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A B S T R A C T   

Redox signaling, a mode of signal transduction that involves the transfer of electrons from a nucleophilic to electrophilic molecule, has emerged as an essential 
regulator of inflammatory macrophages. Redox reactions are driven by reactive oxygen/nitrogen species (ROS and RNS) and redox-sensitive metabolites such as 
fumarate and itaconate, which can post-translationally modify specific cysteine residues in target proteins. In the past decade our understanding of how ROS, RNS, 
and redox-sensitive metabolites control macrophage function has expanded dramatically. In this review, we discuss the latest evidence of how ROS, RNS, and 
metabolites regulate macrophage function and how this is dysregulated with disease. We highlight the key tools to assess redox signaling and important questions 
that remain.   

1. Introduction 

Redox (reduction-oxidation) signaling is a mode of signal trans-
duction that involves the transfer of electrons from a nucleophilic to 
electrophilic molecule [1] and is an essential regulator of many bio-
logical processes across all cell types. These reactions are driven by 
reactive oxygen/nitrogen species (ROS and RNS) and redox-sensitive 
metabolites. Specific modifications of cysteine residues by these spe-
cies is a core element of redox signaling [1]. 

ROS are reactive molecules, or oxidants, that originate from molec-
ular oxygen. They play a pivotal role in a multitude of physiological and 
pathological processes. The most prominent ROS are superoxide (O2

.-) 
and hydrogen peroxide (H2O2). Superoxide is the precursor of most ROS 
and H2O2, formed by the dismutation of O2

.-, is the most abundant ROS 
[2]. A primary mode of ROS signaling is oxidation of redox-sensitive 
cysteine residues. Oxidation of cysteine residues can be reversed by 
the antioxidant defense system, and serves as a crucial signal for regu-
lating cell function [3–7] and a myriad of biological processes [8–12]. 
However, excessive ROS production can lead to irreversible cysteine 
oxidation, resulting in protein dysfunction and disease [13–16]. 

Macrophages are innate immune cells that serve as the first line of 
defense against invading pathogens. Macrophages have diverse and 
essential functions including phagocytosis of invading pathogens, in-
flammatory cytokine production, chemokine release to recruit other 
immune cells, antigen presentation, and tissue repair [17]. In addition to 
their critical roles in immunity, tissue resident macrophages (TRMs) 
have essential, highly specialized, and diverse homeostatic functions 
across tissues. Such functions are critical to our physiology. These 

include control of insulin sensitivity (adipose) [18], neuronal homeo-
stasis (brain) [19], microbial clearance (liver, and other) [20], immune 
surveillance (lung) [21], and iron metabolism (spleen) [22]. However, 
macrophages also contribute to the pathology of a range of diseases, 
particularly those characterized by metabolic dysfunction and chronic 
inflammation. These include obesity and type 2 diabetes (adipose) [23], 
neurodegeneration (brain) [24], non-alcoholic steatohepatitis (liver) 
[25], alveolar proteinosis (lung) [21], and sepsis (spleen, and other) 
[26]. To perform these diverse functions, macrophages must sense and 
respond to their microenvironment. Macrophages can sense structures 
broadly shared by invading microbes, termed pathogen-associated mo-
lecular patterns (PAMPs), or mediators induced by cell damage, 
so-called damage- or danger-associated molecular patterns (DAMPs) 
[27]. PAMPs and DAMPs are recognized by pattern-recognition re-
ceptors (PRRs). Macrophages are highly plastic cells that detect PAMPs 
and DAMPs and alter their phenotype to mount an appropriate response. 
Once the insult is cleared macrophages are also a critical component of 
the subsequent pro-resolution or tissue repair process that follows [17]. 

ROS produced by macrophages act as critical antimicrobial agents to 
kill invading microorganisms [28,29]. However, ROS can also protect 
against infection in several indirect ways through redox signaling, for 
example by regulating the secretion of pro-inflammatory cytokines, 
activation of inflammasomes, and orchestration of the subsequent 
adaptive immune response via antigen presentation [30–32]. Redox 
signaling also regulates signal transduction, gene expression, metabolic 
reprogramming, differentiation, and polarization in macrophages 
[33–39]. 

More recently, metabolites have emerged as key players in redox 
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regulation of macrophages. Certain metabolites can directly modify 
redox sensitive cysteine residues through a diverse set of post- 
translational modifications (PTMs). These include succination by 
fumarate [40] and 2,3-dicarboxypropylation, or alkylation, by itaconate 
[41]. 

In this review, we provide a brief overview of ROS (primarily 
focusing on O2

.- and H2O2) production in macrophages. We summarize 
the diverse roles of ROS in both direct and indirect regulation of the 
antimicrobial response in macrophages. We discuss the crucial redox 
signals that regulate macrophage function with a focus on PTM of redox 
sensitive cysteines. We also review the latest tools and methods to detect 
and examine redox-sensitive cysteines. We discuss the impact of 
dysfunctional redox signaling in macrophages on inflammatory diseases 
and cancer, and finally, we highlight key questions that remain to be 
resolved. 

2. Sources of ROS and RNS 

Two of the major endogenous sources of O2
.- and H2O2 in macro-

phages are cytosolic NADPH oxidases (NOX) and mitochondria [42–46]. 
NOX are a family of transmembrane enzymes that are dedicated to the 
production of cytosolic O2

.- via the transfer of an electron from NADPH to 
molecular oxygen [47,48]. In phagocytes such as neutrophils and mac-
rophages, O2

.- is rapidly and robustly produced by NOX, the so-called 
oxidative burst, in response to bacterial or viral infections. The oxida-
tive burst is an essential mechanism for the elimination of invading 
microorganisms upon phagocytosis [49–52]. This is discussed in detail 
below. 

Another major site of O2
.- production, which is then converted to 

H2O2 and other oxidants in macrophages, is the mitochondrial electron 
transport chain (ETC) [45,53]. Complex I of the ETC is the major 
contributor of mitochondrial ROS (mtROS) production in macrophages, 
however complex II and III also produce mtROS [54–56]. During 
oxidative phosphorylation, electrons travel from complexes I to IV of the 
ETC to form a proton gradient that drives the activity of ATP synthase to 
catalyze the synthesis of ATP from ADP. Electrons from complex I and 
complex III cause a partial reduction of oxygen that leads to the gen-
eration of O2

.-, which is released into the mitochondrial matrix. Addi-
tionally, O2

.- can be released into the intermembrane space via complex 
III. O2

.- is quickly converted into H2O2 by superoxide dismutases (SOD), 
SOD2 and SOD1 in the matrix and intermembrane space respectively 
[42,46,47]. ROS released into different mitochondrial compartments 
can interact with, and modify, different redox-sensitive proteins residing 
at various subcellular locations [57]. 

In addition to NOX enzymes and ETC complexes in the mitochondria, 
other enzymes including xanthine oxidase (XOR), cyclooxygenases, and 
cytochrome P450 all generate O2

.- during their respective biochemical 
processes [58–60]. Similarly, non-mitochondrial organelles such as 
peroxisomes and the endoplasmic reticulum (ER) are important sites of 
ROS production [61–63]. 

RNS are derived from nitric oxide (NO) whose production from 
arginine is catalyzed by NO synthase (NOS) enzymes including neuronal 
NOS (NOS1 or nNOS), inducible NOS (NOS2 or iNOS), and endothelial 
NOS (NOS3 or eNOS) [64]. iNOS is highly expressed in macrophages 
[64,65] and its transcription is potently induced by proinflammatory 
signals such as lipopolysaccharide (LPS) and interferon gamma [66–68]. 
Like ROS, RNS have important roles in microbial killing and inflam-
matory macrophage function [64,69,70]. Interestingly, RNS production 
is species-dependent with reports suggesting that human macrophages 
produce less RNS than mouse macrophages in response to inflammatory 
stimuli [64,71,72]. 

3. ROS and RNS as signaling molecules 

For many years, the term “ROS” was inadvertently equated with 
damaging molecules and byproducts of cellular stress. More recently, 

many studies have unveiled the essential, but often overlooked, role of 
ROS as signaling molecules that regulate a myriad of biological pro-
cesses [47,73]. Some of the early evidence for this was in the context of 
cell growth, where intracellular ROS, more specifically H2O2, were 
found to be required for tyrosine phosphorylation of proteins that pro-
mote cell growth via epidermal growth factor (EGF) and platelet-derived 
growth factor (PDGF) signaling pathways [3,5]. Other studies soon after 
detailed a mechanism linking ROS to hypoxia-inducible factor 1 alpha 
(HIF-1α)-dependent cellular processes. HIF-1α is a master transcription 
factor regulating many biological processes, most notably the response 
to hypoxia, and was the first transcription factor identified to act via 
environmental sensing [74]. It was shown that during hypoxia mtROS 
stabilize HIF-1α by inhibiting its molecular degraders, prolyl hydroxy-
lases (PHDs). This allows HIF-1α to localize to the nucleus and drive the 
transcription of target genes controlling many biological processes 
including erythropoiesis, metabolism, angiogenesis, and autophagy [8, 
75–79]. These studies are fundamental to our understanding of ROS as 
important endogenous signaling molecules. 

RNS can also act as important signaling molecules. NO regulates 
many heme-containing proteins such as soluble guanylate cyclase (sCG) 
[80], cytochrome P450 [81], complex IV [82,83], and NOS enzymes 
[84,85] by reacting with the heme Fe group which is essential for the 
activity of hemeproteins [86]. The formation of the heme-NO complex 
can inhibit enzyme activity by blocking heme incorporation into hem-
eproteins, as is the case for cytochrome P450 and NOS enzymes, or by 
competitively inhibiting oxygen binding [82,83]. In some cases like sCG, 
heme-NO formation can boost enzyme activity by invoking structural 
changes [80]. RNS also regulate the activity of metalloenzymes con-
taining catalytic iron-sulfur (Fe–S) clusters such as complex I and II of 
the ETC [87,88], and mitochondrial aconitase [89]. Like heme, Fe–S 
clusters are protein prosthetic groups residing in the active sites of en-
zymes that are essential for electron transfer [90]. The Fe–S cluster in 
aconitase mediates the Lewis acid reaction that converts citrate to aco-
nitate, while Fe–S clusters in the ETC complex I, II, and III facilitate 
electron flow within the ETC [90]. NO can inhibit the activity of 
Fe–S-containing enzymes such as aconitase and complex II [88,91,92] 
by oxidizing and removing an Fe atom from the Fe–S cluster (see reviews 
[65,93] for further discussion). NO can also inhibit complex I activity via 
PTM of cysteine (Cys)39 on the ND3 subunit [87]. 

3.1. Post-translational modification of cysteine residues in redox signaling 

A key mechanism by which endogenous ROS act as signaling mole-
cules is via oxidation of cysteine residues in target proteins. At physio-
logical pH, the thiol (-SH) group on cysteine residues is deprotonated to 
form a charged thiolate (-S-). While both thiol and thiolates can act as 
nucleophiles, the negative charge of thiolates makes them more reactive 
than thiols [94]. As such, the reactivity of protein cysteine residues 
varies with pH and the distinct protein environment which affects 
deprotonation. Susceptibility to oxidation is similarly pKa-dependent i. 
e. the pH at which thiol- and thiolate-bearing cysteines are in equilib-
rium. Redox-sensitive cysteines can undergo rapid oxidation by a reac-
tive oxidant. Oxidation of cysteine residues can alter protein function by 
adding/removing disulfide bonds or changing the electrostatic state in 
important active sites, resulting in alterations in protein stability, ac-
tivity, localization, and protein-protein interactions [42]. It should also 
be noted that the initial oxidation, or sulfenylation, of a cysteine residue 
is reversible and can be reduced back to a free thiol by endogenous 
antioxidants such as glutathione (GSH) [42,95] however hyperoxidation 
of sulfenylated thiols to sulfinic or sulfonic acid is irreversible. 

Oxidation, or sulfenylation, is only one of many reversible redox 
modifications. Others include disulfide bond formation, gluta-
thionylation, nitrosylation, and palmitoylation. Disulfide bond forma-
tion occurs when an unstable -sulfenylated cysteine reacts with a 
proximal cysteine residue to form an inter- or intramolecular bond 
(RSSR’). 
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S-nitrosylation or nitrosylation takes place on cysteine residues when 
NO is incorporated into the thiol group (-SNO) while glutathionylation 
arises from a disulfide formation between a cysteine residue and the 
reduced form of GSH [96,97] (Fig. 1). These PTMs are reversible and 
dynamic and regulate a range of biological processes. As such, cysteine 
residues are important rheostats that can fine-tune protein function. 

Palmitoylation and geranylgeranylation (GGylation) are lipid- 
mediated PTMs generated by a covalent link between a cysteine thiol 
and the respective lipid molecules (Fig. 1). Palmitoylation is a unique 
covalent lipid modification as it is reversible and functionally dynamic. 
The transmembrane palmitoyltransferase DHHC family is the main 
catalyst of this modification [98] while depalmitoylating enzymes 
including several protein thioesterases [99–102] and α/β-hydrolase 
domain-containing proteins [103] remove this PTM. As a bulky and 
hydrophobic group, the addition of palmitate to a protein usually leads 
to a significant alteration in its physical properties, playing an important 
role in protein trafficking and protein-protein interactions [98]. 

GGylation is an irreversible lipid modification involving the covalent 
attachment of geranylgeranyl isoprene to the thiol group of cysteine 
residues. This PTM is catalyzed by the Rab geranylgeranyltransferase 
enzyme and is important for protein transport across the secretory and 
endocytosis pathways [104–107]. 

These diverse cysteine PTMs can profoundly alter protein and 
cellular function but our understanding of what endows the specificity of 
a cysteine to undergo one PTM versus another, and the breadth of these 
modifications, is poorly understood. It should also be noted that 
reversible redox modification can also occur at methionine residues. 
However, its sulfur is in a less reactive thioether form than the thiol/ 
thiolate of cysteine [94]. 

4. The anti-microbial role of ROS/RNS and the oxidative burst 

Macrophages produce large amounts of ROS as a defense mechanism 
against invading microorganisms. But more recently, our understanding 
of the role of ROS in macrophages has expanded from its role as an anti- 
bacterial agent to a role in cell signaling and inflammation [108,109]. 

A central function of macrophages is to phagocytose or engulf 
invading microorganisms and destroy them in the phagosome. NOX- 
derived ROS play a critical role in this process. NOX are membrane- 
bound protein complexes of which there are 7 members. NOX2 (or 
gp91phox) is the best characterized catalytic subunit of the NOX com-
plexes for its role in phagocytosis. Upon phagocytic activation, NOX2 
forms a heterodimer with cytochrome B light chain (CYBA or p22phox) 
and translocates to the plasma membrane to produce ROS (for a detailed 

review see Ref. [110]). The generation of NOX-mediated ROS is regu-
lated by Toll-like receptor (TLR) signaling [111,112]. Ablation of NOX2 
significantly impairs cellular ROS production in activated macrophages 
[30,111]. Peritoneal macrophages from NOX2-deficient mice fail to 
produce cellular ROS and this impairs ROS-dependent pro-inflammatory 
cytokine secretion in response to infection [30]. Another NOX enzyme, 
NOX4, is also implicated in ROS production in human monocyte-derived 
macrophages [49]. 

Beyond its role in the oxidative burst, NOX-mediated ROS affect the 
antimicrobial activity of macrophages in additional ways. For instance, 
ROS production by NOX2 in RAW264.7 macrophages in response to TLR 
or Fc-gamma receptor (FcγR) stimulation is essential for the recruitment 
of the autophagy protein LC3 to phagosomes, thereby promoting 
phagosomal maturation and microbe killing [113,114]. Another study 
demonstrated that NOX2-dependent ROS trigger a non-autophagic 
antimicrobial response called LC3-associated phagocytosis during Lis-
teria infection in bone marrow-derived macrophages (BMDMs) [115]. 
Furthermore, NOX2-derived ROS has been shown to regulate FcγR 
cross-linking with its ligands to trigger a kinase signaling cascade, ulti-
mately leading to nuclear factor-kappa B (NF-κB)-mediated IL-6 pro-
duction [50]. Additionally, NOX2 can control antigen presentation in 
macrophages as NOX2-deficient BMDMs are unable to process certain 
peptides by cysteine cathepsins, which are proteases with 
redox-sensitive cysteine catalytic sites [32]. However, it is unclear 
whether NOX2 depletion in macrophages directly affects the function of 
cysteine cathepsins. 

RNS are also an important constituent of the antimicrobial response 
in macrophages. iNOS-induced NO production is essential for microbe 
killing in macrophages and for host survival [69,116–118]. Chemical 
inhibition of NO production by methylarginine has been shown to 
inhibit the microbicidal activity of human macrophages [116,118] and 
iNOS knockout in mice leads to impaired bactericidal function in mac-
rophages and reduced survival during Salmonella infection [69,117]. 
Interestingly, during Salmonella infection, macrophages from 
iNOS-knockout mice exert a greater anti-bacterial response than mac-
rophages from NOX2-knockout mice, suggesting a greater contribution 
of ROS than RNS to antibacterial activity in this context [69]. This may 
be a result of a compensatory increase in ROS production in 
iNOS-deficient macrophages. 

More recently, it was discovered that mtROS contribute significantly 
to the antimicrobial ROS pool. This process was first described in 
response to stimulation of TLR1, 2, and 4 which leads to recruitment of 
mitochondria to macrophage phagosomes in a tumor necrosis factor 
(TNF) receptor-associated factor 6 (TRAF6)-dependent manner and an 
increase of bactericidal mtROS (see review [108] for further details). It 
was later elucidated that TRAF6 forms a complex with ECSIT (evolu-
tionarily conserved signaling intermediate in Toll pathways) to promote 
mtROS production [119]. Moreover, bacterial sensing via TLR signaling 
has been reported to increase the activity of complex II of the ETC and 
glycerol-3-phosphate dehydrogenase (G3PDH), a mitochondrial-bound 
enzyme that shuttles electrons from cytoplasmic NADH to coenzyme Q 
[36]. These ETC adaptations enhance the phagosomal activity of mac-
rophages [36]. Furthermore, mtROS were recently found to promote the 
bactericidal response of macrophages by activating NF-κB-mediated 
cytokine production [30] (this is discussed in further detail below). 
These findings demonstrate the often-overlooked role of mtROS as a 
significant contributor to the anti-microbial activity of macrophages. 

5. PTM of cysteines residues as a mode of redox signaling in 
macrophages 

While ROS production in macrophages has a critical role in anti- 
microbial defense, ROS also regulate macrophage function by acting 
as important signaling molecules. Beyond their role in phagocytosis, 
macrophages have a wide range of functions in immunity including 
inflammatory cytokine production, chemokine release to recruit other 

Fig. 1. Reversible post-translational modification (PTM) of cysteine residues. 
Free thiolates (top left) can undergo a range of reversible PTMs. These include 
sulfenylation (1), S-nitrosylation (2), glutathionylation (3), intra- (4), and inter- 
(5) molecular disulfide bonds, and palmitoylation (6). 
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immune cells, antigen presentation, tissue repair, and maintenance of 
tissue homeostasis (see review [17] for further details). To perform such 
diverse functions, macrophages rewire their metabolism in response to 
stimuli, and alterations in metabolism are intrinsically linked with 
changes in redox homeostasis. One of the earliest examples of this 
metabolic rewiring was the observation that upon stimulation with the 
TLR4 agonist LPS macrophages switch their metabolism from oxidative 
phosphorylation (OXPHOS) to glycolysis [120,121]. It was later iden-
tified that upon stimulation with LPS macrophages accumulate high 
levels of the tricarboxylic (TCA) intermediate succinate and exhibit 
mitochondrial hyperpolarization due to decreased ATP synthase activity 
[122]. Together, these phenomena trigger high levels of mtROS pro-
duction at complex I of the ETC. As such, the metabolic rewiring from 
OXPHOS to glycolysis supports ATP production while the mitochondria 
are repurposed for mtROS production. mtROS inhibit PHD function to 
stabilize HIF-1α, which promotes the transcription of target genes, 
including interleukin (IL-1β) [37]. These findings present an intricate 
pathway in macrophages whereby mtROS act as a signal that links 
metabolic reprogramming with transcriptional regulation during 
inflammation. 

Redox signaling can also affect many facets of macrophage function 
including NF-κB signaling, pathogen recognition, and inflammasome 
activation, by PTM of target cysteines. S-nitrosylation, palmitoylation, 
glutathionylation, and oxidation of cysteine residues are examples of 
PTMs regulating protein function in macrophages and are discussed in 
detail below. 

5.1. Redox regulation of NF-κB signaling in macrophages 

NF-κB is a master transcription factor that plays a central role in 
regulation of inflammatory gene expression in macrophages [123]. As 
such, NF-κB activity must be carefully regulated. Under normal condi-
tions, NF-κB subunits are sequestered in the cytosol by a family of in-
hibitors, so called inhibitors of NF-κB (IκB) [123]. One member of this 
family, IκBα, contains an N-terminal phosphorylation site that is the 
target of the multi-subunit IκB kinase (IKK) complex. Upon an inflam-
matory signal, IKK phosphorylates IκBα targeting it for ubiquitination 
and subsequent proteasomal degradation. This liberates NF-κB, which 
transfers to the nucleus and drives the transcription of a plethora of 
inflammatory genes [123]. NF-κB can promote ROS and RNS production 
by activating expression of genes encoding proteins that generate ROS 
and RNS such as XOR [124], NOS1 [125], COX-2 [126], NOX2 [127] 
and iNOS [128]. However, many studies have suggested that NF-κB can 
also suppress ROS production by increasing the expression of antioxi-
dant enzymes. For example, antioxidants such as SOD1 and SOD2, 
glutathione peroxidase-1 (GPX1), and thioredoxin are transcriptional 
targets of NF-κB [129–133]. 

Interestingly, ROS can reciprocally regulate NF-κB activity (Fig. 2 
and Table 1). Early studies suggested that ROS can directly control NF- 
κB by oxidizing Cys62, in the conserved Rel homology domain (RHD) of 
the p50 subunit to inhibit NF-κB DNA binding and transcriptional ac-
tivity [134–136]. Cys62 of p50 can also undergo glutathionylation and 
S-nitrosylation, both of which impair DNA binding and recognition 
[137,138]. The p65 subunit of NF-κB is also regulated by RNS. In peri-
toneal and RAW264.7 macrophages, it was shown that iNOS-mediated 
S-nitrosylation of Cys38 of the p65 subunit reduces p50-p65 hetero-
dimer formation and decreases NF-κB DNA binding [139,140]. Inter-
estingly, this specific residue can also undergo a sulfhydration (-SSH), a 
PTM in which hydrogen sulfide reacts with a cysteine disulfide. Sulf-
hydration of Cys38 increases DNA binding and transcription activity of 
NF-κB in macrophages [141]. 

Redox signaling can also regulate NF-κB signaling by modifying 
proteins controlling its activity. For example, Cys179 of IKKβ is subject 
to glutathionylation which suppresses its kinase activity thereby 
dampening NF-κB activity [142]. This PTM can be removed by 
glutaredoxin-1, demonstrating the complex network of redox-regulation 

of NF-κB that likely adapts in response to stimulation. Furthermore, 
bacterial infection of mouse primary macrophages (both peritoneal 
macrophages and BMDMs) promotes mtROS production in a 
TLR2-dependent manner to activate NF-κB essential modulator (NEMO), 
which is a subunit of IKK [30]. ROS stimulate the formation of a 
homodimer by promoting an intermolecular disulfide bond between 
Cys54 and Cys347 [143]. Disulfide bond formation is critical for the 
stabilization of NEMO, assembly of the IKK complex, NF-κB activation, 
and the subsequent secretion of NF-κB-dependent pro-inflammatory 
cytokines in activated macrophages [30,143] (Fig. 2 and Table 1). 

Interestingly, H2O2 can also activate casein kinase II to enhance 
phosphorylation of tyrosine 42 in IκBα which leads to degradation of 
IκBα in an IKK-independent manner [144]. A later study using human 
KBM-5 myeloid cells showed that H2O2 induces phosphorylation and 
degradation of IκBα by activating spleen tyrosine kinase [145]. These 
observations suggest that ROS regulate the activity of additional kinases 
upstream of IκBα. However, the detailed mechanism for this in macro-
phages is still elusive. 

As well as redox modification of proteins, lipids can also undergo 
oxidation to alter NF-κB activity and macrophage function. Lipid per-
oxidation occurs when polyunsaturated fatty acids (PUFAs) are oxidized 
by ROS including hydroxyl (HO•) and hydroperoxyl (HO•2) radicals 
[146]. Malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) are the 
two main byproducts of lipid peroxidation and are widely used as bio-
markers for lipid peroxidation [147,148] and are highly prevalent in 
many diseases including neurodegenerative diseases [149], cancer 
[150], and metabolic disease [151]. In macrophages, both MDA and 
4-HNE have been reported to modulate the NF-κB-mediated inflamma-
tory response [152,153], although the mechanistic basis for this is 
poorly defined. The roles of lipid peroxidation in various biological 
processes and cell types have been extensively reviewed elsewhere (see 
[146] for further details). 

Fig. 2. Cysteine PTM of proteins of the NF-κB pathway. 
NF-κB is a master transcription factor that plays a central role in regulation of 
inflammatory gene expression in macrophages, therefore, its activity must be 
carefully regulated. Several components of the NF-κB pathway are redox- 
regulated. ROS can oxidize cysteine (Cys)62 of the p50 subunit to inhibit NF- 
κB DNA binding and transcriptional activity (1). Cys62 of p50 can also undergo 
glutathionylation and S-nitrosylation, both of which impair DNA binding and 
recognition. S-nitrosylation of Cys38 of the p65 subunit reduces p50-p65 het-
erodimer formation and decreases NF-κB DNA binding while sulfhydration of 
Cys38 increases DNA binding and transcription activity of NF-κB in macro-
phages (2). Glutathionylation Cys179 of inhibitor of NF-κB (IκB) kinase (IKK)β 
suppresses its kinase activity thereby dampening NF-κB activity (3). An inter-
molecular disulfide bond between Cys54 and Cys347 of NF-κB essential 
modulator (NEMO), which is a subunit of IKK, is critical for the stabilization of 
NEMO, assembly of the IKK complex, and NF-κB activation (4). 
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5.2. Redox-regulation of PPRs 

Macrophages can be activated by PAMPs and DAMPs that are sensed 
by PRRs such as TLRs, the cyclic GMP-AMP synthase-stimulator of 
interferon genes (cGAS-STING) pathway, and nucleotide oligomeriza-
tion domain (NOD)–like receptors (NLRs). It has recently emerged that 
several members of the PRR family are redox-regulated. 

Palmitoylation of cysteines has emerged as an important regulator of 
PRRs in macrophages. Palmitoylation of TLRs, the cytosolic NLRs, and 
cGAS-STING has been reported [33,34,154–156]. 

Palmitoylation of Cys113 of the TLR4 adaptor protein myeloid dif-
ferentiation protein 88 (MyD88) upon TLR4 stimulation enhances the 
activity of this pathway [156]. Additional TLR adaptors such as 
tyrosine-protein kinase LYN (Cys3) and MyD88 adaptor-like protein 
(MAL; Cys91) have been reported to undergo palmitoylation and glu-
tathionylation, respectively, in macrophages upon stimulation. These 
PTMs enhance TLR activity [34,157]. 

Upon recognition of cytosolic DNA cGAS-STING promotes the pro-
duction of type I interferons (IFNs) [158]. Cys88 and Cys91 of STING 
undergo palmitoylation which is essential for STING complex assembly 
into multimeric complexes at the Golgi apparatus and subsequent 
recruitment of downstream signaling factors including TANK-binding 
kinase 1 (TBK1) [154]. Interestingly, Cys88/91 are S-nitrosylated in 
virally-infected macrophages, which blocks palmitoylation of these 
residues and subsequent STING activity [33]. 

NOD1/2, NLRs which detect peptidoglycan from invading microbes, 
are also redox regulated. Palmitoylation of several cysteine residues on 
NOD1 (Cys 558, 567, & 952) and NOD2 (Cys 395 & 1033) is essential for 
NOD1/2 membrane recruitment during bacterial challenge in macro-
phages [159]; (Fig. 3 and Table 2). NLR family pyrin domain containing 
3 (NLRP3) is also regulated by redox signaling; this is discussed below. 

In response to LPS, 100 unique cysteine sites in THP-1 monocytes 
and peritoneal macrophages have been reported to undergo gluta-
thionylation [160]. One example is Cys91 of MAL. Glutathionylation of 
Cys91 promotes the interaction between MAL and MyD88, which drives 
TLR signal transduction [157]. 

5.3. Redox-regulation of the NLRP3 inflammasome 

ROS also modulate the NLRP3 inflammasome, a protein complex 
that mediates IL-1β processing and secretion [31,161]. NLRP3 is 
essential for the cleavage and activation of caspase-1. Once active, 
caspase-1 cleaves and activates IL-1β [162] and the pore-forming pro-
tein gasdermin D (GSDMD) which is required for IL-1β secretion and the 
induction of an inflammatory form of cell death called pyroptosis 
[163–165]. All known activators of NLRP3 promote mtROS production 
and mtROS have been shown to activate NLRP3 [166,167]. mtROS 
promote the dissociation of thioredoxin-interacting protein (TXNIP) 
from thioredoxin. This supports the interaction between NLRP3 and 

TXNIP, and subsequent NLRP3 activation, IL-1β processing and secre-
tion [166,168]. It should be noted that this occurs specifically in 
response to mtROS and is NOX-independent [169,170]. mtROS also 
promote the release of oxidized mitochondrial DNA that binds and ac-
tivates NLRP3 [171]. 

Recently, NIMA-related kinase 7 (NEK7) was identified as a NLRP3- 
binding protein that drives NLRP3 oligomerization and activation [172]. 
Interestingly, ROS enhance NEK7 phosphorylation and its interaction 
with NLRP3 [173]. How ROS promote phosphorylation is still unclear 
although inhibition of certain phosphatases by ROS has been proposed 
as one possible mechanism. Another study demonstrated that the 
NLRP3-NEK7 interaction is mediated by deglutathionylation of Cys253 
on NEK7 [174]. 

GSDMD activity is also redox-regulated. Several studies have 
demonstrated a direct link between redox signaling and GSDMD activ-
ity. ROS oxidize Cys192 of GSDMD to enhance its pore-forming activity 
[175–177]. Indeed, macrophages in which Cys192 of GSDMD is mutated 
to an alanine, show impaired pore formation and pyroptosis [177]. 
Intriguingly, this same cysteine residue (Cys192) is sensitive to palmi-
toylation. Palmitoylation of Cys192 of GSDMD leads to membrane 
translocation of GSDMD and the subsequent pore formation and 
pyroptosis [175,176]. Both pharmacological inhibition [178] and 

Table 1 
Cysteine PTM of proteins of the NFκB pathway.   

Protein Cysteine 
(s) 

PTM Effect on NFκB 
activity 

System Validation Reference 
(s) 

1 p50 62 Homodimer disulfide Increase DNA 
binding 

Recombinant protein Point mutation (PM) recombinant 
protein 

[134,136] 

p50 62 Glutathionylation Decrease DNA 
binding 

Recombinant protein PM in recombinant protein [137] 

p50 62 S-nitrosylation Decrease DNA 
binding 

Recombinant protein PM in recombinant protein [138] 

2 p65 38 S-nitrosylation Decrease DNA 
binding 

Peritoneal macrophages & 
RAW264.7 

PM in HEK293T [139,140] 

p65 38 Sulfhydration Increase DNA 
binding 

Peritoneal macrophages & 
RAW264.7 

PM in RAW264.7 [141] 

3 IKKβ 179 Glutathionylation Inhibit NFκB activity Alveolar epithelial cells (C10) PM in C10 cells [142] 
4 NEMO 54 & 347 Intramolecular disulfide 

bond 
Promote NFκB 
activity 

Peritoneal macrophages & 
BMDMs 

PM in peritoneal macrophages and 
BMDMs 

[30]  

Fig. 3. Cysteine PTMs in the regulation of pattern recognition receptors (PRRs). 
PRRs such as TLRs, the cyclic GMP-AMP synthase-stimulator of interferon genes 
(cGAS-STING) pathway, and nucleotide oligomerization domain (NOD)–like 
receptors (NLRs) are redox-regulated. Glutathionylation of myeloid differenti-
ation protein 88 (MyD88) adaptor-like protein (MAL; Cys91; 1) and palmitoy-
lation of Cys113 of MyD88 (2) enhance TLR activity. Palmitoylation of Cys88 
and Cys91 of STING (3) is essential for STING signaling. Palmitoylation of 
several cysteine residues on NOD1 (Cys558, 567, & 952; 4) and NOD2 (Cys 395 
& 1033; 5) is required for NOD1/2 membrane recruitment during bacterial 
challenge in macrophages. 
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genetic mutation [177] of Cys192 of GSDMD in macrophages inhibits 
GSDMD activity and pore formation (Fig. 4 and Table 3). 

Furthermore, ROS promote caspases 1, 4, and 5-mediated cleavage 
of GSDMD, resulting in macrophage pyroptosis [163,179,180], while 
XOR-derived ROS activate a MAP3K signaling cascade in macrophages 
to promote mobilization of GSDMD to the plasma membrane [181]. 
Additionally, mtROS production via the Ragulator-Rag complex acts 
downstream of GSDMD cleavage to promote GSDMD oligomerization in 
the plasma membrane, which eventually leads to pore formation [182]. 

5.4. The role of RNS in redox signaling in macrophages 

RNS can also modulate macrophage function through modification 
of cysteine residues and metabolic reprogramming. As discussed above, 
S-nitrosylation of Cys38 of the p65 subunit of NF-κB decreases NF-κB 
activity [139,140] while S-nitrosylation of Cys88/91 of STING impairs 

STING activity [33]. Additionally, NO has been reported to regulate 
NLRP3 activation as virally-infected, IFNγ-stimulated BMDMs from 
iNOS-deficient mice produce more mature IL-1β than BMDMs from 
wildtype mice [183]. Total levels of S-nitrosylated NLRP3 protein were 
decreased in iNOS-deficient BMDMs [183]; however, the specific 
cysteine residue(s) on NLRP3 subjected to this PTM are unknown. 
Furthermore, NO can alter the metabolic state of pro-inflammatory 
macrophages by inhibiting several metabolic enzymes including com-
plex I [184], isocitrate dehydrogenase (IDH) [184], pyruvate dehydro-
genase (PDH) [89], and aconitase 2 by disrupting Fe–S clusters in these 
enzymes [89]. These studies also demonstrated that NO modifies 
cysteine residues on IDH (Cys 113, 133, 154, & 418) [184] and PDH (Cys 
unidentified) [89] that may contribute to the regulatory function of NO. 

5.5. The role of metabolites in redox signaling in macrophages 

In the past decade it has emerged that metabolites are important 
signaling molecules that regulate macrophage function [37,41,109, 
185]. The mechanisms by which metabolites signal to regulate macro-
phage function are diverse, but modulation of ROS production and redox 
modification of cysteine residues in target protein represent key mech-
anisms. Three examples of this are succinate, fumarate and itaconate. 

As mentioned above, succinate is a pro-inflammatory molecule that, 
upon oxidation, promotes complex I-derived mtROS, and inflammation 
in a HIF-1α-dependent manner [37,122]. Whether succinate-induced 
mtROS promotes oxidation of specific cysteine residues in target pro-
teins to modulate inflammatory function remains to be determined but it 
is unlikely that HIF-1α is the sole target of mtROS in activated macro-
phages (Fig. 5). 

Itaconate is another key immunomodulatory metabolite in macro-
phages. Itaconate is a metabolite first discovered 150 years ago as a 
byproduct of fermentation in fungi and was thought to be a potential 
Krebs cycle intermediate by Hans Krebs [186]. However, it was not until 
the 2010s that the role of itaconate in macrophage biology was appre-
ciated. Itaconate is produced from aconitate as a divergence from the 
TCA cycle. This reaction is catalyzed by aconitate decarboxylase 
(ACOD1), an enzyme encoded by immunoresponsive gene 1 (Irg1), 
which is uniquely expressed in myeloid cells, and most particularly in 
macrophages [187]. Irg1 expression and itaconate production are 
extremely sensitive to inflammatory stimuli such as LPS, other TLR ag-
onists, and inflammatory cytokines [187–189]. Itaconate has potent 
immunomodulatory effects in macrophages. These include limiting 
mtROS production [190,191], inhibition of inflammasome activation 
[190,192,193], control of pro-inflammatory cytokines [41,194], and 
rewiring of macrophage metabolism [190,195,196]. 

Two major mechanisms underpinning the immunomodulatory ac-
tivity of itaconate are succinate dehydrogenase (SDH) inhibition and 
cysteine alkylation. Itaconate is a competitive inhibitor of SDH due to its 
structural similarity to the SDH substrate, succinate [190,191]. This 
limits succinate oxidation and subsequent mtROS production and 
HIF-1α-mediated IL-1β transcription [190,191]. More recently, it was 
discovered that itaconate modifies cysteine residues in target proteins, a 

Table 2 
Cysteine PTMs in the regulation of PRRs.   

Protein Cysteine(s) PTM Effect System Validation Reference 
(s) 

1 MAL 91 Glutathionylation Promote MyD88-MAL interaction and TLR4 
activity 

BMDMs Point mutation (PM) in 
iBMDMs 

[157] 

2 MyD88 113 Palmitoylation Increase TLR4 activity THP-1 & 
RAW264.7 

PM in HEK293T cells [156] 

3 STING 88 & 91 Palmitoylation Promote TBK1 interaction and STING signaling BMDMs PM in HEK293T [154] 
STING 88 & 91 S-nitrosylation Block palmitoylation and STING signaling THP-1 & BMDMs No PM validation [33] 

4 NOD1 558, 567, & 
952 

Palmitoylation Increase NOD signaling & membrane association BMDMs PM in RAW264.7 [159] 

5 NOD2 395 & 1033 Palmitoylation Increase NOD signaling & membrane association BMDMs PM in RAW264.7 [159]  

Fig. 4. Redox regulation of NLRP3. 
ROS modulate the NLRP3 inflammasome, a protein complex that mediates IL-1β 
processing and secretion. ROS enhance NIMA-related kinase 7 (NEK7) phos-
phorylation and its interaction with NLRP3 through a poorly defined mecha-
nism. Additionally, deglutathionylation of Cys253 on NEK7 is important for its 
interaction with NLRP3 (1). Itaconate derivatives targets Cys548 of the NLRP3 
inflammasome to prevent its interaction with NEK7 (2). ROS oxidize Cys192 of 
GSDMD to enhance its pore-forming activity (3) while palmitoylation of Cys192 
of GSDMD leads to membrane translocation of GSDMD and the subsequent 
pore-formation and pyroptosis. Furthermore, ROS promote cleavage of GSDMD, 
mobilization to the plasma membrane, oligomerization and eventually pore 
formation. GSDMD is also regulated by succination and alkylation by itaconate. 
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PTM defined as 2,3-dicarboxypropylation, or alkylation [41], to exert an 
anti-inflammatory effect. The first evidence of this PTM came from the 
finding that, an itaconate derivative alkylates multiple cysteine sites on 
Kelch like ECH associated protein 1 (KEAP1), promoting Nuclear factor 
erythroid 2-related factor 2 (NRF2) activity and the transcription of 
downstream anti-inflammatory genes [41]. This effect was corroborated 
in ACOD1-knockout macrophages, which fail to produce itaconate 
[194]. Since this finding, several cysteine targets of itaconate have been 
identified. An itaconate derivative targets Cys548 of the NLRP3 
inflammasome to prevent its interaction with NEK7, subsequently 
inhibiting NLRP3 activation and IL-1β processing [193]. Itaconate has 
also been shown to alkylate Cys77 of GSDMD although the functional 
relevance of this remains to be determined [192]. In another study, 
itaconate was found to alkylate Cys212 on transcription factor EB 
(TFEB), a master regulator of lysosomal biogenesis, to promote nuclear 
translocation of TFEB in LPS-treated macrophages [197]. Interestingly, 
mutation of this cysteine residue to a serine in macrophage cell lines and 
in mice inhibits lysosomal biogenesis and antibacterial defense [197]. 
Additionally, a cell-permeable derivative of itaconate was shown to 

inhibit Janus kinase 1 (JAK1) activity by alkylating several cysteine 
residues on JAK1 (Cys 817, 716, & 944), leading to impaired alternative 
activation of macrophages [198]. Itaconate has also been shown to 
inhibit glycolysis by modifying specific cysteine residues on several 
metabolic enzymes, including glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH) [196], aldolase A (ALDOA) [195], and lactate dehydro-
genase A (LDHA) [195]. As glycolysis is a metabolic signature of 
pro-inflammatory macrophages, this demonstrates the important role 
of itaconate as a redox modifier acting on multiple immune and meta-
bolic pathways to regulate macrophage inflammatory response (Fig. 5 
and Table 4). This is not an exhaustive list of the functional effects of 
itaconate on macrophage function. Several detailed reviews of itaconate 
and its cysteine targets have been published [199,200]. 

Fumarate is another metabolite linked to inflammatory macrophage 
function and ROS production [201,202]. Fumarate, like itaconate, is 
mildly electrophilic and thereby reacts with thiols in cysteine residues in 
a PTM termed succination [40]. Many of the protein succination targets 
of fumarate are shared with the alkylation targets of itaconate including 
KEAP1 [203], GSDMD [204], and GAPDH [205]. For example, GSDMD 
Cys192 has been reported to be succinated, albeit these experiments 
were carried out with monomethyl fumarate as opposed to endogenous 
fumarate [204] (Fig. 5). 

A new role for fumarate in the regulation of cytokine production in 
macrophages has recently emerged. In response to LPS, the expression of 
fumarate hydratase (FH), the enzyme converting fumarate to malate, 
decreases, and flux through the argininosuccinate shunt increases 
leading to fumarate accumulation [202]. This accumulated fumarate 
was found to decrease Il10 expression in LPS-activated macrophages, 
potentially via succination of the transcription factor cFos, and conse-
quently to boost Tnf expression [202]. A second study exploring the 
effect of FH in kidney cancer identified a potent upregulation of the type 
I IFN response upon FH loss. Mechanistically, fumarate accumulation in 
the kidney was found to promote the release of mtDNA in 
mitochondria-derived vesicles and activation of the cGAS-STING 
DNA-sensing pathway [201]. Interestingly, in macrophages, FH loss, 
but not direct fumarate treatment, was shown to promote mtRNA 
release, retinoic acid-inducible gene I (RIG-I) and melanoma 
differentiation-associated protein 5 (MDA5) activity to enhance IFN 
signaling [202]. Precisely how fumarate stimulates mtDNA release re-
mains to be elucidated. 

Citrate can also modulate redox signaling in macrophages. LPS- 
activated macrophages accumulate citrate in the cytoplasm due to in-
hibition of isocitrate dehydrogenase and an increase in mitochondrial 
citrate carrier activity [35,206]. Citrate accumulation enhances NO, 
ROS, and prostaglandin E2 (PGE2) production in macrophages [206, 
207]. Mechanistically, the conversion of cytosolic citrate to acetyl-CoA 
generates NADPH, which is a substrate for NOS and NOX enzymes 
[207,208]. Additionally, acetyl-CoA is an essential metabolite in the 
arachidonic acid pathway, which is the likely link between citrate and 
increased production of PGE2 [206]. 

Table 3 
Cysteine PTMs in the regulation of NLRP3.   

Protein Cysteine 
(s) 

PTM Effect System Validation Reference 
(s) 

1 NEK7 253 Glutathionylation Inhibit NLRP3 activity BMDMs Point mutation (PM) in 
HEK293T cells 

[174] 

2 NLRP3 548 Alkylation by 
itaconate 

Inhibit NLRP3 activity and interaction with 
NEK7 

BMDMs No PM validation [193] 

3 GSDMD 77 Alkylation by 
itaconate 

Activate pyroptosis BMDMs No PM validation [192] 

GSDMD 192 Palmitoylation Promote GSDMD signaling THP-1, BMDMs, & 
iBMDMs 

PM in iBMDMs and HEK293T 
cells 

[175–177] 

GSDMD 192 Succination by 
fumarate 

Inhibit GSDMD signaling and interaction 
with Caspase-1 

THP-1 & BMDMs No PM validation [204]  

Fig. 5. Redox regulation of macrophages by metabolites. 
Metabolites also contribute to redox signaling in macrophages. Oxidation of 
succinate by succinate dehydrogenase (SDH), promotes complex I-derived 
mtROS production, and inflammation in a hypoxia inducible factor (HIF)-1α- 
dependent manner. It remains to be determined if mtROS driven by succinate 
oxidation promotes oxidation of specific cysteine residues in target proteins to 
modulate inflammatory function. Itaconate has potent immunomodulatory ef-
fects in macrophages. Two major mechanisms underpinning the immunomod-
ulatory activity of itaconate are SDH inhibition and 2,3-dicarboxypropylation 
or alkylation of cysteine residues. Several alkylation targets of itaconate have 
emerged. These include cysteines on KEAP1, the NLRP3 inflammasome, gas-
dermin D (GSDMD), residues on several metabolic enzymes, including glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH), aldolase A (ALDOA), and 
lactate dehydrogenase A (LDHA). Fumarate reacts with thiols in cysteine resi-
dues in a PTM termed succination. Many of the protein succination targets of 
fumarate are shared with the alkylation targets of itaconate including KEAP1, 
GSDMD, and GAPDH. Fumarate can also promote the release of mtRNA, and 
retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated 
protein 5 (MDA5) activity to promote interferon signaling. 
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6. ROS signaling in alternatively-activated macrophages 

While ROS are typically associated with an inflammatory response in 
macrophages, ROS signaling also supports the function of alternatively- 
activated macrophages. Alternatively-activated macrophages play a 
critical role in tissue repair and resolution of inflammation but can also 
exert pro-oncogenic effects (see review [209] for further details). 
Alternative-activation of macrophages by the anti-inflammatory cyto-
kine IL-4 leads to a decrease in phagosomal activity, NOX2 expression, 
and decreased ROS production [210]. However, it has also been shown 
that macrophage polarization to an alternatively- activated state re-
quires NOX-mediated ROS [39,211]. Furthermore, mtROS promote 
polarization of alveolar macrophages towards an alternatively-activated 
phenotype in a STAT6-dependent manner during lung fibrosis [212]. A 
similar phenotype was observed in intestinal macrophages in a 
pre-clinical model of colitis [213]. However, the mechanistic basis for 
this remains to be elucidated. ROS also support an alternatively acti-
vated, pro-tumorigenic profile in macrophages in cancer. This is dis-
cussed below. 

7. Regulation of redox signaling by the antioxidant response in 
macrophages 

Phenotypic plasticity is a hallmark of macrophages and enables them 
to switch between pro- and anti-inflammatory states in response to 
environmental cues. Many redox modifications in macrophages can be 
reversed by the antioxidant response. Several studies have shown that 
both SOD1 and 2 are highly expressed upon TLR stimulation in macro-
phages [214,215]. Additionally, loss-of-function mutations in SOD1 and 
2 exacerbate oxidative stress/ROS production in macrophages while 
gain-of-function mutations reduce ROS production [216–218]. Simi-
larly, GSH and its associated glutathione peroxidases (GPxs), which use 
GSH to reduce H2O2 to H2O, regulate intracellular ROS levels and limit 
the inflammatory response in macrophages [219–221]. Interestingly, 
both SODs and GPxs are downstream targets of NF-κB, which is regu-
lated by ROS [222]. Taken together, these data suggest that NF-κB and 
ROS are linked in a feedback loop to prevent a hyperinflammatory 
response. 

NRF2 is an antioxidant transcription factor that regulates macro-
phage activation by modulating ROS production. Under normal condi-
tion, NRF2 is trapped in the cytoplasm by KEAP1, an adaptor protein for 
the Cullin 3 E3 ubiquitin ligase complex and targeted for proteasomal 
degradation. Upon oxidative stress, oxidation of several cysteine resi-
dues in KEAP1 (including Cys151, Cys273, & Cys288) promotes its 
dissociation from NRF2. NRF2 subsequently translocates to the nucleus 
to transcribe target antioxidant genes [223]. Early evidence in a 
pre-clinical model of sepsis showed that NRF2 deficiency leads to hy-
peractive macrophages and greater mortality. This is linked with the 
ability of NRF2 to suppress the NOX pathway, thereby limiting cytosolic 

ROS production [224,225]. Interestingly, it was recently shown that 
ROS can also act as an upstream signal to further stabilize NRF2 via 
oxygen sensors mammalian sterile 20-like kinases 1 and 2 (MST1/2) 
[226]. This is another example of a feedback loop in place to maintain 
redox homeostasis. NO is another important regulator of NRF2. Mac-
rophages with impaired NO production have decreased 
NRF2-dependent gene expression in response to LPS + IFNγ-stimulation 
[227]. 

8. The role of ROS and macrophages in disease 

8.1. Chronic granulomatous disease 

Dysregulation of redox signaling in macrophages has been linked to 
several pathologies and one of the most best examples is chronic gran-
ulomatous disease (CGD). This is a rare immunodeficiency where the 
anti-microbial response in innate immune cells is compromised. Mac-
rophages from CGD patients are unable to activate phagocytosis, which 
can result in life-threatening consequences such as bacterial/fungal 
abscesses in the lung, liver, and spleen [228]. Over 400 mutations linked 
with CGD have been identified, primarily occurring in the NADPH oxi-
dase complex, including subunits gp91phox, p22phox, p67phox, p47phox, 
and Rac 2 [229]. These mutations attenuate the NOX pathway, which is 
critical for phagosomal ROS production, and suppress downstream 
pro-inflammatory cytokine production in macrophages [230–232]. 
Furthermore, studies have shown that peripheral blood mononuclear 
cells (PBMCs) from CGD patients exhibit higher caspase-1 activity and 
IL-1β secretion in the presence of NOX inhibitors, suggesting that 
additional factors, independent of ROS, contribute to the pathology of 
CGD [233,234]. Increased NF-κB activity [235] and mtROS production 
[236] have also been reported in PBMCs isolated from CGD patients. 
Although the full scope of the hyperinflammatory phenotype that leads 
to CGD pathophysiology is still unclear, it has been suggested that a 
combination of chronic, unresolved infections and intrinsic dysregula-
tion of inflammation are contributing factors [237]. 

8.2. Inflammatory bowel disease 

Infiltration of inflammatory macrophages to the intestine is one of 
the hallmarks of chronic gastrointestinal diseases such as colitis and 
Crohn’s disease, which are generally known as inflammatory bowel 
disease (IBD) [238]. Bacterial or viral infections that hyperactivate 
macrophages and cause oxidative stress/damage to the gastrointestinal 
tract and can promote IBD [239–241]. Elevated levels of cellular and 
mitochondrial ROS in PBMCs have been reported in IBD patients [170]. 
Furthermore, in young children, variants in components of the NOX2 
complex, that cause a partial loss of function, have been linked with 
disease susceptibility [242]. SNP variants of neutrophil cytosolic factor 
4, a gene encoding for the p40phox subunit of the NOX complex, have 

Table 4 
Cysteine alkylation targets of itaconate.  

Protein Cysteine(s) PTM Effect System Validation Reference 
(s) 

KEAP1 151, 257, 288, 273, 
& 297 

Alkylation by itaconate 
derivative 

Activate NRF2 BMDMs Point mutation (PM) in COS-1 
cells (Cys151) 

[41] 

RIPK3 360 Alkylation by itaconate Activate RIPK3 RAW264.7 PM in RAW264.7 [316] 
TFEB 212 (270 in mice) Alkylation by itaconate Promote TFEB nuclear translocation THP-1, iBMDMs, & 

BMDMs 
PM in THP-1, iBMDMs, & mice [197] 

JAK1 817, 716, & 944 Alkylation by itaconate 
derivative 

Inhibit JAK1 THP-1 No PM validation [198] 

LDHA 84 Alkylation by itaconate Inhibit lactate production BMDMs & RAW264.7 PM in RAW264.7 [195] 
GAPDH 22 Alkylation by itaconate Inhibit glycolysis BMDMs & RAW264.7 PM in RAW264.7 [196] 
ALDOA 73, 339 Alkylation by itaconate Inhibit glycolysis BMDMs & RAW264.7 PM in RAW264.7 [195] 
NLRP3 548 Alkylation by itaconate 

derivative 
Inhibit NLRP3 activity and 
interaction with NEK7 

BMDMs No PM validation [193] 

GSDMD 77 Alkylation by itaconate Activate pyroptosis BMDMs No PM validation [192]  
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also been associated with an increased risk of IBD [243,244]. 

8.3. Rheumatoid arthritis 

Redox dysfunction in macrophages is one of many hallmarks of 
sterile inflammatory diseases. For example, rheumatoid arthritis (RA), 
an autoimmune disease that affects the synovial joints, is characterized 
by a state of chronic inflammation which has been linked with macro-
phages with aberrant metabolic and immune function (see review [245] 
for further details). Tissue-resident macrophages from the synovial fluid 
of RA patients show a pro-inflammatory signature with high abundance 
of inflammatory cytokines such as IL-1β and TNF [246–248]. Elevated 
ROS/RNS production and oxidative stress are commonly present in the 
synovial tissues of RA patients, suggesting a link between disease 
pathogenesis and redox dysfunction in macrophages [249,250]. How-
ever, direct measurements of ROS/RNS in arthritic macrophages have 
not been performed. Interestingly, in mouse models of RA, HIF1-α was 
implicated as an important driver of the inflammatory signature of 
macrophages [251]. This could be due to the hypoxic environment of the 
RA synovial joints [252]. 

8.4. Neuroinflammatory diseases 

Neuroinflammatory diseases such as Alzheimer’s disease, Parkin-
son’s disease, and multiple sclerosis are characterized by chronic 
inflammation of the central nervous system, which can promote 
neuronal degeneration leading to cognitive impairment and motor 
dysfunction [253]. Oxidative stress has been widely considered as a 
hallmark of neuroinflammatory diseases (see review [254] for further 
details). Aberrant activation of the NLRP3 inflammasome has also been 
reported in Alzheimer’s disease patients [255]. Moreover, depletion or 
pharmacological inhibition of NLRP3 in microglial cells isolated from a 
mouse model of Alzheimer’s has been shown to be protective against 
disease pathogenesis, suggesting that NLRP3 is one of the drivers of the 
disease [255–257]. Although a direct link has not been made in patients, 
analysis in a mouse model of Parkinson’s disease has shown a correla-
tion between increased ROS production and NLRP3 activity in microglia 
upon neurotoxin-induced damage [258]. GSDMD activation has been 
linked with the hyperinflammatory phenotype observed in peripheral 
myeloid and microglial cells, and disease progression in the experi-
mental autoimmune encephalomyelitis mouse model of multiple scle-
rosis [259,260]. With recent findings highlighting the importance of 
Cys192 of GSDMD in protein function, several inhibitors, including 
necrosulfonamide, dimethyl fumarate, and disulfiram, have been uti-
lized to inhibit GSDMD activity by targeting Cys192 [178,204,261]. 
These drugs are being tested in several disease models, including neu-
roinflammatory diseases (this is described in detail in Ref. [262]). 

8.5. Obesity/metabolic disease 

Dysfunctional macrophages are also a characteristic of obesity- 
associated metabolic disease. Obesity is a global epidemic with wide-
spread health consequences including type 2 diabetes (T2D), cancer, 
non-alcoholic fatty liver disease, and cardiovascular disease. Large 
numbers of macrophages infiltrate the adipose tissue during obesity 
[263]. These cells are chronically activated by inflammatory insults such 
as high levels of free fatty acids [264] and have been extensively linked 
with obesity-associated inflammation, cytokine production, and pro-
gression of T2D [263–268]. The earliest studies to link inflammation and 
obesity-associated insulin resistance demonstrated that TNF decreases 
the activity of the insulin receptor [23,269]. Additionally, activation of 
the NLRP3 inflammasome, which is triggered by ROS, has also been 
found to contribute to insulin resistance [270–272]. Obesity also pro-
motes Nos2 expression in adipose tissue macrophages [264]. Whether 
this is merely a marker of inflammatory macrophages or results in 
increased NO production is unclear. Additionally, myeloid-specific 

deletion of NOX2 was shown to decrease adiposity, macrophage infil-
tration to adipose tissue, inflammation, and to improve glucose ho-
meostasis in a model of diet-induced obesity [273]. These studies 
suggest a link between the pathogenesis of obesity and oxidative stress 
driven by macrophages. However, it is important to note that the au-
thors did not assess ROS production, nor did they examine the mecha-
nistic basis for these observations. These data all point towards a 
relationship between dysfunctional redox signaling in macrophages, 
inflammation, and the pathology of T2D and metabolic disease; how-
ever, the precise mechanistic details of this interplay remain to be 
elucidated. 

8.6. Cancer 

In the tumor microenvironment, macrophages are reprogrammed to 
become pro-oncogenic and support cancer cell growth and metastasis, 
and mediate immunosuppressive effects on adaptive immune cells [274, 
275]. ROS have been suggested to support this by driving the release of 
cytokines such as transforming growth factor-β, IL-6, and IL-13 from 
cancer cells that polarize macrophages to this phenotype [276]. In 
cancer models of leukemia, lung, breast, liver, and ovarian cancers, 
either pharmacological inhibition or genetic perturbation (such as NOX 
knockout) of ROS limits tumorigenesis and the pro-tumor activity of 
macrophages [39,277–281]. In ovarian and triple negative breast can-
cers, ROS induction in macrophages has been shown to upregulate 
programmed death-ligand 1 (PD-L1), which impairs cytotoxic T cell 
activity, promotes an immunosuppressive phenotype, and increases 
immune evasion by tumor cells [278,282]. Furthermore, in lung cancer, 
ROS have been found to be crucial for the differentiation of macro-
phages to a pro-tumor phenotype [39]. Limiting ROS production 
decreased the abundance of pro-tumor macrophages and suppressed 
tumorigenesis in pre-clinical models of lung cancer [39]. In colon can-
cer, increased ROS production in macrophages leads to DNA damage to 
intestinal epithelial cells and enhanced tumor-cell adhesion, both of 
which promote cancer growth [283,284]. Furthermore, RNS promote 
fibrosis in pancreatic stellate cells, leading to increased collagen depo-
sition to support the progression of pancreatic cancer [285]. In a met-
astatic breast cancer model, NO can play a pro-tumorigenic role, 
promoting tumor growth and metastasis in mice [286]. These studies 
demonstrate a link between redox homeostasis and tumorigenesis, but 
further data are required to understand the cell and anatomical speci-
ficity of this relationship. 

9. New approaches and methodology to detect cysteine PTMs 

Due to the crucial role of cysteine redox PTMs in diverse cellular 
functions, many methods have been developed to investigate, charac-
terize, and discover functional cysteines on a proteome-wide scale. Early 
methods have been developed to computationally predict redox- 
sensitive cysteines [287] or identify cysteine sites undergoing specific 
modifications via chemical labeling and mass spectrometry (MS) 
[288–290]. However, many of these approaches lack the power to 
determine cysteine modification stoichiometrically. 

The development of chemical proteomic tools to quantitatively 
measure cysteine reactivity has been pioneered by the Cravatt group. 
The principle of these methods focuses on activity-based protein 
profiling (ABPP), which is a strategy using specific chemical probes to 
determine protein functional state in the native proteome based on the 
protein reactivity towards the probes. Early work by this group deter-
mined that some moderately reactive electrophiles can serve as selective 
ABPP probes for cysteine thiols [291]. This proof-of-concept experiment 
quickly evolved into a proteome-scale method to quantify cysteine 
reactivity in native biological systems called isotopic tandem orthogonal 
proteolysis ABPP (isoTOP-ABPP). This tool combines a cleavable bio-
rthogonal thiol probe and MS to isotopically label, and detect, cysteines 
on a proteome-wide level in intact cells [292]. The introduction of 
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isoTOP-ABPP has marked the first time that redox-sensitive cysteines 
can be intrinsically characterized in a native biological system. Many 
derivatives of isoTOP-ABPP have been utilized to profile reactive cys-
teines in various redox contexts including cysteine targets of hydrogen 
peroxide [293], lipid peroxidation [294], sulfenylation [295], S-nitro-
sylation [296], and phosphorylation-dependent cysteine redox PTMs 
[297]. Drug discovery is perhaps the most powerful application of 
isoTOP-ABPP. In particular, this method has been applied to identify 
cysteine targets of small-molecule covalent drugs [298–300] or to 
discover targetable cysteine sites in “undruggable” proteins [301]. Many 
efforts have been made to improve the cysteine coverage and scalability 
of the original method. As of now, isoTOP-ABPP can be multiplexed to 
cover up to 17,000 cysteines [302] and streamlined for screening of 
large ligand libraries (~300 small-molecule drugs) [302–304]. 

A caveat of these ABPP probes is that they are designed to only label 
free cysteines that are reactive and, therefore, do not represent the 
complete cysteine redox landscape. To overcome this limitation, many 
methods have been developed to measure PTMs on redox-sensitive 
cysteines. Various proteomics approaches have been developed to stoi-
chiometrically quantify cysteine PTMs in cells, including OxMRM [305], 
OxiTMT [306], RacTMT [307], and OxICAT [308,309]. Such stoichio-
metric assessment provides important information about the functional 
significance of a PTM on any given cysteine. Notably, OxICAT can also 
be combined with a proximity labeling technique called TurboID to 
explore the cysteine proteome at a subcellular level. Two recent inde-
pendent studies have used this approach to study redox-sensitive cys-
teines in various cellular compartments in macrophages [310,311]. One 
study identified ~300 highly oxidized cysteines out of 599 unique 
cytosolic cysteine-containing peptides detected in LPS-stimulated Raw 
264.7 macrophages [310]. The other study identified 32 highly oxidized 
cysteines out of 559 unique mitochondrial cysteine peptides detected in 
LPS + IFNγ-treated immortalized BMDMs (iBMDMs) [311]. These data 
suggest that the redox proteome of inflammatory macrophages is 
regulated at the subcellular level. However, a significant drawback of 
these methods is the relatively low proteome coverage, with ~4300 
cysteine-containing peptides quantified [308]. A recent method by the 
Chouchani group introduced a novel molecular label called the 
cysteine-reactive phosphate tag (CPT). CPT contains an iodoacetamide 
moiety to label cysteines and a phosphate group that allows enrichment 
of labelled peptide [312]. This enrichment process takes advantage of an 
established pipeline from the phosphoproteomics field that uses 
immobilized metal affinity chromatography (IMAC) to separate phos-
phopeptides from the proteome [313,314]. The CPT method can quan-
tify the % reversible modification of ~34,000 unique cysteine sites, an 
exponential coverage boost compared with other tools [312]. CPT can 
be extended to facilitate covalent drug discovery. For example, CPT has 
been applied in a drug screening study to discover a selective covalent 
inhibitor that targets an active site cysteine in creatine kinases [315]. 

9.1. Methods to measure PTM by itaconate 

As an important cysteine PTM in macrophages, methods to examine 
cysteine alkylation mediated by itaconate have been developed. One of 
these methods is adopted from isoTOP-ABPP to measure cysteine reac-
tivity and tailored specifically to detect itaconate alkylation by using a 
customized thiol-reactive itaconate-competitive probe (1-OH-Az) [195]. 
Using this probe, Qin and colleagues. detected 412 cysteines that were 
sensitive to itaconate treatment out of 766 quantified cysteines. They 
identified Cys73 and 339 on ALDOA and Cys84 on LDHA as targets of 
itaconate. Itaconate-mediated alkylation at these sites was found to 
inhibit enzymatic activity of ALDOA and LDHA [195]. This approach 
provides a unique platform to deconvolute functional cysteine targets 
specific to itaconate. However, like the parental isoTOP-ABPP approach, 
it has a limited coverage of the cysteine proteome. 

Another method utilizes an alkyne analogue of the cell-permeable 
itaconate derivative 4-octyl itaconate (4OI) termed ITalk [316]. ITalk 

alkylates cysteine targets of itaconate while the alkyne group of the 
probe allows for enrichment of labelled sites. Using this approach, 1926 
proteins were detected that contained residues modified by the itaco-
nate derivative. From this dataset, the authors identified, among other 
targets, that itaconate alkylates Cys360 on receptor-interacting ser-
ine/threonine-protein kinase 3 (RIPK3). RIPK3 activation is essential for 
the induction of a form of programmed cell death called necroptosis. 
Modification of Cys360 was shown to be required for RIPK3 phosphor-
ylation and activation by itaconate [316]. Precisely how alkylation of 
Cys360 by itaconate promotes its activity remains to be determined. 
Although ITalk can significantly increase cysteine coverage, it is 
important to note that the cysteine reactivity of the probe is likely to 
over-represent that of endogenous itaconate. 

10. Conclusions/Future directions 

The essential and versatile functions of redox signaling in many 
cellular processes including the regulation of inflammatory macro-
phages are indisputable. Moreover, ROS and RNS have been evidenced 
by numerous studies to be much more than non-discriminatory 
damaging molecules, but rather to form an intricate signaling network 
that modulates protein function through redox signaling. Cysteine, one 
of the least abundant amino acids, is the hub of redox signaling as the 
primary target for PTM by ROS, RNS, and metabolites. 

Macrophages have an intimate link with redox signaling, with a 
plethora of evidence demonstrating how cysteine PTMs alter the in-
flammatory function of these cells. Despite the extensive developments 
made in the field of redox signaling in the last 30 years, there are still 
several challenges and questions that remain. For instance, it is still 
unclear what dictates the form of PTM (oxidation, S-nitrosylation, glu-
tathionylation, alkylation, etc.) to which a cysteine is subjected. This 
could simply be a substrate concentration-mediated effect or something 
more intricate. An example of this is GSDMD Cys192 which is subject to 
oxidation, succination, and palmitoylation [175–177,192,204]. These 
distinct PTMs are likely to alter protein function, activity, and in-
teractions in diverse ways. Indeed, oxidation and palmitoylation of 
Cys192 enhance GSDMD activity while succination represses GSDMD 
activity. The relative contributions and temporal regulation of these 
PTMs remains to be established. It should be noted however, that the 
approaches used to identify modification of GSDMD Cys192 vary 
widely, and some allow for stoichiometric determination of cysteine 
engagement while others do not. As such, it is difficult to determine 
unequivocally the relative role for each PTM in the regulation of GSDMD 
activity. 

Furthermore, it is poorly understood what defines cysteine thiol 
redox sensitivity. Using the Oximouse dataset, a correlation between the 
local electrostatic environment and highly modified cysteines was 
identified [312]. More specifically, there was a selection against prox-
imal acidic amino acids and a selection for the basic amino acid arginine 
for a cysteine to be highly oxidized. It is thought that the 
positively-charged side chain of arginine can stabilize the negatively- 
charged thiolate which is known to be more reactive than its corre-
sponding thiol. The opposite is true for negatively-charged amino acids. 
Intriguingly, the same is true for proximal phosphogroups. As such, a 
local phosphorylated amino acid antagonizes cysteine oxidation. 

The potential reactivity of a cysteine may also be dictated by the 
intrinsic electrostatic state of the cysteinyl residue where the thiolate 
(-S-) form is a powerful nucleophile and highly susceptible to oxidation 
[94]. As the formation of thiol vs thiolate depends on pH, it is probable 
that the local pH in cells can influence cysteine reactivity. This could be 
particularly relevant for inflammatory macrophages which are highly 
glycolytic and therefore are likely to have a decrease in intracellular pH 
upon activation. The probability for a cysteine to be modified could also 
depend on the proximity of the target protein to the site of ROS or 
metabolite production. On the other hand, target proteins could be 
recruited to the site of ROS/metabolite production. These questions 
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warrant further structural and biochemical investigation to fully un-
derstand the regulatory landscape of redox signaling in macrophages. 

Finally, functional validation of potential redox-sensitive cysteines in 
a native cell system should become a gold standard to determine the 
biological relevance of a newly identified redox signal/target. There is a 
persistent lack of these essential validation experiments in many studies, 
especially in macrophages. Functional validation of a specific cysteine 
residue involves endogenous mutation of the target cysteine to a 
different amino acid (most often alanine or serine). This is now attain-
able, both in vivo and in vitro, via genome editing technology such as 
CRISPR-Cas9 and prime editing [317,318]. However, this is still 
extremely challenging in macrophages for several reasons: 1) low 
transfection efficiency, 2) low cell survival due to incompatible delivery 
systems, and 3) low editing efficiency due to impaired DNA 
double-strand break repair [319]. These approaches, in combination 
with the global stoichiometric assessment of the redox proteome using 
new techniques described above, are likely to significantly advance our 
knowledge of redox signaling in macrophages in years to come. 
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