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ABSTRACT Initially recognized zoonoses, streptococci
belonging to Lancefield group C (GCS) and G (GGS) were
subsequently recognised as human pathogens causing a
diverse range of symptoms, from asymptomatic carriage to life
threatening diseases. Their taxonomy has changed during the
last decade. Asymptomatic carriage is <4% amongst the human
population and invasive infections are often in association with
chronic diseases such as diabetes, cardiovascular diseases or
chronic skin infections. Other clinical manifestations include
acute pharyngitis, pneumonia, endocarditis, bacteraemia and
toxic-shock syndrome. Post streptococcal sequalae such as
rheumatic fever and acute glomerulonephritis have also been
described but mainly in developed countries and amongst
specific populations. Putative virulence determinants for these
organisms include adhesins, toxins, and other factors that are
essential for dissemination in human tissues and for interference
with the host immune responses. High nucleotide similarities
among virulence genes and their association withmobile genetic
elements supports the hypothesis of extensive horizontal gene
transfer events between the various pyogenic streptococcal
species belonging to Lancefield groups A, C and G. A better
understanding of the mechanisms of pathogenesis should be
apparent by whole-genome sequencing, and this would result in
more effective clinical strategies for the pyogenic group in general.

INTRODUCTION
The pyogenic streptococci of Lancefield groups C and
G were initially recognized as a cause of animal infec-
tions long before they were even considered as agents
of human disease, even though they are widely distrib-
uted in animals and humans. They comprise a hetero-
geneous complex of streptococcal species that act as
causative agents of a spectrum of diseases ranging from
mild pharyngitis to skin infection to life-threatening sys-
temic infections associated with high mortality rates. In

this article we provide an overview of the various group
C and group G streptococcal species, the diseases they
cause, and the major pathogenicity factors that contrib-
ute to their virulence (Table 1).

TAXONOMY AND IDENTIFICATION
Taxonomic classification of group C streptococci (GCS)
and group G streptococci (GGS) has always proven to be
a complex issue. However, extensive taxonomic stud-
ies over the past few years have distinguished most of
the veterinary pathogens belonging to Lancefield groups
C andG from the human pathogens. Previously, GCS and
GGS were divided into the following species: Strepto-
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coccus dysgalactiae subsp. equisimilis (only GCS, human
pathogen), Streptococcus dysgalactiae subsp. dysgalac-
tiae (GCS, animal pathogen), Streptococcus equi (animal
GCS), Streptococcus zooepidemicus (animal and human
GCS), Streptococcus canis (animal GGS), the Streptococ-
cus anginosus group, and Streptococcus phocae (1). GCS
and GGS of human origin are now considered to con-
stitute a single subspecies, S. dysgalactiae subsp. equisi-
milis. Therefore, the current taxonomy characterizes the

species as follows: S. dysgalactiae is divided into the
subspecies S. dysgalactiae subsp. equisimilis and S. dys-
galactiae subsp. dysgalactiae (hereafter referred to in this
article as S. equisimilis and S. dysgalactiae). S. equi is
divided into the subspecies S. equi subsp. equi, S. equi
subsp. zooepidemicus, and S. equi subsp. ruminatorum
(hereafter referred to as S. equi, S. zooepidemicus, and S.
ruminatorum). However, it has been suggested that S.
equi may simply be regarded as a subclone of S. zoo-
epidemicus (2). On the basis of genetic evidence, S. dys-
galactiae, S. equi, and S. canis are more closely related
to each other than to the S. anginosus group and con-
stitute species with the “large-colony” colony pheno-
type. S. phocae is a new species expressing the group C
antigen thus far only isolated from seals (3, 4). Some of
these species may also contain strains which express the
Lancefield group A or group F antigens (Table 2).

HUMAN DISEASE AND DIAGNOSIS
GCS and GGS can cause a wide range of diseases from
mild to severe, among both human and animal popula-
tions. GCS and GGS generally colonize the human res-
piratory, gastrointestinal, and genitourinary tracts, with
an estimated <4% asymptomatic pharyngeal carriage
rate in adults (5–7). Human invasive infections caused
by GCS and GGS have been associated with underly-
ing conditions, such as diabetes, cardiovascular diseases,
and chronic skin conditions (8–10). While S. dysgalac-
tiae is considered an animal pathogen, S. equisimilis is
almost exclusively a human pathogen, with increasing
prevalence and overlaps in clinical manifestations with
group A Streptococcus (GAS). S. equisimilis infections
include acute pharyngitis, pneumonia, endocarditis, cel-
lulitis, peritonitis, septic arthritis, bacteremia, and toxic
shock syndrome (11–23). Like GAS, S. equisimilis has
also been linked to the poststreptococcal sequelae rheu-
matic heart disease, and in high endemic areas of rheu-

TABLE 1 Pathogenicity factors of group C and G streptococci

Pathogenenicity
factors Organism Reference(s)

Fibronectin binding proteins
FnbA S. dysgalactiae 59
FnbB S. dysgalactiae 60
GfbA S. dysgalactiae 64
FNZ/FNE S. zooepidemicus, S. equi 61, 65
FNZ2/FNEB S. zooepidemicus, S. equi 66, 69
SFS S. zooepidemicus, S. equi 70

M-like proteins S. dysgalactiae
S. equisimilis

91, 105

FOG S. dysgalactiae 93, 94
DemA S. dysgalactiae 105
SzM/SeM S. zooepidemicus, S. equi 76, 95–97, 101
SzPSe/SzP S. zooepidemicus, S. equi 102
Se18.9 S. equi 76, 100
ScM S. canis 104

Others
C5a peptidase S. dysgalactiae 108
SeCEP/SzoCEP S. zooepidemicus, S. equi 112

Immunoglobulin binding proteins
Protein G S. dysgalactiae 116
MIG S. dysgalactiae 120
MAG S. dysgalactiae 122
ZAG S. zooepidemicus 123

IgG-endopeptidases
IdeE/IdeE2 S. equi, S. zooepidemicus 129
IdeE2/IdeZ2 S. equi, S. zooepidemicus 130
IdeP S. phocae 133
Toxins
Streptokinase S. dysgalactiae, S. equisimilis 134
Streptolysin O S. dysgalactiae, S. equisimilis 145
Streptolysin S S. dysgalactiae, S. equisimilis

S. equi, S. zooepidemicus
152, 154

Superantigens
SpeGdys/Spegg/SpeG S. equisimilis, S. canis 158, 159
SpeH S. equi 167
SpeI S. equi 167
SpeK S. equi, S. zooepidemicus,

S. equismilis
158, 168, 169

SpeL S. equi, S. zooepidemicus,
S. equismilis

158, 168, 169

SpeM S. equisimilis 173
ssa S. equisimilis 173
SDM/SpeM S. dysgalactiae 171
SpeA S. equismilis 170
SpeC S. equismilis 170
SzeN S. zooepidemicus 170
SzeP S. zooepidemicus 170
SzeF S. zooepidemicus 170 TABLE 2 Species of Lancefield group C and G streptococcia

Species Known sources Lancefield group

S. dysgalactiae subsp.
dysgalactiae

Animals C

S. dygalactiae subsp.
equisimilis

Humans, animals (rare) C, G

S. equi subsp. equi Animals C
S. canis Animals, humans (rare) G
S. equi subsp.
zooepidemicus

Animals, humans C

S. phocae Animals (seal) C
S. anginosus group Humans A, C, F, G

aFrom reference 1.

2 ASMscience.org/MicrobiolSpectrum

Turner et al.

http://www.ASMscience.org/MicrobiolSpectrum


matic fever, carriage rates of GCS/GGS have been found
to be higher than those of GAS (24, 25).

Infections with S. zooepidemicus and S. canis, normally
considered zoonotic species, have also been reported in
humans (26–29), including severe infective endocardi-
tis (30).

Generally, person to person transmission of GCS/
GGS occurs via respiratory droplets or skin contacts, but
other zoonotic vehicles of transmission such as unpas-
teurized milk products are also possible (26, 27, 31).

S. dysgalactiae predominantly resides in domestic ani-
mals such as cattle, sheep, cats, and dogs that are either
healthy carriers of the bacterium or go on to develop
diseases such as pneumonia, arthritis, septicemia, and
abscesses, particularly bovine mastitis. S. equi, a patho-
gen primarily restricted to horses and donkeys, causes
strangles, which is a highly contagious disease charac-
terized by purulent discharges from the respiratory tract
and the development of abscesses (32). This organism is
not considered to be part of the normal flora, because
of its close association with disease. In contrast, S. zoo-
epidemicus is an opportunistic commensal that colonizes
mucosal surfaces and causes rhinopharyngitis, pneumo-
nia (33), endometritis, neonatal septicemia, and wound
infections in horses (34) as well as disease in other do-
mestic animals such as cattle, sheep, pigs, and chickens.
Although uncommon, S. zooepidemicus is also responsi-
ble for a range of zoonotic infections in humans (26, 27).

The small-colony phenotype of group C and G strep-
tococci is expressed by the S. anginosus group, formerly
known as Streptococcus milleri. The group contains
three species, S. anginosus, Streptococcus constellatus,
and Streptococcus intermedius (1), and forms a distinct
subclade by phylogenomic analysis (35).

Strains belonging to the S. anginosus group express
group antigens F, C, A, and G or no antigen. These strains
are also likely to be non-beta-hemolytic.Members of these
species are recognized as common commensal organisms
of the human oral cavity, gastrointestinal tract, and gen-
itourinary tract. They are also associated with abscess
formation in the mouth and other body sites (36, 37) as
well as pharyngitis (38) and endocarditis (39, 40). It has
also been reported that S. anginosus, along with Strepto-
coccus mitis and Treponema denticola, can be isolated
from esophageal cancer tissue and by initiating inflam-
mation in the cancerous tissue has a role in the develop-
ment or progression of these cancers (41, 42).

Several assays are available to detect, classify, and
genetically describe GCS and GGS. Routine microbio-
logical diagnosis follows the same guidelines that are
in use for the identification of the other beta-hemolytic

streptococci (43). The beta-hemolytic streptococci iso-
lates are divided into large and small colonies forming
groups based on the growth on sheep blood agar: the
large-colony-forming group is “pyogenic.” The small-
colony-forming species make up the anginosus group
and are not referred to as GCS or GGS, even though they
may cross-react with C or G sera. Lancefield agglutina-
tion tests are still used to group beta-hemolytic strepto-
cocci into the Lancefield groups. Fermentation tests are
used to classify GCS as S. equisimilis or S. zooepidemi-
cus and are based on a spectrum of biochemical tests
which are now available commercially (44). More re-
cently, matrix-assisted laser desorption ionization–time
of flight mass spectrometry has been described as a rapid
alternative for the identification of streptococci (45). In
addition, multilocus sequence analysis of seven house-
keeping genes (46) and other sequence-based assays are
performed to analyze the streptococcal phylogenies. In
particular, sequencing of the emm gene, which encodes
the hyper-variable surface protein M, and 16s rRNA
genes is undertaken for phylogenetic analysis of these
streptococci based on sequence similarities (47, 48).

Next-generation sequencing is increasingly being used
for genetic characterization, phylogenetic analyses, viru-
lence and pathogenicity profiles, and antibiotic resistance
analyses (22, 49). S. equisimilis and Streptococcus pyo-
genes (or GAS) share a high genetic similarity (∼72%)
and similar virulence genes, suggesting a common evolu-
tionary origin and genetic exchange (22, 25, 50).

MECHANISMS FOR ADHERENCE
S. equisimilis causes a spectrum of disease in humans
similar to that caused by S. pyogenes, and molecular
studies have demonstrated virulence determinants that
are almost identical. Putative virulence determinants of
S. equisimilis include adhesins, toxins, and factors that
are essential for dissemination in human tissues and for
interference with the host immune responses.

Adhesion of microorganisms to host tissues represents
a critical phase in the development of infection. It is
therefore unsurprising that microorganisms have evolved
dedicated mechanisms for attachment and adherence to
extracellular matrix components of the host (51, 52). Of
these components, the high-molecular-weight glycopro-
tein fibronectin appears to be the major attachment tar-
get of Gram-positive cocci, including GGS and GCS.
Fibronectin itself is responsible for substrate adhesion
of eukaryotic cells via specific cell surface factors of the
integrin family. It also specifically interacts with other
matrix components, such as collagen, fibrin, and sulfated
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glycosaminoglycans, demonstrating that this molecule
fulfills multifunctional roles within the extracellular net-
work (53). Being present in the extracellular matrix of
most tissues, as well as in plasma and other body fluids in
its soluble form, fibronectin represents an exquisite target
for bacteria to exploit the cell attachment properties of
this molecule by linking the pathogen to specific target
cells. Epithelial cells of the human upper respiratory tract
are bathed in secretions containing fibronectin in its sol-
uble form. Once bound to the bacterial surface, it enables
the pathogen to attach and subsequently colonize the
primary site of infection.

Fibronectin binding proteins (FBPs) were first identified
in Staphylococcus aureus and S. pyogenes (54), and ap-
proximately 11 have been defined in S. pyogenes, high-
lighting their importance for this pathogen (55). Binding
by these bacteria to eukaryotic cells via fibronectin is
also an important preliminary event prior to the invasion
of these cells (56–58). The FBPs from streptococci and
staphylococci share a common architecture, with a pu-
tative signal sequence at the N terminus and a wall- and
membrane-spanning region. The major fibronectin bind-
ing domains are located within the C-terminal part of
the proteins and are composed of 3 to 5 repetitive units
that consist of 35 to 37 amino acid residues and bind to
the 29-kDa N-terminal fragment of fibronectin. Further
binding studies of PrtF/SfbI from S. pyogenes and FnBPA
in S. aureus also indicate the presence of a secondary fi-
bronectin binding site upstream of the repeat regions (54).

The first FBPs to be identified in group C and G strep-
tococci were FnbA and FnbB from S. dysgalactiae (59).
FnbA can opacify serum and bind fibrinogen, like the se-
rum opacity factor of S. pyogenes (60). Both FnbA and
FnbB bind fibronectin through C-terminal repeat regions
(51).

Three FBPs have been defined in S. zooepidemicus:
FNZ, FNZ2, and SFS. Although the modular organiza-
tion of FNZ, an S. zooepidemicus FBP, is similar to those
from other species, homology at the amino acid level is
weak (61). Fibronectin binding is mediated through a
repeat region and a second upstream region containing
the amino acid motif LAGESGET. This motif is also
present in the secondary binding domain of SfbI (62),
where it acts independently of the repeat region in bind-
ing to fibronectin (63). This domain is also present in
GfbA, the homologue of SfbI in S. dysgalactiae (64). fne
is the homologous gene to fnz in S. equi (65). However,
FNE is unique in that a single nucleotide deletion in the
fne gene has resulted in the truncation of the protein, so
with the loss of the cell-wall binding motif, it is secreted
into the surrounding environment. The truncated FNE

also lacks the classic fibronectin binding repeats found in
the C-terminal region of FNZ but is able to bind fibro-
nectin through the amino-half domain, also found in
FNZ. Consequently, fibronectin binding at the bacterial
surface is much lower for S. equi than S. zooepidemicus,
although both have an additional cell wall-anchored
FBP: FNEB and FNZ2 (66). FNE also binds to colla-
gen, and the protein affects the interstitial fluid pressure
in vivo (67). The molecular structure of the interaction
between FNE and fibronectin has been reported (68).
FNZ2 also has both collagen and fibronectin binding
properties (69). SFS of both S. equi and S. zooepidemicus
strains contains a signal peptide but no cell wall binding
motifs or traditional fibronectin binding motifs. SFS in-
hibits binding between fibronectin and collagen. If SFS
were to bind fibronectin attached to the bacterial surface
through FNEB/FNZ/FNZ2, this might inhibit binding of
fibronectin to collagen, which could have several physi-
ological consequences (70). The molecular interaction
between SFS and fibronectin has been reported (71).

Some of the FBPs and collagen binding proteins iden-
tified in S. pyogenes are chromosomally located within
the fibronectin and collagen binding proteins and T an-
tigen encoding (FCT) locus. There are at least nine types
of FCT regions in S. pyogenes that vary by gene content
and order, but within this region are the genes required to
make the pili. The pilus has been shown to contribute to
the formation of biofilm and mediate adherence to host
cells (72–75). Whole-genome sequence analysis of group
C and G streptococci has also identified potential FCT
regions. One putative pilin locus, FimI, exists within the
genome of S. equi strain 4047 (76). Although no pili
structures have been identified for S. equi, the proteins of
FimI are expressed during growth and have the potential
to affect adherence in vivo (77). The gene encoding the
collagen binding protein CNE of S. equi (78) is present in
this FimI locus. A homologous locus was also found in
S. zooepidemicus isolates, as well as an additional one or
two potential pili loci (76, 79). Two FCT regions were
also found in S. equisimilis, which share high levels of
genetic identity to FCT regions from different S. pyogenes
genotypes, suggesting multiple horizontal gene transfer
events (22, 80).

An alternative way for group C and G streptococci to
adhere to host cells is via binding to other extracellular
matrix molecules, including fibrinogen, vitronectin, lami-
nin, collagen, and plasminogen (81, 82). The M-protein-
like fibrinogen binding protein of G streptococci (FOG)
can act as an adhesin by binding collagen IV (83) and has
been shown to also bind collagen I fibrils in dermis in vivo
(84).

4 ASMscience.org/MicrobiolSpectrum

Turner et al.

http://www.ASMscience.org/MicrobiolSpectrum


Vitronectin is a multifunctional serum protein that
affects the humoral immune system by binding to and
inhibiting the complement membrane attack complex
(85) and is also a major matrix-associated adhesive gly-
coprotein that regulates blood coagulation. The ability of
group C and G streptococci specifically to interact with
vitronectin (86) and mediate the adherence to both epi-
thelial and endothelial cells (87, 88) was demonstrated
some time ago. However, a specific vitronectin binding
protein has never been identified in streptococci.

ANTIPHAGOCYTIC FACTORS
A major requirement of pathogenic streptococci is to be
able to resist phagocytosis. The streptococcal M protein,
first identified and characterized in S. pyogenes, is the
major antiphagocytic factor (89). It is a multidomain
surface-exposed molecule that forms a coiled-coil sec-
ondary structure with significant irregularities that in the
B-repeat region are essential for the fibrinogen binding
properties (90). Binding of complement factors, fibrin-
ogen, and inhibition of C3b deposition on the bacterial
surface are mechanisms by which the M-protein can
inhibit opsonization of the organism by the alternative
complement pathway, thus evading the host’s nonspe-
cific immune defense mechanism.

SeveralM-like proteins have been identified in group C
and G streptococci. Protein MG1, the first group G
streptococcal M-like protein characterized on the molec-
ular level (91), exhibits typical structural and biological
features of M proteins, such as coiled-coil structure and
the ability to generate type-specific opsonizing antibodies.
Protein MG1 shares highly homologous sequences with
the C-terminal repeat region of class I M proteins, which
are frequently associated with rheumatic fever. M pro-
teins of GGS are also responsible for conferring resistance
to phagocytosis (92).

In human strains of GGS, FOG is critical for bacterial
pathogenesis through its antiphagocytic action of bind-
ing fibrinogen (93). It also has the ability to bind IgG
subclasses IgG1 and IgG2, although FOG-bound IgG1
can trigger the complement cascade through C1/C1q
activation. It is unclear whether this is detrimental to the
bacteria, because FOG remains protective against phago-
cytosis (94).

The antiphagocytic protein SeM (FgBP) appears to be
the predominant M-like protein on the surface of S. equi,
capable of binding fibrinogen and IgG4 and IgG7 sub-
classes (95–97). SeM confers resistance to phagocytosis,
but this also requires the presence of the hyaluronic acid
capsule (98). Like the M protein of S. pyogenes, SeM

is variable at the N-terminal region, suggesting selective
pressure (99). Interestingly, this does not appear to be the
case for two other M-like proteins expressed by S. equi:
Se18.9 and SzPSe (99). The antiphagocytic protein Se18.9
is commonly found in strains of S. equi, but rarely in
strains of S. zooepidemicus (76), and acts by binding to
fibrinogen and the complement regulatory protein, fac-
tor H (100). SzP proteins are also antiphagocytic and are
expressed by both S. equi and S. zooepidemicus. Whole-
genome sequence analysis of S. zooepidemicus strain H70
identified a potential M-protein homologue in SzM that
resembles SeM in its secondary structure, which consists
of a predicted C-terminal coiled-coil (76, 101). The N-
terminal of SeM is unique to S. equi and binds fibrinogen
(97, 102). SzM can also bind fibrinogen but cannot bind
IgG (103). TheM protein of S. canis specifically binds the
Fc region of IgG in a nonopsonic manner (104).

DemA is an S. dysgalactiae protein with homology to
FgBP identified by screening of a phagemid expression
library (105). The mature DemA protein is 54 kDa in size,
contains a signal sequence and a cell wall binding do-
main, and is predicted to have a coiled-coil secondary
structure. DemA shows greatest homology to the FgBP at
the C-terminal end in a region that does not participate in
fibrinogen binding. The amino acid motif VSKDLADKL
present with the repeat units of both DemA and FgBP
suggests that the sequence may have an important bio-
logical function. DemA is able to bind IgG from various
animal sources, reminiscent of type IIa Ig-binding pro-
teins of S. pyogenes in a domain distinct from the fi-
brinogen binding domain. Nucleotide sequencing of the
demA locus identified an open reading frame upstream of
demA that is homologous tomga, a positive regulator of
M-protein expression in S. pyogenes (105).

C5a peptidase of S. pyogenes (ScpA) is well known
to specifically cleave and inactivate the chemoattrac-
tant C5a, but it has also recently been shown to cleave
the complement factor C3 and the chemoattractant C3a
(106), expanding its impact on immune evasion. ScpA
has also been identified as an adhesion factor enabling
bacteria to adhere to endothelial and epithelial cells (106).
Homologues of ScpA have been identified in group B
streptococci (ScpB) and group C and G streptococci iso-
lated from humans but not fromGGS from animals (107,
108). Both S. equi and S. zooepidemicus also carry ho-
mologous C5a peptidase genes (scpE and scpZ, respec-
tively). However, the C5a peptidase gene in S. equi is
reported to be a pseudogene (76). Unlike in S. pyogenes,
where scpA is located in the mga regulon that includes
the emm-gene, the scp genes of group B, C, and G
streptococci are associated with a transposon, suggesting
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that lateral genes transfer between these species (107,
109).

The S. pyogenes cell wall envelope proteinase, SpyCEP,
is another protease that contributes to the prevention of
phagocytosis through the specific cleavage of interleukin-
8 and other chemokines to prevent the activation and
migration of neutrophils (110, 111). Similar enzymes have
been identified in S. equi (SeCEP) and S. zooepidemicus
(SzoCEP) which share 98% identity to each other and
59% identity to SpyCEP (108). SeCEP has been shown to
cleave both human and equine IL-8, and vaccination with
a recombinant portion of SpyCEP prevented bacterial dis-
semination in a murine model of S. equi invasive infection,
suggesting an important contribution to disease (112).

IMMUNOGLOBULIN BINDING
AND INACTIVATING PROTEINS
Streptococcal protein G is a surface molecule associated
with the majority of group C and G streptococcal iso-
lates of human origin. Protein G interactions with im-
munoglobulins and other host proteins have been the
subject of detailed reviews (113–115). Protein G is de-
fined as a type III IgG Fc receptor and interacts with a
wide species range of immunoglobulins, as well as hu-
man serum albumin, kininogen, and α2-macroglobulin.
Protein G exhibits a modular structure in which the
binding sites for IgG are located in the C-terminal repeat
region (114–116). The central A/B-repeat region consti-
tutes the binding domain for serum albumin, and the N-
terminal E region is responsible for interacting with the
native form of α2-macroglobulin (82). In contrast to
human pathogenic strains of GGS that exclusively bind
to the native (slow) form of α2-macroglobulin via pro-
tein G, animal-derived isolates of bovine and equine or-
igin bind the proteinase-complexed (fast) form of the
molecule. The B1 domain of protein G involved in im-
munoglobulin binding consists of an α-helix and four β-
strand sheets. This domain has been used as a model
structure in numerous biochemical studies examining
protein folding, protein interaction, and synthetic pro-
tein design (117–119).

Two protein G-related proteins,MIG andMAG, from
two mastitis-causing S. dysgalactiae strains (120) and
MAG (121, 122) and ZAG (123) from S. zooepidemicus
have been characterized on the molecular level. Like
protein G, MAG and ZAG exhibit serum albumin and
type III Fc receptor activity, whereas the protein MIG
lacks albumin-binding activity. However, MAG is able
to bind to immunoglobulins from a greater number of
animal sources than protein G. MAG, ZAG, and MIG

also bind to the fast form of α2-macroglobulin. The α2-
macroglobulin binding region in MIG is not homolo-
gous to those of protein G, MAG, ZAG, and GRAB. In
phagocytosis assays a MIG isogenic mutant strain of S.
dysgalactiaewas not as resistant to opsonization by bovine
neutrophils as the parental strain (124).MIG has also been
shown to bind to bovine immunoglobulin A (125) and can
inhibit bacterial internalization into host cells (126).

As well as IgG binding proteins, group C and G strep-
tococci can express variants of the S. pyogenes IdeS and
EndoS, which are IgG-degrading enzymes. While IdeS
cleaves the hinge region of IgG (127), EndoS removes core
IgG glycans (128). Both S. equi and S. zooepidemicus
express two forms of IgG-endopeptidases, IdeE/IdeE2 and
IdeZ/IdeZ2, respectively, that are capable of cleaving IgG
from several mammalian species (129, 130), although
IdeE2/IdeZ2 cleave horse IgG with greater efficiency than
IdeE/IdeZ (130). EndoS homologues have also been iden-
tified in S. equi (EndoSe) and S. zooepidemicus (EndoSz),
and they share 86 to 89% sequence identity to each other
and 70% identity to EndoS of S. pyogenes (131). EndoSd
has also been found in S. equisimilis with IgG hydrolyz-
ing activity (132), and IdeP was identified in the group C
S. phocae subsp. phocae that affects marine animals, al-
though its function has not been confirmed (133).

ENZYMES AND TOXINS
After colonization, adherence, and evasion of host im-
mune responses, the dissemination of pathogenic strep-
tococci in tissues is regarded to be an important step for
the onset and development of an invasive disease. One of
the factors involved in this process is streptokinase, a
protein found in groups C, G, and A streptococci (134).
The formation of a streptokinase/plasminogen complex
results in the exposure of the plasminogen active site,
which then catalyzes the conversion of other plasmino-
gen molecules into plasmin (135). Plasmin is a key serine
protease in the fibrinolytic system that is able to break
down tissue barriers, thereby enabling the dissemination
of streptococci. M proteins coordinately interact with the
secreted streptokinase by binding either fibrinogen (136)
or plasminogen (137). A high level of variation exists
within the streptokinase gene, ska, and alleles of ska have
been associated with tissue tropisms and differing levels
of plasminogen activation (138). There is some over-
lap of alleles between human strains of group C and G
streptococci and GAS (139). Streptokinases have been
isolated from both human and animal group C and G
isolates and have specificity for the plasminogens of their
respective hosts (140). Thus, streptokinases from human
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group A, C, and G streptococci isolates have greater
homology to each other than to animal isolates of group
C and G streptococci. A study by Caballero et al. (58)
found the amino acid homology between streptokina-
ses from human and animal S. equisimilis isolates to be
only 35%. Homology between the streptokinase from
S. equisimilis of equine and porcine origins was only
21%. The ability of streptokinases to cleave plasminogen
from specific species may therefore be a critical factor in
determining the host range of individual streptococcal
strains (141). Invasive human strains of S. equisimilis
have been found to express higher levels of streptokinase,
and this can drive virulence in a murine model of inva-
sive necrotizing fasciitis, suggesting an important role for
streptokinase in disease (142, 143).

Streptolysin O (SLO) is the prototype of a family of
thiol-activated cytolysins produced by the genus Strep-
tococcus and by other Gram-positive bacteria, includ-
ing Bacillus, Clostridium, and Listeria species (144). The
genes coding for SLO of group C and G streptococci (S.
dysgalactiae) are almost identical to that of S. pyogenes
(145). SLO homologues have not been described in S.
equi. SLO is able to disrupt the cytoplasmic membrane
of several eukaryotic cell types that include erythrocytes,
leukocytes, macrophages, platelets, and epithelial cells.
Separate from its pore-forming activity, SLO also acts to
translocate NADase into host cells (146), which contrib-
utes to cytotoxicity by depleting energy stores. Other
functions of these two streptococcal toxins include lim-
iting neutrophil responsiveness and potentiating bacterial
survival, replication, and persistence inside keratinocytes,
epithelial cells, and macrophages, which may protect
GAS from the immune response and antimicrobial ther-
apy (147–151).

Streptolysin S (SLS) is another cytolysin secreted by
groups A, C, and G streptococci, including the animal-
pathogenic S. equi species (152). SLS belongs to a distinct
group of hemolytic toxins that are characterized by their
resistance to oxidation and sensitivity to trypan blue. SLS
activity results in damage to membranes of various cell
types as well as subcellular organelles (153). In con-
trast to the 57-kDa SLO, SLS is a small, 57-amino acid
protein. The gene encoding SLS, sagA, is part of a locus
containing nine open reading frames which contain sig-
nificant homology with genes from bacteriocin loci (154,
155). In S. equisimilis, SLS expression is under the con-
trol of both the covRS and fasCAX two-component reg-
ulatory systems, which in S. pyogenes have been shown
to be involved in the regulation of multiple virulence
factors (156). In a mouse infection model, S. equisimilis
expressing SLS proliferates and induces necrotic lesions

at the site of infection, whereas SLS-negative strains do
not, suggesting that SLS is an important factor in the
development of necrotizing fasciitis (154).

Streptococcal pyogenic toxins (spes) are superantigen
genes capable of cross-linking the major histocompati-
bility complex class II on antigen-presenting cells to the
T cell receptor, leading to proliferation of T cells and
substantial release of inflammatory cytokines. Eleven
superantigen genes have been identified in S. pyogenes,
and they are thought to drive the development of scarlet
fever and toxic shock syndrome, the latter contributing
to high mortality rates following necrotizing fasciitis.
Recent work has also identified a role for superantigens
in upper respiratory tract infection (157). Homologues
of the GAS superantigens have been identified in group
C and G streptococci (158). The most commonly found
superantigen in S. equisimilis is speG (spegg or speGdys)
(159, 160), and genomic analysis indicates that S. pyo-
genes and S. equisimilis speG genes are orthologues that
are direct descendants from a common ancestor gene
(161). The gene for speG can also be found in S. canis
(158). The role of S. equisimilis speG in humans is un-
clear because the presence of this gene does not correlate
with disease severity and it does not confer mitogenic
activity toward human mononuclear cells, although it
can stimulate bovine T cells (160, 162, 163). The strep-
tococcal superantigens speA, speC, speJ, speK, speH, speL,
speM, and ssa are found infrequently in S. equisimilis and
other human group C and G streptococci (160, 164–166).

Homologues of S. pyogenes superantigens speH and
speI can be carried by strains of S. equi (167), and ho-
mologues of speK and speL can be carried by both S. equi
and S. zooepidemicus, although because of confusion
with the nomenclature, speK homologues were originally
termed speLse/seeL/szeL, and speL homologues were
termed speMse/seem/szeM (160, 167–169). Three addi-
tional superantigen genes, termed szeN, szeP, and szeF,
have been identified in S. zooepidemicus only and are
capable of stimulating equine peripheral blood mono-
nuclear cells (170). S. dysgalactiae-derived mitogen shows
homology to speM of S. pyogenes and can stimulate hu-
man mononuclear cells (160, 171). The majority of the
superantigens found in S. pyogenes and group C and G
streptococci are associated with prophages which may
drive the lateral transfer of these virulence factors between
streptococcal species (76, 172, 173).

CONCLUSIONS
Many recent studies have highlighted the increasing num-
ber of systemic infections caused by S. equisimilis, par-
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ticularly among immunocompromised individuals and
specific populations, and this therefore suggests that this
species will gain even more clinical importance in the
future. High nucleotide similarities among virulence genes
and their associationwithmobile genetic elements support
the hypothesis of extensive horizontal gene transfer events
between streptococcal species of the pyogenic group. A
better understanding of the mechanisms of pathogenesis
will hopefully be revealed by whole-genome sequencing,
and this may result in more effective clinical strategies for
the pyogenic group of streptococci in generally.
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