell cycle pathway

was the most significantly affected by RRM2 expression in pan-cancer, and this was consistent

with the KEGG enrichment analyses (S1 Table in S1 File). Drug prediction analysis indicated

that up to 14 approved drugs such as Phenylbutyrate and Romidepsin may exert pan-cancer

therapeutic effects by targeting cell cycle-associated pathways (S2 Table in S1 File).

Discussion

Consistent with the extremely important biological functions of RRM2 in DNA replication

[29], RRM2 has been demonstrated to exhibit a functional link with diverse tumors [7–9].

Whether RRM2 is involved in the pathogenesis of multiple tumors via a common molecular

mechanism remains unclear. Through bibliography retrieval, we failed to identify any publica-

tion with a pan-cancer analysis of RRM2 based on the perspective of all tumors. Therefore, in

this study, we uncovered for the first time the role of RRM2 in 33 different cancers. Using bio-

informatic analysis of the Oncomine and TCGA public databases, we demonstrated that the

Fig 7. RRM2-related gene enrichment analysis. (A) Protein-protein interaction network of the available experimentally determined RRM2 binding proteins.

The size and color of the node depends on the degree. The width of the edge is determined by the combined score of STRING. (B) The expression correlation

between RRM2 and the top 5 RRM2-correlated genes in TCGA, including MKI67, ORC1, CCNA2, PLK1 and KIF11. (C) The corresponding heatmap data for

the detailed cancer types. (D) An intersection analysis of the RRM2-binding and correlated genes. (E) KEGG pathway enrichment analyses of the genes that

RRM2-binding and interacted.

https://doi.org/10.1371/journal.pone.0299949.g007
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expression of RRM2 in up to 19 tumor tissues was higher than that in the corresponding nor-

mal tissues. These findings demonstrated that RRM2 plays an important role in most tumors

(Fig 1). Subsequently, the significance of RRM2 in pan-cancer clinical prognosis was explored.

The expression of RRM2 was significantly related to age, race, tumor stage, and status in nearly

one-third of the TGCA (Fig 2). Additionally, survival analyses using Kaplan–Meier and Cox

regression models revealed that most patients with cancer and high RRM2 expression exhib-

ited significantly worse survival rates than those with low expression (Fig 3). Considering the

patient samples in the cBioPortal database, RRM2 gene mutations appeared in 23 types of

patients with tumors, with an alteration frequency of 0.2% to 7.02%. We observed that most

alterations in RRM2 were gene mutations, amplifications, and deep deletions (Fig 4). We also

observed evidence of a close association between RRM2 expression and TMB or MSI in TCGA

samples. These results demonstrate that RRM2 may be a powerful prognostic biomarker in

pan-cancer and may expedite the development of precise targeted therapies for tumors.

RRM2 is highly expressed in the majority of tumors. However, given the limitations of

online databases and tools, the expression of RRM2 in certain tumors was omitted. We supple-

mented missing meaningful results with a literature search. Tabbal et al. demonstrated that

high expression of RRM2 induced by EZH2 is associated with poor prognosis in adrenocortical

carcinoma (ACC) [30]. Inhibition of RRM2 can block cell proliferation and migration and

induce apoptosis, thus suggesting that RRM2 may be a target in ACC [30]. Aimiuwu et al.

demonstrated that 5-Azacytidine (5-azaC) could cause perturbation of deoxyribonucleotide

pools (LAML) and that RRM2 may be a novel molecular target of 5-azaC in AML [31]. In

Mesothelioma, Wendy et al. reported that RRM2 was highly expressed in MESO by semi-

quantitative immunohistochemical analysis in 70 patients, but no significant correlation was

observed between RRM2 expression and the clinical prognosis of OS and PFS [32]. The current

data revealed a strong relationship between RRM2 and up to 20 types of tumors; however, fur-

ther research is required to explore if RRM2 is related to the remaining tumors. Consistent

with this result, our clinical data correlation analysis indicated that RRM2 was strongly corre-

lated with age, race, tumor stage, and cancer status. These results indicate that RRM2 plays an

important pan-cancer role and possesses clinical value that is worthy of in-depth investigation.

Cox regression models and the Kaplan–Meier method were used to evaluate the survival of

patients with RRM2 tumors. However, for certain tumors, the results of the two algorithms

were inconsistent. In this study, we used Cox regression survival analysis of data from the

TCGA-UCEC cohort and observed a statistical correlation between high RRM2 expression

and poor OS (P = 0.021). Nevertheless, no significant correlation was observed between RRM2
expression and OS in UCEC using the Kaplan–Meier method (P = 0.133). Different data-pro-

cessing methods or updated survival data may have contributed to these results. Therefore, we

used another web tool, GEPIA2 [33], and failed to detect a correlation between RRM2 expres-

sion and overall survival (years) of patients with UCEC (P = 0.064). Consequently, the current

evidence cannot confirm the role of RRM2 expression in the OS of UCEC. For other tumors

with identical DFI, DSS, and PFI results, larger sample sizes and clinical studies are needed to

further confirm the relationship between RRM2 and the survival prognosis of different tumors,

and this indicates the complexity of tumors and the diverse roles of RRM2.

For pancreatic adenocarcinoma (PAAD), we analyzed the TCGA-PAAD dataset (n = 183)

and failed to observe significant differential expression of RRM2 in PAAD tissues compared to

levels in normal tissues. However, a significant correlation was observed between RRM2
expression and the clinical prognoses of OS, PFS, RFS, and DSS in patients with PAAD. A

recent study by Anna et al. was in agreement with the results of the survival analysis [34].

Therefore, larger sample sizes are required to confirm the role of RRM2 in PAAD.
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In this study, we demonstrated that pan-cancer RRM2 expression levels correlated with the

immune infiltration levels of diverse tumor-associated cells (Fig 5). High RRM2 expression

leads to decreased immune infiltration in most cancers, including ACC, KIRC, KIRP, LGG,

LIHC, LUAD, PAAD, PRAD, SARC, TGCT, THCA, UCEC, and UVM. Consistent with this

finding, high RRM2 expression was associated with poor prognosis in these tumors. These

findings indicate that in at least 13 types of tumors, RRM2 can affect tumor prognosis by regu-

lating the level of immune infiltration.

Immune checkpoint blockade has exhibited remarkable advantages in the treatment of sev-

eral cancer types [35]. Immune checkpoint blockade increases anti-tumor immunity [35]. Here,

we demonstrate that RRM2 expression is closely related to immune checkpoint genes in various

cancers (Fig 6). In renal cell carcinoma, Xiong et al. reported that RRM2 promotes sunitinib

resistance and that knockdown of RRM2 enhances the anti-tumor efficiency of programmed

cell death protein 1 (PD-1) blockade in renal cancer [36]. Our data analysis also revealed that

the expression of RRM2 was related to 21, 38, and 30 checkpoint genes in KICH, KIRC, and

KIRP cells, respectively. Additionally, we confirmed that the expression of RRM2 is positively

associated with PDCD1 (PD-1) in KICH, KIRC, and KIRP. These results suggested that RRM2
is a promising therapeutic target for renal cell carcinoma. Nevertheless, the specific immuno-

therapeutic role of RRM2 in immune checkpoint blockade requires further pan-cancer studies.

First, we integrated the data for RRM2-binding components and RRM2 expression-corre-

lated target genes across all tumors (Fig 7). KEGG and KSEA enrichment analyses indicated

that “cell cycle,” “oocyte meiosis,” “p53 signaling pathway,” “cell senescence,” and “DNA repli-

cation” play potential roles in the effect of RRM2 on tumor pathogenesis. One research indicates

that cell cycle dependent RRM2 may serve as proliferation marker and pharmaceutical target in

adrenocortical cancer [37]. Chao Ma et. al displayed RRM2 was an independent prognostic fac-

tor in lung adenocarcinoma which was closely related oocyte meiosis [38]. Mingxue Yu et. al

found that RRM2 were enriched in the p53 signaling pathway and could be potential biomark-

ers and therapeutic targets for HBV-related HCC [39]. Letizia Granieri et. al revealed that tar-

geting the USP7/RRM2 axis drives senescence and sensitizes melanoma cells to HDAC/LSD1

inhibitors [40]. Wenxiu Qi et. al suggested that VE-822 and AZD1775 decreased the protein lev-

els of ribonucleotide reductase M1 (RRM1) and M2 (RRM2) subunits, key enzymes in the syn-

thesis of deoxyribonucleoside triphosphate, which increased DNA replication stress [41].

Given the importance of RRM2 in tumors, we explored drugs that target RRM2. We identi-

fied drugs that target the cell cycle pathway most affected by RRM2 expression in pan-cancers.

Nevertheless, whether these drugs play a role in the treatment of cancer or certain tumors

must be further explored. RRM2 converts the active metabolite of gemcitabine into its inactive

form [42]. Moreover, alterations in RRM2 are associated with resistance to gemcitabine-

induced cell death in lung cancer and pancreatic ductal adenocarcinoma [42]. Therefore, we

speculated that some of these predicted drugs could regulate the efficacy of gemcitabine in cer-

tain cancers. Further research is required to confirm these findings.

In summary, our first pan-cancer analysis of RRM2 revealed statistical correlations between

RRM2 expression and clinical prognosis, genetic alterations, tumor mutational burden, micro-

satellite instability, immune cell infiltration, and immune checkpoints across multiple tumors.

This helped us to understand the role of RRM2 in tumorigenesis from the perspective of clini-

cal tumor samples.

Supporting information

S1 File. Contains all data for S1–S4 Figs and S1, S2 Tables.

(DOCX)

PLOS ONE Ribonucleotide reductase subunit M2 to carcinogenesis in pan-cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0299949 April 18, 2024 14 / 17

https://pubmed.ncbi.nlm.nih.gov/?term=Ma+C&cauthor_id=33123291
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0299949.s001
https://doi.org/10.1371/journal.pone.0299949


Acknowledgments

Special thanks to Yong Wang for performing the data analysis. We are also grateful for the

data collection by Jing Zhang. All authors contributed equally to data analysis, experiments,

and overall manuscript conception.

This work has been uploaded in a preprint. We thank Research Square for presenting and

evaluating our study (https://www.researchsquare.com/article/rs-2215057/v1).

Author Contributions

Conceptualization: Peng Zeng.

Data curation: Yong Wang.

Formal analysis: Jing Zhang.

Project administration: Peng Zeng.

Writing – original draft: Rong Chen.

Writing – review & editing: Peng Zeng.

References
1. Morris LG, Chan TA. Therapeutic targeting of tumor suppressor genes. Cancer. 2015; 121(9):1357–68.

Epub 20141229. https://doi.org/10.1002/cncr.29140 PMID: 25557041; PubMed Central PMCID:

PMC4526158.

2. Li ZX, Zheng ZQ, Wei ZH, Zhang LL, Li F, Lin L, et al. Comprehensive characterization of the alternative

splicing landscape in head and neck squamous cell carcinoma reveals novel events associated with

tumorigenesis and the immune microenvironment. Theranostics. 2019; 9(25):7648–65. Epub

20191014. https://doi.org/10.7150/thno.36585 PMID: 31695792; PubMed Central PMCID:

PMC6831462.

3. Weber J. Immune checkpoint proteins: a new therapeutic paradigm for cancer—preclinical background:

CTLA-4 and PD-1 blockade. Semin Oncol. 2010; 37(5):430–9. https://doi.org/10.1053/j.seminoncol.

2010.09.005 PMID: 21074057.

4. Pagès F, Galon J, Dieu-Nosjean MC, Tartour E, Sautès-Fridman C, Fridman WH. Immune infiltration in

human tumors: a prognostic factor that should not be ignored. Oncogene. 2010; 29(8):1093–102. Epub

20091130. https://doi.org/10.1038/onc.2009.416 PMID: 19946335.

5. Kumar D, Abdulovic AL, Viberg J, Nilsson AK, Kunkel TA, Chabes A. Mechanisms of mutagenesis in

vivo due to imbalanced dNTP pools. Nucleic Acids Res. 2011; 39(4):1360–71. Epub 20101020. https://

doi.org/10.1093/nar/gkq829 PMID: 20961955; PubMed Central PMCID: PMC3045583.

6. Gandhi M, Groß M, Holler JM, Coggins SA, Patil N, Leupold JH, et al. The lncRNA lincNMR regulates

nucleotide metabolism via a YBX1—RRM2 axis in cancer. Nat Commun. 2020; 11(1):3214. Epub

20200625. https://doi.org/10.1038/s41467-020-17007-9 PMID: 32587247; PubMed Central PMCID:

PMC7316977.

7. Mazzu YZ, Armenia J, Chakraborty G, Yoshikawa Y, Coggins SA, Nandakumar S, et al. A Novel Mech-

anism Driving Poor-Prognosis Prostate Cancer: Overexpression of the DNA Repair Gene, Ribonucleo-

tide Reductase Small Subunit M2 (RRM2). Clin Cancer Res. 2019; 25(14):4480–92. Epub 20190417.

https://doi.org/10.1158/1078-0432.CCR-18-4046 PMID: 30996073; PubMed Central PMCID:

PMC6820162.

8. Zheng S, Wang X, Weng YH, Jin X, Ji JL, Guo L, et al. siRNA Knockdown of RRM2 Effectively Sup-

pressed Pancreatic Tumor Growth Alone or Synergistically with Doxorubicin. Mol Ther Nucleic Acids.

2018; 12:805–16. Epub 20180808. https://doi.org/10.1016/j.omtn.2018.08.003 PMID: 30153565;

PubMed Central PMCID: PMC6118156.

9. Ohmura S, Marchetto A, Orth MF, Li J, Jabar S, Ranft A, et al. Translational evidence for RRM2 as a

prognostic biomarker and therapeutic target in Ewing sarcoma. Mol Cancer. 2021; 20(1):97. Epub

20210727. https://doi.org/10.1186/s12943-021-01393-9 PMID: 34315482; PubMed Central PMCID:

PMC8314608.

10. Yang Y, Lin J, Guo S, Xue X, Wang Y, Qiu S, et al. RRM2 protects against ferroptosis and is a tumor

biomarker for liver cancer. Cancer Cell Int. 2020; 20(1):587. Epub 20201207. https://doi.org/10.1186/

s12935-020-01689-8 PMID: 33372599; PubMed Central PMCID: PMC7720568.

PLOS ONE Ribonucleotide reductase subunit M2 to carcinogenesis in pan-cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0299949 April 18, 2024 15 / 17

https://www.researchsquare.com/article/rs-2215057/v1
https://doi.org/10.1002/cncr.29140
http://www.ncbi.nlm.nih.gov/pubmed/25557041
https://doi.org/10.7150/thno.36585
http://www.ncbi.nlm.nih.gov/pubmed/31695792
https://doi.org/10.1053/j.seminoncol.2010.09.005
https://doi.org/10.1053/j.seminoncol.2010.09.005
http://www.ncbi.nlm.nih.gov/pubmed/21074057
https://doi.org/10.1038/onc.2009.416
http://www.ncbi.nlm.nih.gov/pubmed/19946335
https://doi.org/10.1093/nar/gkq829
https://doi.org/10.1093/nar/gkq829
http://www.ncbi.nlm.nih.gov/pubmed/20961955
https://doi.org/10.1038/s41467-020-17007-9
http://www.ncbi.nlm.nih.gov/pubmed/32587247
https://doi.org/10.1158/1078-0432.CCR-18-4046
http://www.ncbi.nlm.nih.gov/pubmed/30996073
https://doi.org/10.1016/j.omtn.2018.08.003
http://www.ncbi.nlm.nih.gov/pubmed/30153565
https://doi.org/10.1186/s12943-021-01393-9
http://www.ncbi.nlm.nih.gov/pubmed/34315482
https://doi.org/10.1186/s12935-020-01689-8
https://doi.org/10.1186/s12935-020-01689-8
http://www.ncbi.nlm.nih.gov/pubmed/33372599
https://doi.org/10.1371/journal.pone.0299949


11. Sun H, Yang B, Zhang H, Song J, Zhang Y, Xing J, et al. RRM2 is a potential prognostic biomarker with

functional significance in glioma. Int J Biol Sci. 2019; 15(3):533–43. Epub 20190101. https://doi.org/10.

7150/ijbs.30114 PMID: 30745840; PubMed Central PMCID: PMC6367584.

12. Jin CY, Du L, Nuerlan AH, Wang XL, Yang YW, Guo R. High expression of RRM2 as an independent

predictive factor of poor prognosis in patients with lung adenocarcinoma. Aging (Albany NY). 2020; 13

(3):3518–35. Epub 20201219. https://doi.org/10.18632/aging.202292 PMID: 33411689; PubMed Cen-

tral PMCID: PMC7906179.

13. Fatkhutdinov N, Sproesser K, Krepler C, Liu Q, Brafford PA, Herlyn M, et al. Targeting RRM2 and

Mutant BRAF Is a Novel Combinatorial Strategy for Melanoma. Mol Cancer Res. 2016; 14(9):767–75.

Epub 20160613. https://doi.org/10.1158/1541-7786.MCR-16-0099 PMID: 27297629; PubMed Central

PMCID: PMC5025362.

14. Huang N, Guo W, Ren K, Li W, Jiang Y, Sun J, et al. LncRNA AFAP1-AS1 Supresses miR-139-5p and

Promotes Cell Proliferation and Chemotherapy Resistance of Non-small Cell Lung Cancer by Competi-

tively Upregulating RRM2. Front Oncol. 2019; 9:1103. Epub 20191022. https://doi.org/10.3389/fonc.

2019.01103 PMID: 31696057; PubMed Central PMCID: PMC6817562.

15. Rasmussen RD, Gajjar MK, Tuckova L, Jensen KE, Maya-Mendoza A, Holst CB, et al. BRCA1-regu-

lated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes

tumorigenicity. Nat Commun. 2016; 7:13398. Epub 20161115. https://doi.org/10.1038/ncomms13398

PMID: 27845331; PubMed Central PMCID: PMC5116074.

16. Goss KL, Koppenhafer SL, Waters T, Terry WW, Wen KK, Wu M, et al. The translational repressor 4E-

BP1 regulates RRM2 levels and functions as a tumor suppressor in Ewing sarcoma tumors. Oncogene.

2021; 40(3):564–77. Epub 20201115. https://doi.org/10.1038/s41388-020-01552-0 PMID: 33191406;

PubMed Central PMCID: PMC7856031.

17. Chen CW, Li Y, Hu S, Zhou W, Meng Y, Li Z, et al. DHS (trans-4,4’-dihydroxystilbene) suppresses DNA

replication and tumor growth by inhibiting RRM2 (ribonucleotide reductase regulatory subunit M2).

Oncogene. 2019; 38(13):2364–79. Epub 20181205. https://doi.org/10.1038/s41388-018-0584-6 PMID:

30518875; PubMed Central PMCID: PMC6705423.

18. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and interpreting

cancer genomics data via the Xena platform. Nat Biotechnol. 2020; 38(6):675–8. https://doi.org/10.

1038/s41587-020-0546-8 PMID: 32444850; PubMed Central PMCID: PMC7386072.

19. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analy-

ses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7):e47. Epub 20150120.

https://doi.org/10.1093/nar/gkv007 PMID: 25605792; PubMed Central PMCID: PMC4402510.

20. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer

genomes reveals the landscape of tumor mutational burden. Genome Med. 2017; 9(1):34. Epub

20170419. https://doi.org/10.1186/s13073-017-0424-2 PMID: 28420421; PubMed Central PMCID:

PMC5395719.

21. Hause RJ, Pritchard CC, Shendure J, Salipante SJ. Classification and characterization of microsatellite

instability across 18 cancer types. Nat Med. 2016; 22(11):1342–50. Epub 20161003. https://doi.org/10.

1038/nm.4191 PMID: 27694933.

22. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune

cells. Nucleic Acids Res. 2020; 48(W1):W509–w14. https://doi.org/10.1093/nar/gkaa407 PMID:

32442275; PubMed Central PMCID: PMC7319575.

23. Petitprez F, Meylan M, de Reyniès A, Sautès-Fridman C, Fridman WH. The Tumor Microenvironment

in the Response to Immune Checkpoint Blockade Therapies. Front Immunol. 2020; 11:784. Epub

20200507. https://doi.org/10.3389/fimmu.2020.00784 PMID: 32457745; PubMed Central PMCID:

PMC7221158.

24. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environ-

ment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11):2498–

504. https://doi.org/10.1101/gr.1239303 PMID: 14597658; PubMed Central PMCID: PMC403769.
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may serve as proliferation marker and pharmaceutical target in adrenocortical cancer. Am J Cancer

Res. 2016; 6(9):2041–53. Epub 20160901. PMID: 27725909; PubMed Central PMCID: PMC5043113.

38. Ma C, Luo H, Cao J, Gao C, Fa X, Wang G. Independent prognostic implications of RRM2 in lung ade-

nocarcinoma. J Cancer. 2020; 11(23):7009–22. Epub 20201017. https://doi.org/10.7150/jca.47895

PMID: 33123291; PubMed Central PMCID: PMC7592001.

39. Yu M, Xu W, Jie Y, Pang J, Huang S, Cao J, et al. Identification and validation of three core genes in

p53 signaling pathway in hepatitis B virus-related hepatocellular carcinoma. World J Surg Oncol. 2021;

19(1):66. Epub 20210308. https://doi.org/10.1186/s12957-021-02174-w PMID: 33685467; PubMed

Central PMCID: PMC7938465.

40. Granieri L, Marocchi F, Melixetian M, Mohammadi N, Nicoli P, Cuomo A, et al. Targeting the USP7/

RRM2 axis drives senescence and sensitizes melanoma cells to HDAC/LSD1 inhibitors. Cell Rep.

2022; 40(12):111396. https://doi.org/10.1016/j.celrep.2022.111396 PMID: 36130505.

41. Qi W, Xu X, Wang M, Li X, Wang C, Sun L, et al. Inhibition of Wee1 sensitizes AML cells to ATR inhibitor

VE-822-induced DNA damage and apoptosis. Biochem Pharmacol. 2019; 164:273–82. Epub

20190420. https://doi.org/10.1016/j.bcp.2019.04.022 PMID: 31014753.

42. Daylami R, Muilenburg DJ, Virudachalam S, Bold RJ. Pegylated arginine deiminase synergistically

increases the cytotoxicity of gemcitabine in human pancreatic cancer. J Exp Clin Cancer Res. 2014; 33

(1):102. Epub 20141212. https://doi.org/10.1186/s13046-014-0102-9 PMID: 25499121; PubMed Cen-

tral PMCID: PMC4279680.

PLOS ONE Ribonucleotide reductase subunit M2 to carcinogenesis in pan-cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0299949 April 18, 2024 17 / 17

https://doi.org/10.1016/j.smim.2018.02.002
http://www.ncbi.nlm.nih.gov/pubmed/29490888
https://doi.org/10.1038/s41388-020-01403-y
http://www.ncbi.nlm.nih.gov/pubmed/32712628
https://doi.org/10.1038/s41416-019-0538-y
http://www.ncbi.nlm.nih.gov/pubmed/31363169
https://doi.org/10.1182/blood-2011-11-382226
http://www.ncbi.nlm.nih.gov/pubmed/22517893
https://doi.org/10.1186/s12885-021-08287-5
http://www.ncbi.nlm.nih.gov/pubmed/34353292
https://doi.org/10.1093/nar/gkz430
https://doi.org/10.1093/nar/gkz430
http://www.ncbi.nlm.nih.gov/pubmed/31114875
https://doi.org/10.3390/cancers13040859
http://www.ncbi.nlm.nih.gov/pubmed/33670609
https://doi.org/10.1056/NEJMra1703481
http://www.ncbi.nlm.nih.gov/pubmed/29320654
https://doi.org/10.1002/advs.202100881
http://www.ncbi.nlm.nih.gov/pubmed/34319001
http://www.ncbi.nlm.nih.gov/pubmed/27725909
https://doi.org/10.7150/jca.47895
http://www.ncbi.nlm.nih.gov/pubmed/33123291
https://doi.org/10.1186/s12957-021-02174-w
http://www.ncbi.nlm.nih.gov/pubmed/33685467
https://doi.org/10.1016/j.celrep.2022.111396
http://www.ncbi.nlm.nih.gov/pubmed/36130505
https://doi.org/10.1016/j.bcp.2019.04.022
http://www.ncbi.nlm.nih.gov/pubmed/31014753
https://doi.org/10.1186/s13046-014-0102-9
http://www.ncbi.nlm.nih.gov/pubmed/25499121
https://doi.org/10.1371/journal.pone.0299949

