
Circadian Influence on the Microbiome Improves Heart Failure 
Outcomes

Priya Mistrya, Cristine J. Reitza, Tarak Nath Khatuaa, Mina Rasoulia, Kaitlyn Oliphantb, 
Martin E Youngc, Emma Allen-Vercoeb, Tami A. Martinoa,*

aCentre for Cardiovascular Investigations, Department of Biomedical Sciences, University of 
Guelph, Guelph, Ontario, N1G 2W1, Canada

bDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, 
Canada

cDepartment of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35294, 
USA.

Abstract

Myocardial infarction (MI) leading to heart failure (HF) is a major cause of death worldwide. 

Previous studies revealed that the circadian system markedly impacts cardiac repair post-MI, and 

that light is an important environmental factor modulating the circadian influence over healing. 

Recent studies suggest that gut physiology also affects the circadian system, but how it contributes 

to cardiac repair post-MI and in HF is not well understood. To address this question, we first used 

a murine coronary artery ligation MI model to reveal that an intact gut microbiome is important 

for cardiac repair. Specifically, gut microbiome disruption impairs normal inflammatory responses 

in infarcted myocardium, elevates adverse cardiac gene biomarkers, and leads to worse HF 

outcomes. Conversely, reconstituting the microbiome post-MI in mice with prior gut microbiome 

disruption improves healing, consistent with the notion that normal gut physiology contributes 

to cardiac repair. To investigate a role for the circadian system, we initially utilized circadian 

mutant ClockΔ19/Δ19 mice, revealing that a functional circadian mechanism is necessary for gut 

microbiome benefits on post-MI cardiac repair and HF. Finally, we demonstrate that circadian-

mediated gut responses that benefit cardiac repair can be conferred by time-restricted feeding, as 

wake time feeding of MI mice improves HF outcomes, but these benefits are not observed in MI 

mice fed during their sleep time. In summary, gut physiology is important for cardiac repair, and 

the circadian system influences the beneficial gut responses to improve post-MI and HF outcomes.

Keywords

Cardiovascular; Circadian; Myocardial Infarction; Inflammation; Microbiome; Remodeling

*Correspondence: tmartino@uoguelph.ca. 

Disclosures
The authors declare that there are no competing interests.

Appendix A. Supplementary Information

HHS Public Access
Author manuscript
J Mol Cell Cardiol. Author manuscript; available in PMC 2024 April 19.

Published in final edited form as:
J Mol Cell Cardiol. 2020 December ; 149: 54–72. doi:10.1016/j.yjmcc.2020.09.006.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Cardiovascular disease (CVD) is a leading cause of death worldwide [1–4]. Coronary 

artery disease frequently leads to myocardial infarction (MI; heart attack), and subsequently 

the development of heart failure (HF), for which there is no cure. Previously, clinical 

studies revealed that the circadian system underlies healthy cardiovascular physiology, for 

example, driving 24-hour day and night rhythms in heart rate [5], blood pressure [6], 

and timing of onset of adverse cardiovascular events [7–11]. Most recently, experimental 

studies by our group and others reveal that the circadian system also plays a critical role in 

remodeling in cardiovascular disease. For example, the circadian mechanism drives rhythms 

in gene expression and protein production important for heart and blood vessels [12–23], 

diurnal efficacy of angiotensin converting enzyme inhibitor chronotherapy [24], oxidative 

stress pathways [25, 26], cell death pathways [27], cardiac metabolism [28, 29], cardiac 

electrophysiology [30–33], heart-brain pathophysiology [34, 35], sex and gender differences 

in the healing heart [36–38], and cardiac inflammation involved in repair post-MI and in HF 

[39–41], and has been extensively reviewed [11, 42–46]. Collectively, these studies reveal 

that the circadian mechanism is fundamentally important not only for healthy cardiovascular 

physiology, but also for how the heart heals during disease.

Light is a primary zeitgeber, or daily time giving cue, that entrains / resets the circadian 

system. Briefly, light is detected by dedicated melanopsin containing retinal ganglionic cells, 

which transmit signals to a small region of the hypothalamus termed the suprachiasmatic 

nucleus (SCN). The SCN is considered the master pacemaker in mammals, which is critical 

for orchestrating temporal control over physiologic processes, in part through synchronizing 

local circadian clocks throughout the organism (via specific neurohormonal outputs). The 

cellular circadian clock mechanism consists of 24-hour transcription-translation feedback 

loops. The positive limb includes two factors termed CLOCK and BMAL1, which 

heterodimerize and bind to E-box enhancer elements to promote the transcription of 

proteins PER, CRY, and other core circadian elements [47–49]. PER and CRY represent 

the negative feedback loop, and inhibit CLOCK:BMAL1 activity and therefore, their own 

transcription [50–52]. This circadian mechanism that is present in virtually all cells in the 

body, including in the cardiomyocytes [12, 17, 53]. In addition to light synchronization via 

the SCN, peripheral tissue circadian clocks can be entrained by common behaviors, such as 

physical activity and food intake [54, 55]. The importance of enforcing a normal circadian 

environment / lifestyle is exemplified in shiftwork; inappropriate timing of light exposure, 

physical activity, and food intake common in night shift workers increases risk of heart 

disease, and exacerbates underlying cardiovascular conditions (e.g. reviewed in [11, 45, 46]).

Intriguingly, gut physiology has recently also been shown to be circadian regulated, both 

at the level of the host, as well as the microbiome. Interestingly, disruption of normal day 

and night rhythms in healthy gut physiology [56–62] alters the gut microbial composition 

with metabolic consequences [58, 60, 63], and differential injury response outcomes (e.g. 

spinal cord injury [64, 65]). However, the importance of normal circadian influences on 

gut physiology for cardiac repair post-MI and for HF outcomes are not known. Addressing 

such a question may ultimately improve patient outcomes, especially given the association 

between circadian and/or microbiome disruption on cardiovascular disease outcomes.
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In this study we investigate the relationship between gut physiology, circadian biology, and 

cardiac repair post-MI and leading to HF. We used a well-documented murine myocardial 

infarction (MI) model [34, 39, 41], and established protocols for gut microbial disruption 

[64, 66, 67], to simulate the clinical scenarios in humans. Here we report that disruption of 

the gut microbiome impairs the coordinated responses involved in cardiac repair, thereby 

exacerbating HF progression. Conversely, microbiome reconstitution rescues beneficial 

healing responses, leading to better outcomes. Moreover, we found that a functional 

circadian clock mechanism in the host is critical for the beneficial effects of the microbiome 

on cardiac repair. Finally, restricting mice to consume food only during the light (sleep) 

period (which disrupts peripheral circadian clocks) worsened HF outcomes. Moreover, 

the circadian influence on gut responses benefiting cardiac repair can be conferred by 

time-restricted feeding, as wake time - but not sleep time - feeding improves HF outcomes. 

In summary, we demonstrate that normal gut physiology in the first few days after MI is 

important for cardiac repair, and that the circadian system influences these beneficial healing 

responses in cardiovascular disease.

2. Materials and Methods

2.1. Experimental animals and protocol

Male C57Bl/6 mice were obtained from Charles River (Quebec, Canada). Male ClockΔ19/Δ19 

mice on a C57Bl/6 background and wild type (WT) control littermates were bred at the 

University of Guelph Central Animal Facility. ClockΔ19/Δ19 mice are homozygous for an 

A-T transversion mutation which translates to a 51 amino acid deletion in exon 19 [47, 68]. 

ClockΔ19/Δ19 mice were genotyped by allele-specific PCR and characterized by actigraphy, 

as described previously [34, 36]. All animals were housed under a normal 12-hour light 

(L):12-hour dark (D) cycle, with standard chow and water provided ad libitum, unless 

otherwise specified. For determination of the circadian period by wheel-running actigraphy, 

mice were individually housed and entrained to a diurnal 12:12 LD cycle for at least 2 

weeks, followed by transfer to constant darkness (DD) for 2 weeks, and data analyzed 

by ClockLab (ActiMetrics) as described [13, 14, 37]. All experiments were performed in 

accordance with the Canadian Council on Animal Care, and the Guide for the Care and Use 

of Laboratory Animals, National Institutes of Health. The Animal Care and Use Committee 

at the University of Guelph approved all studies.

2.2. DNA extraction and 16S rRNA gene sequencing

Mice were euthanized with CO2 and cervical dislocation, and then cecal contents were 

collected at specific zeitgeber (ZT) times across the diurnal cycle (ZT 03, 07, 11, 15, 

19, 23, or as described in the applicable figures), snap frozen in liquid nitrogen, and 

stored at −80˚C until processing. DNA was extracted using the FastDNA Spin Kit for Soil 

(MP Biomedicals) in accordance with the manufacturer’s specifications, then quantified 

using Qubit (Thermo Scientific), and stored in 10 mM Tris buffer (pH 8.5) at −20˚C. For 

16S rRNA gene sequencing, DNA libraries were prepared using the Nextera XT Index 

Kit (Illumina), according to the manufacturer’s instructions. Briefly, DNA (5ng/μL) was 

amplified with barcoded primers annealing to the V4 region of the 16S rRNA gene with 

overhang adapter sequences, Illumina indices and sequencing adaptors were added by PCR, 
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then samples were sequenced by MiSeq. Data were analyzed using Mothur (v.1.39.3) [69], 

in accordance with the standard operating procedure for MiSeq-derived sequence data [70]. 

Sequences were classified using the Ribosomal Database Project Classifier implemented in 

Mothur and the Ribosomal Database Project taxonomy training set [71]. Relative abundance 

data were imported to Microsoft Excel for figure plots.

2.3. Antibiotic induced gut microbiome disruption

An antibiotic cocktail prepared with streptomycin (2 g/L; Sigma), gentamicin (0.17 g/L), 

ciprofloxacin (0.125 mg/L), and bacitracin (1g/L) was given via drinking water as described, 

with maple syrup added to make the mixture more palatable [64]. Mice received antibiotics 

starting 7 days before experimentation, or untreated controls, and were randomized to 

protocols as needed. Effects of antibiotic treatment on gut bacteria were evaluated using 

two complementary methods. First, feces were collected at ZT03, in 1.5 mL of phosphate-

buffered saline (PBS; 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g KH2PO4, pH7.4), and 

gut microbial ecosystem derangement was demonstrated by decreased colony counts on LB 

agar plates that had been incubated at 37˚C for 36 hours. To evaluate broader effects on 

the microbiome, including anaerobic bacteria, we also collected cecal samples at ZT03, on 

different days of antibiotics (AN), and quantified bacteria using a Bacteria Counting Kit 

(Molecular Probes) on an Accuri C6 flow cytometer (BD Biosciences).

2.4. Left anterior descending (LAD) coronary artery ligation

Myocardial infarction (MI) leading to heart failure (HF) was induced in 8-week-old mice 

by LAD ligation, as described [39, 41]. All surgeries were performed between ZT01 - 

ZT04, as this is consistent with prior studies and findings that MI tolerance is time-of-day 

dependent [18, 39, 41, 72]. Briefly, mice were anesthetized with isoflurane, intubated, and 

ventilated (Harvard Apparatus model 687) throughout the surgery. Prior to the incision, a 

50:50 bupivacaine/lidocaine mix was administered to the site. To expose the heart and LAD, 

an incision was made in the left 3rd intercostal space and a prolene 7–0 suture (Ethicon) 

was passed at 1 mm below the left auricle under the LAD and ligated. Sham animals 

underwent the same procedures, but the LAD was not ligated. Buprenorphine (0.1 mg/kg) 

was administered upon recovery, and at 8- and 24-hours post-surgery.

2.5. Cardiac gene expression

For RNA isolation and Real Time Polymerase Chain Reaction (RTPCR) analyses of 

cardiac remodeling genes, mice were euthanized with CO2 and cervical dislocation. 

Hearts were collected at ZT03, and total RNA was purified by the TRIZOL 

method as described [15, 21, 73]. RNA quality was assessed by Nanodrop 

(Thermo Scientific). Amplification using an RNA-to-Ct one step PCR kit (Applied 

Biosystems) was performed on a VIIA7 system (Life Technologies) as follows: reverse 

transcription at 48˚C for 30 min then 95˚C for 10 min (1 cycle), amplification 

at 95˚C for 15 sec then 60˚C for 1 min (40 cycles), then room temperature. 

Primers used: atrial natriuretic factor (Anf) 5F’-GGGTAGGATTGACAGGATTGG-3’, 

5R’-AGAATCGACTGCCTTTTCCTC-3’; brain derived natriuretic factor (Bnp) 

5F’-GCGAGACAAGGGAGAACAC-3’, 5R’-GCGGTGACAGATAAAGGAAAAG-3’; 

regulator of calcineurin1 (Rcan1) 5F’-CCCGTGAAAAAGCAGAATGC-3’, 
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5R’-TCCTTGTCATATGTTCTGAAGAGGG-3’; NACHT, LRR, PYD domain-
containing protein3 (Nlrp3) 5F’-CATGTTGCCTGTTCTTCCAGAC-3’, 

5R’-CGGTTGGTGCTTAGACTTGAGA-3’; interleukin-1 beta (Il-1β) 5F’-

GCCACCTTTTGACAGTGATGAG-3’, 5R’-GTTTGGAAGCAGCCCTTCATC-3’; Il-18 
5F’-TCCAGCATCAGGACAAAG-3’, 5R’-ACGCAAGAGTCTTCTGAC-3’; chemokine 
C-C motif ligand 2 (Ccl2) 5’F-GTCCCTGTCATGCTTCTGG-3’, 5R’-

TCTTGCTGGTGAATGAGTAGC-3’; chemokine C-C motif ligand 7 (Ccl7) 5F’-

TCTCTCACTCTCTTTCTCCAC-3’, 5R’-GGATCTTTTGTTTCTTGACATAGC-3’; histone 
5F’-GCAAGAGTGCGCCCTCTACTG-3’, 5’R-GGCCTCACTTGCCTCCTGCAA-3’. Data 

were normalized to histone using the delta delta CT method, as described previously [12, 21, 

39, 41].

2.6. Echocardiography and in vivo hemodynamics

To assess cardiac function, mice were followed by echocardiography for up to 10 weeks 

post-infarction as they progressed to HF. All echocardiography was done at ZT07 – ZT09. 

Briefly, mice were placed under light anesthesia (1.5% isoflurane), and cardiac imaging 

was performed using a GE Vivid 7 Dimension ultrasound machine (GE Medical Systems) 

with the i13L 14 MHz linear-array transducer. Images (at least 5 per animal) were acquired 

at mid-papillary level to determine left ventricular (LV) internal dimensions at diastole 

(LVIDd) and at systole (LVIDs), % ejection fraction (%EF), % fractional shortening 

(%FS), and heart rate (HR). For pressure-volume in-vivo hemodynamics, mice were deeply 

anesthetized (4% isoflurane) and intubated. A 1.2F pressure-volume catheter (Transonic 

Scisense) was inserted into the right carotid artery and advanced to the LV for measurements 

(PowerLab, ADInstruments). All in-vivo hemodynamics were done at ZT07 – ZT09. 

Following hemodynamics measurements, the mice were sacrificed under 5% isoflurane 

by cervical dislocation. Measurements taken include end systolic and diastolic pressure 

(LVESP, LVEDP), end systolic and diastolic volume (LVESV, LVEDV), and maximum and 

minimum first derivatives of LV pressure (dP/dtmax; dP/dtmin). Systolic and diastolic blood 

pressures (SBP, DBP) were also recorded, and mean arterial pressure (MAP) was calculated 

as (1/3 x SBP) + (2/3 x DBP). Data were analyzed using Lab Chart 7 (ADInstruments).

2.7. Evans Blue and 2,3,5-Triphenyltetrazolium chloride (TTC) Staining

At 6-hours post-infarction, mice were anesthetized, intubated and ventilated (Harvard 

Apparatus model 687). To visualize ischemic tissue, a 1% Evans Blue solution was infused 

via the inferior vena cava. The heart was excised and rinsed in 0.9% saline before being 

sectioned into 1 mm sections using a heart matrix (Zivic Instruments). Sections were 

incubated in 1% TTC solution for 10 minutes, transferred to 10% neutral buffered formalin 

for 90 minutes and imaged. Infarct area and area at risk (AAR) as a percentage of LV were 

determined using Adobe Photoshop CS4 as previously described [39, 40]. Briefly, samples 

were normalized to each slice weight using the following: weight (total AAR) = [weight 

(slice 1) x % AAR (slice 1)] + [weight (slice 2) x % AAR (slice 2)] + [weight (slice n) x 

% AAR (slice n)]. Infarct area was calculated in a similar manner. Absolute infarct size was 

calculated as a ratio of weight (total infarct area)/weight (total AAR).
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2.8. Cardiac histopathology

Mice were euthanized with isoflurane and cervical dislocation at ZT07 – ZT09. Body weight 

(BW), heart weight (HW) and tibia length (TL) were collected for each animal. Hearts were 

perfused with 1M KCl, fixed in 10% neutral buffered formalin (Sigma), and stored in 70% 

ethanol. For histology, hearts were paraffin embedded and 5 μm sections were taken every 

600 μm starting from the apex. Sections were stained with Masson’s Trichrome. Absolute 

scar size was determined using Image J 1.51 (NIH), from the sum of the epicardial and 

endocardial circumferences of the infarct, divided by the sum of the total LV epicardial and 

endocardial circumferences. Infarct thickness was determined from 5 measurements over 

equidistant points.

2.9. Enzyme-linked immunosorbent assays (ELISA)

Mice were euthanized with isoflurane and cervical dislocation at ZT03, and hearts collected. 

To prepare heart protein lysates, CelLytic MT Cell Lysis Reagent (Sigma) was used, and 

heart protein lysates were assayed according to the manufacturer’s instructions for IL-1β 
(BMS6002, Invitrogen), or IL-18 (BMS618/3, Invitrogen).

2.10. Flow cytometry analyses

A separate set of hearts was used to quantify inflammatory cell responses in infarcted 

myocardium of sham, normal-HF, and mice with antibiotic induced gut microbiome 

disruption (disrupted-HF). Briefly, mice were sacrificed by isoflurane and cervical 

dislocation on day 0, 1, 2, 3, 5, or 7 post-MI (at ZT03), timepoints were selected 

consistent with other studies and findings demonstrating circadian rhythms in the immune 

system [74]. Hearts were perfused with ice-cold heparin (Fisher BioReagents) saline, 

the LV was collected and finely minced, then digested in 10 mL of RPMI-1640 media 

(Gibco) containing collagenase type II (1 mg/mL, Worthington Biochemical Corporation) 

and DNase (60 U/mL, Roche) for 1 hour at 37˚C with gentle agitation. Samples were 

triturated, filtered through a 70 μm cell strainer, and pelleted by centrifugation (400 x g, 

4˚C, 5 min). Pellets were washed with RPMI-1640 and cells were resuspended in PBS 

for further analysis. Cell count and viability (>90%) were determined using the trypan 

blue exclusion method in a separate aliquot. Aliquots (1×106 cells) were incubated with 

anti-CD16/32 antibody (BioLegend) at 4˚C for 5 minutes to block Fcγ receptors. Cells were 

then incubated with fluorochrome-conjugated antibodies to specific leukocyte markers. Total 

leukocytes were characterized using APC anti-mouse CD45 (BioLegend). Macrophages 

were characterized using PE anti-mouse CD11b (BioLegend) and FITC anti-mouse F4/80 

(BioLegend). T lymphocytes were characterized using APC anti-mouse CD45 (BioLegend), 

FITC anti-mouse CD3 (BioLegend), and PE anti-mouse CD4 (BioLegend). Samples were 

analyzed using the Accuri C6 (BD Biosciences) and FlowJo software (Tree Star).

2.11. Myeloperoxidase (MPO) assay

Neutrophil infiltration to infarcted hearts was assessed using a separate set of hearts and the 

MPO assay, as previously described [39]. Briefly, following sacrifice at ZT06, ventricular 

tissue was isolated and homogenized in 1 mL of 50 mM potassium phosphate buffer (pH 

6.0) with 0.5% hexadecyltrimethylammonium bromide (Sigma), sonicated, freeze thawed, 
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then centrifuged at 40,000 x g for 15 min (Beckman Ultracentrifuge LE-80K). Supernatant 

containing MPO was quantified by EnzChek Myeloperoxidase Activity Assay Kit (Life 

Technologies, Molecular Probes) as per manufacturer’s directions. MPO concentration were 

normalized to heart tissue weight.

2.12. 1H nuclear magnetic resonance spectroscopy

Mice were sacrificed as described above (at ZT03), and cecal contents were prepared 

for NMR analysis for targeted metabolomics [75, 76]. Briefly, 50 mg cecal samples 

were suspended in 500 μL of phosphate buffer (0.1 M K2HPO4/NaH2PO4, pH 7.4) and 

centrifuged (16,000 x g, 4˚C, 10 min). Supernatant containing the metabolites was diluted 

by 10% with an internal Chenomx standard (99.9% deuterium oxide (D2O) with 5 mM 

4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) and 0.2% (w/v) sodium azide), and then 

transferred into 3 mm Wilmad Lab Glass tubes for NMR analyses. 1H NMR spectra 

were acquired at 298 K on a Bruker Avance III 600 MHz spectrometer with a 5 mm 

triple resonance cryoprobe at the NMR Centre (University of Guelph). NMR spectra were 

acquired using the first increment of the NOESY pulse sequence with mixing time of 

100 millisecs, 3 secs acquisition time, 2 secs relaxation delay, and a spectral width of 14 

ppm. A pre-saturation pulse (80 Hz field strength) was applied during the relaxation delay 

to suppress water resonance. Following acquisition, spectra were imported into Chenomx 

NMR Suite 8.3 for processing, targeted metabolite profiling, and quantification using the 

known concentration of DSS [77].

2.13. Treatment to reconstitute gut microbiota

Mice that had been pretreated with antibiotics were immediately rehoused for 1 week in 

cages containing feces from healthy mice, starting on the day of MI surgery. Coprophagic 

behavior of mice provides a relatively simple experimental approach to fecal transplantation. 

The benefits of a reconstituted microbiome that accrue to cardiac remodeling were 

demonstrated by echocardiography, in vivo hemodynamics, and histology. In addition, we 

used another set of mice to evaluate the reconstituted gut microbiota profile in reconstituted-

HF mice and compared to that of normal-HF and disrupted-HF. Cecal samples were 

collected on day 3 post-infarction from all groups, sequenced using 16S rRNA gene 

sequencing and analyzed using Mothur. Graph plots were generated using Microsoft Excel.

2.14. Circadian System Influence on Gut Physiology and Benefits for Cardiac Repair

To investigate a role for the circadian mechanism in post-MI cardiac repair, we first used 

ClockΔ19/Δ19 mice. Diurnal food intake in ClockΔ19/Δ19 and WT mice was measured 

immediately before the onset of the dark period (ZT12) and immediately after the 

onset of the light period (ZT0), over 3 consecutive days. ClockΔ19/Δ19 mice were 

randomized to receive either 1) antibiotics starting 7 days before MI surgery and continuing 

for 14 days after (ClockΔ19/Δ19+Disrupted-HF), or 2) controls given no antibiotics 

(ClockΔ19/Δ19+Normal-HF). Pathophysiology was determined by echocardiography and 

histology; methods are listed above. For immune cell infiltration to infarcted myocardium, 

mice were sacrificed by isoflurane and cervical dislocation at ZT03, and hearts collected for 

flow cytometry, at day 3 post-infarction. Quantification of cecal metabolites was determined 

by 1H NMR spectroscopy (using samples collected at ZT03). To further investigate a role 
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for an intact host circadian system in cardiac repair, WT mice were given antibiotics to 

disrupt the gut microbiota and were re-housed for 1 week in cages containing feces from 

either healthy WT mice (WT to WT), or feces from ClockΔ19/Δ19 mice (ClockΔ19/Δ19 to 

WT) to promote the re-establishment of the gut microbiota immediately after MI surgery. 

Pathophysiology was determined by echocardiography, using the approaches described 

above. Next, a behavior-induced model of peripheral tissue circadian clock disruption was 

employed, to determine whether a non-genetic model of circadian disruption affected MI 

outcomes. To do this, we used time restricted feeding protocols, which are known to 

uncouple the central pacemaker from circadian rhythms in the gut [54, 58, 78]. Mice were 

maintained on a normal 24-hour LD cycle, and randomized to either light-phase restricted 

feeding (9AM to 9PM), or dark-phase restricted feeding (9PM to 9AM) for 9 days prior 

to MI surgery, then returned to ad libitum feeding afterwards; MI outcomes were followed 

using the same pathophysiological assessments described above.

2.15. Statistics

All values are mean ± SEM. Statistical comparisons were done using an unpaired Student’s 

t-test, or two-way ANOVA with Tukey post hoc for multiple comparisons, as applicable. 

Analyses were done using SigmaPlot 12 (Systat Software Inc.), or Excel (Microsoft). Unless 

otherwise noted, throughout all figures, data are presented as mean ± SEM with values 

of *p<0.05 considered statistically significant. Statistical parameters, including n-values, 

are noted in figure legends. Statistical analysis of 24-hour rhythmic profiles in 16S rRNA 

gene sequencing data was performed using JTK_CYCLE version-3 as described [36, 41, 

79]. Briefly, the JTK_CYCLE algorithm is used to estimate the period, phase, amplitude, 

JTK p-value (estimated probability of rejecting the null hypothesis that the dataset is not 

rhythmic), and JTK q-value (estimates the false discovery rate for considering the profile to 

be cyclic).

3. Results

3.1. Circadian Influence on the Gut Microbiome

We first investigated a circadian influence on gut physiology by determining the time-

of-day rhythmicity of the gut microbiome composition. To do this, we profiled the 

murine cecal microbiome over a 24-hour cycle, using 16S rRNA gene sequencing. We 

found time dependent profiles in the relative abundance of all the major phyla (Fig. 1A; 

Supplementary Table 1). Next, we investigated the effects of disrupting the gut microbiome. 

We administered oral antibiotics, as a known model for disrupting the composition and 

quantity of bacteria, and found that antibiotic treatment itself did not obviously affect daily 

behavior under normal light-dark (LD) or in constant darkness (DD) circadian conditions, 

as shown by running wheel actigraphy (Fig. 1B, 1C, 1D). However, the antibiotics did 

lead to gut microbial derangements, as fecal contents cultured on LB agar showed a 

significant decrease (p<0.0001) in colony forming units by the first day of treatment (Fig. 

1E). Moreover, microbiome quantity remained very low throughout all 21 days of antibiotic 

treatment, as measured by flow cytometry of SYTO BC+ cells (Fig. 1F). Furthermore, 

changes in the relative abundance of gut microbial taxa were evident following antibiotic 

treatment, including a loss of diversity and almost complete dominance by Bacteroidetes, 
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as shown by 16S rRNA gene sequencing data. The loss of gut microbiota abundance 

and diversity rapidly resolved after the antibiotic treatment period ended (recovery) (Fig. 

1G, Supplementary Table 2). Thus, these findings reveal significant daily rhythms in gut 

microbial physiology, and that antibiotic-induced disruption of the gut microbiome does not 

influence circadian behavior.

3.2. Gut Microbiome and Heart Failure (HF) Outcomes

Next, we investigated a role for gut microbial physiology in cardiovascular disease, 

and specifically heart failure outcomes. To do this, mice were subjected to left anterior 

descending (LAD) coronary artery ligation (HF model). Notably, the disease condition 

(normal-HF mice) did not significantly alter the gut microbiome post-MI, in the manner 

noted in Figure 1H, and compared to non-infarcted controls. However, antibiotics before 

MI (disrupted-HF mice) induced gut microbial derangements until antibiotic treatment 

ceased (Fig. 1H). Antibiotic treatment in MI mice also led to significant changes in the 

expression of biomarker genes involved in cardiac remodeling. Cardiac mRNA levels were 

increased for these pathophysiological biomarkers in the disrupted-HF mice, including atrial 
natriuretic factor (Anf), brain natriuretic factor (Bnp), and regulator of calcineurin 1 (Rcan1) 

(Fig. 1I), suggesting that gut microbial derangements may alter healing. Collectively 

these findings are consistent with the notion that the intact gut microbiome composition 

contributes to normal healthy cardiac repair, and that altering the gut microbiome adversely 

affects the remodeling heart.

3.3. Intact Gut Microbiome Reduces (Benefits) Cardiac Remodeling

To further investigate whether the elevated HF biomarkers in the mice with gut disruption 

corresponded with adverse cardiac remodeling outcomes in vivo, we next performed 

echocardiography. Fig. 2A and Table 1 show that normal-HF mice (with an intact 

microbiome) have significantly (p<0.001) less adverse remodeling as compared to the 

disrupted-HF mice, with smaller left ventricular (LV) internal diastolic dimensions (LVIDd, 

5.55±0.18 vs. 6.24±0.23 mm) and systolic dimensions (LVIDs, 4.37±0.17 vs. 5.13±0.22 

mm), along with better % ejection fraction (%EF) and % fractional shortening (%FS) to 10 

weeks HF. Importantly, there were no significant differences between our disrupted-sham 

and sham groups, implying that there were no adverse effects of this antibiotic regimen on 

cardiac structure or function independent of the effects on the gut (Table 1). Thus, mice with 

a healthy gut microbiome appear to be better protected against adverse cardiac remodeling 

and exhibit reduced progression to HF, as compared to mice with a depleted gut microbiome 

at the time of infarction.

3.4. Gut Microbial Derangement Leads to Exacerbated Cardiac Hemodynamics in HF

We next examined functional changes in our murine model, by measuring in vivo 
hemodynamics parameters (Fig. 2B, Table 1). We found that as compared to normal-HF 

mice, the disrupted-HF mice had worse (p<0.001) cardiac profiles including decreased LV 

end-systolic pressure (80.86±1.53 vs. 90.46±1.12 mmHg), increased LV end systolic volume 

(43.86±0.80 vs. 34.39±2.04 μl) and LV end diastolic volume (60.20±0.99 vs. 54.53±1.35 

μl), and decreased cardiac contractility (p<0.05) dP/dtmax (5102±98 vs. 7176±790 mmHg/

sec) and dP/dtmin (−4672±104 vs. −6317±836 mmHg/sec). Thus, an intact gut microbiome 
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appears to benefit healing, while gut microbiota disruption worsens cardiac pathophysiology 

and exacerbates progression to HF.

3.5. Gut Microbial Derangement and Cardiac Morphometrics

In view of the worsened structural and functional profiles in the hearts of HF mice with 

a depleted microbiome, we next explored whether there were also differences in cardiac 

morphometrics. It is important to note that initial infarct size was consistent among 

normal-HF and disrupted-HF mice (Fig. 2C, left). Thus, despite all infarcts starting the 

same, disruption of the gut microbiome during critical healing phases post-infarction led to 

worsened outcome. That is, compared to the normal-HF mice, the disrupted-HF mice had 

significantly worse cardiac LV dilation, with greater (p<0.05) heart weight (HW, 210±14.32 

vs. 164±14.09 mg) and heart weight to body weight ratio (HW:BW, 7.06±0.51 vs. 5.08±0.32 

mg/g) (Fig. 2C middle and right, Table 1) by 10 weeks HF. Moreover, histologic analyses 

of serial LV sections stained with Masson’s Trichrome (Fig. 2D), and the infarct region 

(Fig. 2E), revealed that the disrupted-HF mice had greater (p<0.05) absolute scar size 

(58.77±2.21% vs. 40.91±2.43%; Fig. 1F) and thinner infarcts (30.37±1.61 vs. 45.49±1.66 

pixels; Fig. 1G), compared to normal-HF. These remodeling data demonstrate a more 

rapid evolution to LV decompensation in the gut disrupted cohort, and that a healthy gut 

microbiome is essential for best outcomes in HF.

3.6. Aberrant Inflammatory Responses in the Early Remodeling Period

The NLRP3 inflammasome sensor is integral to early cardiomyocyte injury post-infarction. 

Thus, we explored whether gut microbial derangements affected inflammasome activation 

in the early remodeling heart, by measuring the inflammasome’s Nlrp3 mRNA and its 

constituent cytokines. We found similar levels of inflammasome gene expression (Figure 

2H) but significantly (p<0.05) reduced levels of IL-1β and IL-18 protein levels in disrupted-

HF hearts (Fig. 2I), suggesting that some differences in inflammasome activation could 

play a role in the worse outcomes in these mice. We also investigated additional measures 

of inflammatory responses important for cardiac repair. We found significant differences 

in leukocyte recruitment to infarcted myocardium in the disrupted-HF mice, by flow 

cytometry analyses (Fig. 3, Supplementary Table 3, see gating strategy in Supplementary 

Fig. 1). That is, as compared to normal-HF mice, there was decreased (p<0.05) CD45+ 

immunocyte infiltration in disrupted-HF hearts by day 3 post-infarction (Fig. 3A). Moreover, 

neutrophil abundance was reduced (p<0.05) in the disrupted-HF hearts over the first week 

post-infarction (Fig. 3B). In addition, we found that macrophages (CD11b+F4/80+) were 

also reduced (p<0.05) in the disrupted-HF versus normal-HF hearts (Fig. 3C). Lastly, the 

adaptive CD4+ T cell infiltration was also reduced (p<0.05) in the disrupted-HF versus 

normal-HF hearts (Fig. 3D). Collectively, these data suggest that key temporal immune 

responses involved in the early remodeling period are altered in mice with a disrupted gut 

microbiome, leading to worse cardiac repair and exacerbated HF outcomes.

3.7. Altered Gut Microbiome Metabolites and HF Outcomes

Since the gut microbiome produces short chain fatty acid (SCFA) metabolites that may 

modulate immune responses, we next examined whether microbiome depletion also altered 

SCFA levels, which could help to account for the observed changes in cardiac inflammation 
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post-MI (Fig. 4; Supplementary Table 4). The normal 1H nuclear magnetic resonance 

(NMR) functional profile of cecal SCFA metabolites is shown in Fig. 4A. We found, 

in our study, that loss of gut microbiota abolished availability of the SCFAs acetate, 

propionate, and butyrate (Fig. 4B, 4C, 4D, left), resulting in clear differences in profiles 

in the disrupted-HF versus normal-HF mice (Fig. 4B, 4C, 4D, right). We also found 

altered luminal glucose levels (Fig. 4E), and cholate (Fig. 4F) in the disrupted-HF versus 

normal-HF mice. Collectively, these data are consistent with the notion that a healthy gut 

microbiome produces SCFA metabolites, and that gut microbiota disruption leads to a loss 

of the metabolites, associated with altered cardiac inflammation and impaired healing in 

heart disease.

3.8. Therapeutically Reconstituting the Microbiome Recapitulates Beneficial Healing and 
Improves HF Outcomes

Given that disrupting the gut microbiome impairs healing after MI, we next investigated 

whether reconstituting a healthy gut microbiome could be useful after MI to benefit 

outcome. To do this, we used a cohousing protocol (Fig. 5A) to reconstitute the microbiome, 

whereby mice with a disrupted microbiome were moved to cages containing the feces 

and litter from healthy mice after infarction. Because rodents are coprophagic, they 

readily ingest the feces to re-establish their microbiome. Notably, reconstituting the 

microbiome benefited cardiac remodeling, as shown by echocardiography and in vivo 
hemodynamics. Fig. 5B and Table 2 show that the reconstituted-HF mice have significantly 

better outcomes than disrupted-HF mice, and cardiovascular outcomes are restored to 

the same levels as seen in the normal-HF mice. This includes improvements in LV 

dimensions, cardiac contractility, and hemodynamic volumes. Benefits of reconstituting 

the microbiome on cardiac remodeling were also evident by histological analyses. Serial 

LV sections stained with Masson’s Trichrome (Fig. 5C), close-up of the infarct region 

(Fig. 5D) and quantification, showed that the reconstituted-HF mice had smaller absolute 

scar size (37.34±2.20% versus 54.66±5.05%; Fig. 5E) and less thinning of the infarct 

region (47.35±3.39 pixels versus 31.41±0.75 pixels; Fig. 5F), compared to the disrupted-HF 

mice. Fig. 5G shows the gut microbiome in reconstituted-HF mice at the phylum level. 

Collectively, these data demonstrate that a healthy gut microbiome plays a beneficial role 

in cardiac remodeling, and moreover that reconstitution of a disrupted gut microbiome is a 

promising strategy to improve health outcomes (Fig. H).

3.9. Circadian Influence on Gut Physiology to Improve HF Outcomes

We next examined the circadian influence on gut physiology contributing to cardiac healing 

after MI. First, we used a genetic model, the canonical circadian mutant ClockΔ19/Δ19 

mice (Fig. 6A–C) and observed altered diurnal rhythms in the composition of their gut 

microbiome, as compared to wildtype (WT) mice (Fig. 6D, Supplementary Table 5). The 

microbial patterns differed even though the animals were housed under the same conditions, 

in the same facilities, and were given the same food. Second, we noted that a dysfunctional 

circadian mechanism in the ClockΔ19/Δ19 mice coincided with a lack of benefits for cardiac 

remodeling, even in the presence of an intact gut microbiome (Fig. 7A, Supplementary Table 

6, Supplementary Fig. 2A–E, Fig. 3, Table 7). Collectively, these findings are consistent 
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with the notion that an intact circadian mechanism in the host is necessary to beneficially 

influence gut physiology and improve HF outcomes.

Next, a model of behavior-induced peripheral tissue circadian disruption was employed. We 

used time-restricted feeding to specifically investigate the importance of circadian regulation 

on the gut for healing post-MI. We found that mice randomized to the dark phase-restricted 

feeding (wake time) prior to MI surgery had improved outcomes on cardiac structure and 

function, as compared to mice fed only in the light phase (sleep time) (Fig. 7B, Table 3). 

Thus, disrupting circadian rhythms in gut physiology, without affecting the central host 

circadian clock, impairs cardiac remodeling. Collectively, these findings demonstrate that 

the circadian system influences gut physiology and this is important for cardiac repair and 

can improve post-MI and HF outcomes (Fig. 7C).

4. Discussion

In this study, we investigate the circadian influence on gut physiology and how it can 

benefit cardiac repair in a well-established murine model of myocardial infarction (MI) 

leading to heart failure (HF). First, we show that the gut microbiome displays diurnal 

rhythms in composition. Second, we determine that gut microbial disruption impairs cardiac 

repair post-MI, exacerbating pathophysiology leading to HF. Gut disruption impairs healing 

at multiple levels, including enhancing gene expression of cardiac biomarkers of heart 

disease, and worsening structural and functional parameters in the remodeling heart. Gut 

microbial derangement also coincides with the production of an aberrant inflammatory 

response in the early cardiac remodeling period, including altered inflammasome cytokine 

abundance, and immunocyte recruitment to infarcted myocardium, possibly underlying the 

worse cardiac remodeling in these mice. Conversely, reconstituting the gut microbiome after 

infarction recapitulates a beneficial healing phenotype, consistent with the notion that gut 

physiology contributes to cardiac repair. A functional circadian clock mechanism in the 

host is important for coordinating the gut microbial responses to improve healing, as no 

benefits accrued in ClockΔ19/Δ19 mice. Finally, we demonstrate that time-restricted feeding 

is a feasible therapeutic approach to confer beneficial circadian influences on gut physiology 

to improve cardiac repair and HF outcomes.

One of the key findings of this study is that the gut microbiome contributes to cardiac 

repair post-MI and reduces pathophysiology to limit HF outcomes in WT mice. Our findings 

are consistent with reports that the gut microbiome is important for health and disease, 

including cardiac remodeling [80–82], metabolic conditions [63, 83] and recovery after 

spinal cord injury [64]. These preclinical studies are revealing that there is significant 

translational potential, and highlight the importance of a healthy gut microbiota composition 

for healing from disease in humans [84, 85]. In our studies, we used a simple cohousing 

strategy to promote the re-uptake of a healthy gut microbiome in disrupted mice. We 

recognize that microbiome constitution is as exists in our animal housing environment, 

that it was beneficial where these experiments were performed; however, microbiome 

composition may differ at other facilities, and this could have other or additional effects 

on outcomes. Nevertheless, the gut microbiome exhibits day and night rhythms in abundance 

and metabolite production, and the downstream targets of these gut microbial pathways 
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likely function in a diurnal manner to impact cardiac repair and outcomes. The analogous 

approach in humans is fecal microbiota transfer, as is currently used to treat Clostridioides 
difficile infection, and other novel approaches that are also being developed to promote the 

transfer of a multi-species community to recipients [86, 87].

In the future, similar approaches to gut microbial reconstitution may also be applied to the 

management and treatment of other cardiovascular conditions. For example, 1) many people 

experience gut microbial disruption as a consequence of antibiotic treatments, as they are 

frequently prescribed for a wide variety of conditions. Antibiotic use is especially prevalent 

among our aging population in long-term care facilities (e.g. [88, 89]); notably, these elderly 

individuals are also at increased risk of heart disease (reviews, [1, 2] ). Reconstituting a 

healthy microbiome in our aging population could readily reduce cardiovascular morbidities, 

helping these individuals to live longer and healthier lives. 2) Gut microbial disruption 

can modify SCFA levels. This is important because SCFAs are critical for healthy human 

physiology [90] and modulate host immune responses through G-protein coupled receptors 

(GPR) GPR41 and GPR43 [91], which are commonly found on immune cells and are 

involved in cellular differentiation, activation, and other activities (reviewed in [92]). In 

terms of cardiovascular diseases, modulating gut microbiome mediated SCFA levels could 

benefit treatment of hypertension [93], and atherosclerosis [92]. Our findings further suggest 

that modulating these SCFAs may also modify patterns of infiltrating inflammatory cells 

involved in cardiac repair post-MI and in HF. However, it is important to note that 

conclusions regarding diurnal abundance of SCFAs, or the temporal effects on downstream 

cellular targets including macrophages and T-cells, requires further investigation. Indeed, 

in the context of MI or HF, many recent studies suggest a complex interplay of pro-

inflammatory and reparative macrophages (e.g. reviews, [94–100]), and deleterious CD4 

positive (e.g. reviews [101–103]) and beneficial CD4 positive (e.g. reviews [104, 105]) T 

cell populations are involved in cardiac remodeling and outcomes. In summary, there is 

a circadian influence on gut physiology, and approaches to translate these findings can 

benefit cardiovascular health and repair. Clearly, over the next few decades, gut microbiome 

therapies will influence clinical medicine, including giving rise to new approaches to treat 

cardiovascular disease in humans. It is worth noting that our studies investigated what 

happens in male mice, but future studies in female mice could also prove interesting, and 

lead to new insights into cardiac repair in both biological sexes.

An important and novel finding of this study is that there is a circadian influence on 

gut physiology that can benefit cardiac repair. We used several different approaches to 

investigate the circadian influence on gut physiology and HF outcomes. First, profiling 

of the murine cecal microbiome over 24 hours by 16S rRNA gene sequencing and 

bioinformatics analyses revealed day and night rhythms in the healthy gut microbiome. 

Second, we noted that these diurnal microbial rhythms were not affected by MI. However, 

antibiotics disrupted the composition and functionality of the gut microbiome. Next, we 

investigated microbial rhythms in the ClockΔ19/Δ19 mice, a canonical genetic model of 

circadian disruption [47, 68], and found that gut microbial rhythms were altered in these 

mice. Fifth, we found that a functional circadian clock mechanism in the host was necessary 

for the benefits conferred by the gut microbiome on cardiac repair. That is, in contrast 

to the WT mice, an intact gut microbiome did not appear to benefit HF outcomes in the 

Mistry et al. Page 13

J Mol Cell Cardiol. Author manuscript; available in PMC 2024 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ClockΔ19/Δ19 mice. The divergent outcomes may be related to findings that ClockΔ19/Δ19 

mice have altered immune cell recruitment to infarcted myocardium post-MI [39], and 

impaired cardiac hypertrophy responses [36]. Thus, benefits for cardiac repair in the 

ClockΔ19/Δ19 mice may be attenuated by downstream circadian dependent inflammatory 

and/or hypertrophy responses. Although beyond the scope of this study, it would be 

interesting to investigate if these findings are specific to CLOCK, or also apply to other 

core mechanism factors. This is especially interesting as pharmacology is being developed 

to target components of the circadian mechanism, and early studies suggest that it can 

benefit HF outcomes [40]. To further investigate the circadian influence on gut physiology, 

we used a model where circadian rhythms in the gut were altered, without disrupting the 

host. Thus, the final approach that we used to investigate the circadian influence on gut 

physiology and HF outcomes involved a time-of-day restricted feeding (TRF) approach. 

Mice are nocturnal and preferentially eat during the dark phase, so light-phase restricted 

feeding has been shown to cause a 12-hour phase shift in the microbiome, without affecting 

the central pacemaker [54, 58]. TRF has also been used therapeutically to improve benefits 

in experimental [106, 107], and clinical [108–110] metabolic studies. Moreover, studies have 

demonstrated that the benefits of TRF can be attributed to improving the day/night profile of 

the gut microbiome, and consequently the diurnal functions of the gut [78, 111]. However, 

this has not yet been demonstrated to benefit cardiac repair. In this study, we found that 

feeding restricted to the animal’s wake-time, but not sleep-time, improved cardiac healing 

post-MI, demonstrating the importance of the circadian influence on the gut microbiome. 

This opens the door for feasible circadian-based translational approaches, such as TRF, to 

influence gut biology and improve cardiac post-MI and HF outcomes in patients.

These circadian approaches are especially translationally relevant to individuals in our 

society who experience disrupted circadian biology. Some common examples of how we 

experience circadian biology disruption include night-time shift work [112], circadian 

rhythm sleep-wake disorders (e.g. reviewed in [113]), social jet lag [114], or nocturnal 

sleep disorders like obstructive sleep apnea (e.g. reviewed in [115]). Importantly, individuals 

with disturbed circadian rhythms are more susceptible to cardiovascular diseases, and have 

worse outcomes [116–121]; also reviewed [45, 46]. Similarly, recent experimental studies 

also suggest that circadian misalignment may be relevant to intensive care settings [39], 

impairing healing in our most vulnerable patients. These and other studies have led to 

the development of a new field of medicine, called circadian medicine, and it may be 

especially relevant to the treatment of cardiovascular diseases [122]. Promising translational 

applications to add to this toolbox then, are strategies to recapitulate the normal diurnal gut 

physiology and the benefits that accrue to patients with cardiovascular disease.

5. Conclusions

The contributions of gut physiology to how we heal from disease are only beginning to 

come to light; this study clearly demonstrates that it is an important factor to consider for 

reducing post-MI adverse remodeling and progression to HF in mice. In this study, we 

also demonstrate that the circadian influence on gut physiology plays an important role 

in benefiting cardiac repair. Our findings are certainly not conclusive for human patients, 

but at a minimum they focus attention on the pervasive and possibly detrimental effects of 
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disturbing our circadian gut physiology on cardiovascular repair processes. We hope our 

preclinical study will stimulate translation of basic circadian biology concepts to clinical 

cardiovascular health, such as maintaining a normal diurnal environment, promoting diurnal 

gut physiology, and by applying circadian strategies to benefit patients with cardiovascular 

disease, leading to longer and healthier lives.
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Fig. 1. 
The gut microbiome displays time-of-day rhythmicity. (A) Diurnal rhythms in microbiome 

abundance as determined by 16S rRNA sequencing, from cecal samples taken at 6 serial 

time points (ZT03, 07, 11, 15, 19, 23) over 24 hours. The top 5 murine phyla are plotted 

to show relative differences in abundance across the diurnal cycle. Each corner of the plot 

represents one time point, and each plot represents 24 hours (n=5 mice per time point). 

See data values in Supplementary Table 1. (B) Antibiotics do not appear to affect circadian 

activity as running wheel actigraphy under a normal light dark cycle (LD, top) and in 
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constant darkness (DD, bottom) is comparable for wildtype (WT) mice, and (C) mice given 

antibiotics (AN) for 3 weeks (WT+AN), and D) they show similar period profiles (n≥5 mice 

per group, mean ± SEM). (E) Gut microbial disruption due to antibiotics was validated 

by culture on LB agar plates (fecal samples from healthy WT mice (AN-, left), 1 day 

of antibiotics (AN+, middle), and quantified (right), and (F) long term quantified by flow 

cytometry (antibiotics administered for up to 21 days, followed by recovery (R), all samples 

were collected at ZT03, n=5 animals per group, *p<0.0001 by Student’s t-test, mean ± 

SEM. (G) Relative abundance of cecal microbial phyla at day 0, 1, 2, 3, 5, 7, 14, 21 of 

antibiotics, and at recovery (day 7 of no antibiotics), and (H) and at day 7, 14, 21 post-MI 

(+/−AN), all samples were collected at ZT03, n=5 animals per time point, see data values 

in Supplementary Table 2. (I) Increased gene expression of biomarkers of heart failure Anf, 
Bnp, and Rcan1 in disrupted-HF versus normal-HF hearts (n≥3 hearts per group, *p<0.05 by 

Student’s t-test, mean ± SEM).
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Fig. 2. 
Gut microbial ecosystem derangement affects HF outcomes. (A) Disrupted-HF mice had 

worse outcomes including increased left ventricular internal dimensions at diastole (LVIDd) 

and systole (LVIDs), and decreased % ejection fraction (%EF) and % fractional shortening 

(%FS), as measured by echocardiography for up to 10 weeks HF (*p<0.05 Disrupted-HF 

(3 weeks) vs. all other groups by two-way ANOVA, followed by a Tukey post-hoc test), 

and (B) shifted in vivo hemodynamic pressure-volume loops (representative image), and 

(C) although initial infarct size was the same at 6 hours post-infarction (left, initial infarct 
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size (%) as quantified by area at risk:left ventricle (AAR:LV), infarct area:LV (IN:LV), and 

IN:AAR), the disrupted-HF mice developed bigger hearts (greater heart weight, HW) and 

increased HW: to body weight (BW) ratio by 10 weeks HF, (n=7 mice per group in each 

study, except 4 mice per group in the infarct size study, *p<0.05 Disrupted-HF (3 weeks) 

vs. all other groups by two-way ANOVA, followed by a Tukey post-hoc test, mean ± SEM, 

see data values in Table 1). (D) The disrupted-HF hearts also showed greater LV dilation 

by histology (more equidistant sections) and (E) close-up of infarct regions by Masson’s 

trichrome, and (F) quantification revealing greater absolute scar size and (G) thinner infarcts, 

(n=4 hearts per group, *p<0.002 by Student’s t-test, mean ± SEM). (H) Inflammasome 

mRNA components, and (I) decreased levels of IL-1b and IL-18 inflammasome related 

cytokines in the heart at 24 hours post-infarction, (n>3 hearts per group, *p<0.05 by 

Student’s t-test, mean ± SEM).
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Fig. 3. 
Gut microbial disruption leads to changes in leukocyte recruitment to infarcted myocardium 

(scatter plot on left, averages on right). (A) CD45+cells, (B) cardiac myeloperoxidase (MPO, 

measure of neutrophil infiltration), (C) CD11b+F4/80+ macrophages in the heart, and (D) 

CD4+ T cells. Hearts were collected at days 0, 1, 2, 3, 5, or 7 post-MI as indicated, (n≥5 

hearts per time point per group, with 3 technical replicates, *p<0.05 by Student’s t-test, 

mean ± SEM, see data values in Supplementary Table 3, and see Supplementary Fig. 1 for 

gating strategy.
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Fig. 4. 
Altered gut microbiome metabolites in disrupted-HF mice. (A) Representative WT murine 
1H nuclear magnetic resonance (NMR) spectrum from cecal contents. (B) Mice with 

gut microbiome disruption had reduced concentrations of short-chain fatty acids (SCFA) 

including acetate, (C) propionate, (D) butyrate, and (E) reduced glucose, and (F) increased 

cholate. Samples collected at ZT03 in the treatment groups indicated on the x-axes, where 

D=day of collection, AN=antibiotics, ‡R=recovery, *p<0.05 AN vs. D0 by Student’s t-test. 
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**p<0.05 Disrupted-HF vs. Normal-HF by Student’s t-test, mean ± SD, see data values in 

Supplementary Table 4.
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Fig. 5. 
Microbiome reconstitution improves HF outcomes. (A) Experimental outline, mice received 

antibiotics for 1 week before infarction, and then randomized to either i) no intervention 

(disrupted-HF) or ii) were co-housed immediately post-MI for 1 week, to reconstitute 

their microbiome (reconstituted-HF). (B) Reconstituted-HF mice had better outcomes than 

the disrupted-HF mice, including increased LVIDd, LVIDs, and decreased %EF, %FS, 

as measured by echocardiography, and better vivo hemodynamic pressure-volume loops 

(representative image) by 8 weeks HF, (n=6–7 mice per group, *p<0.05 Disrupted-HF(1 
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week) vs. Reconstituted-HF by Student’s t-test, mean ± SEM, see data values in Table 2). 

(C) The hearts of the reconstituted-HF mice also had less LV dilation by histology (fewer 

equidistant sections) and (D) close-up of infarct regions by Masson’s trichrome, and (E) 

quantification revealing smaller absolute scar size and (F) greater integrity of infarcts, (n=3–

4 hearts per group, *p<0.05 by Student’s t-test, mean ± SEM). (G) Relative abundance of 

cecal microbial phyla normalizing in the reconstituted-HF group. (H) Illustration showing 

how gut microbial disruption may be altering gut-derived metabolic processes leading 

to larger infarcts and poorer outcomes, and how microbiome reconstitution shortly after 

infarction rescues cardiac outcomes.
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Fig. 6. 
CLOCK influences the microbiome. (A) Representative genotyping of ClockΔ19/Δ19 mice 

homozygous for the CLOCK point mutation (Δ19/Δ19), heterozygous littermates (+/Δ19), 

and wild-type littermates (+/+), (B) running wheel actigraphy of mice under normal LD and 

in DD, and (C) feeding patterns (left - food intake in the light versus dark period, middle - 

%food intake light versus dark period, right – total food intake over 24 hours; *p<0.05 by 

Student’s t-test, mean ± SEM). (D) WT mice exhibit diurnal (light, murine sleep time) (dark, 

murine wake time) rhythms in their cecal microbiota composition, and these profiles differ 

Mistry et al. Page 32

J Mol Cell Cardiol. Author manuscript; available in PMC 2024 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in mice lacking a functional CLOCK. Left – WT 24 hour diurnal rhythms (white bars = light 

period / sleep time, black bars – dark period / wake time) plotted at the family level with 

JTK cycle values in brackets; middle left - WT sleep vs. wake abundance for adjacent family 

member; middle right - ZT03 (sleep time) and ZT15 (wake time) representative time points; 

far right - ClockΔ19/Δ19 at ZT03 and ZT15 time points. RA = Relative Abundance, *p<0.05 

by Student’s t-test, mean ± SEM. See also Supplementary Table 5.
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Fig. 7. 
Circadian influence on gut physiology improves cardiac repair. (A) Mice with a disrupted 

circadian mechanism (ClockΔ19/Δ19) show no benefits on cardiac remodeling, even in the 

presence of an intact microbiome, by echocardiography to 8 weeks HF, (n=7 mice per group, 

*p<0.05 ClockΔ19/Δ19 mice vs. all other groups by two-way ANOVA, followed by a Tukey 

post-hoc test, mean ± SEM). See data values in Supplementary Table 6, Supplementary Fig. 

2 for histopathology data and infarct region analysis, flow cytometry leukocyte recruitment 

to infarcted myocardium, and Supplementary Fig. 1 for flow cytometry gating strategy. 
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n=8 hearts per time point per group, three technical repeats for each, p>0.05 by Student’s 

t-test, mean ± SEM. For NMR data for cecal SCFAs acetate, propionate, and butyrate, n≥6 

mice per group, *p<0.001 by Student’s t-test, mean ± SEM. See Supplementary Fig. 3 for 

microbiome reconstitution experiments. (B) WT mice with time restricted feeding (TRF) 

during the dark phase (wake time) had significantly improved outcomes as compared to TRF 

mice during the light phase (sleep time), by echocardiography to 4 weeks HF, (n≥8 mice per 

group, *p<0.01 by Student’s t-test, mean ± SEM, see data values in Table 3. (C) Illustration 

highlighting the circadian influence on gut physiology to benefit cardiac repair.
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Table 1.

Microbiome benefits long-term cardiac structure and function post-MI.

Disrupted-HF Normal-HF Disrupted-Sham Sham

Echocardiography (n) 8 8 8 8

Baseline

 LVIDd (mm) 3.93±0.04 3.95±0.02 3.92±0.05 3.95±0.02

 LVIDs (mm) 2.34±0.04 2.33±0.03 2.34±0.04 2.33±0.03

 EF (%) 77.48±0.70 77.99±0.66 77.10±0.77 77.94±0.70

 FS (%) 40.51±0.62 40.88±0.61 40.24±0.72 40.86±0.64

 HR (bpm) 470±5 463±5 468±5 475±7

1-week post-infarction

 LVIDd (mm) 5.42±0.15* 4.97±0.15 4.03±0.03 4.09±0.03

 LVIDs (mm) 4.33±0.15* 3.73±0.18 2.40±0.04 2.43±0.02

 EF (%) 47.12±1.79** 56.20±2.48 77.40±0.71 77.56±0.62

 FS (%) 20.26±0.94** 25.41±1.46 40.40±0.64 40.54±0.56

 HR (bpm) 451±11 462±6 461±7 460±14

4-weeks - HF

 LVIDd (mm) 5.76±0.12* 5.26±0.19 4.06±0.04 4.07±0.05

 LVIDs (mm) 4.63±0.11** 4.03±0.18 2.40±0.04 2.44±0.05

 EF (%) 46.04±0.70** 53.27±1.62 78.01±0.65 77.11±0.60

 FS (%) 19.68±0.36** 23.64±0.89 40.97±0.61 40.16±0.52

 HR (bpm) 456±13 473±6 475±7 470±7

8-weeks - HF

 LVIDd (mm) 5.96±0.17* 5.39±0.16 4.13±0.02 4.15±0.04

 LVIDs (mm) 4.81±0.16** 4.15±0.15 2.45±0.03 2.46±0.03

 EF (%) 45.18±1.01** 52.31±1.48 77.66±0.54 77.67±0.47

 FS (%) 19.27±0.52** 23.09±0.81 40.69±0.48 40.63±0.43

 HR (bpm) 473±14 460±12 479±7 478±8

10-weeks - HF

 LVIDd (mm) 6.24±0.23* 5.55±0.18 4.14±0.03 4.15±0.05

 LVIDs (mm) 5.13±0.22** 4.37±0.17 2.49±0.02 2.50±0.05

 EF (%) 42.20±1.31** 49.26±1.31 76.72±0.52 76.72±0.80

 FS (%) 17.78±0.64** 21.39±0.70 39.78±0.45 39.80±0.69

 HR (bpm) 483±7 468±9 474±6 469±10

Hemodynamics (HF)

 LVESP (mmHg) 80.86±1.53** 90.46±1.12 96.37±1.17 98.04±1.91

 LVEDP (mmHg) 2.79±0.81 1.21±0.91 0.40±0.54 0.25±0.40

 LVESV (μl) 43.86±0.80** 34.39±2.04 8.35±0.38 8.30±1.45

 LVEDV (μl) 60.20±0.99** 54.53±1.35 34.06±0.63 33.02±1.02
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Disrupted-HF Normal-HF Disrupted-Sham Sham

 +dP/dtmax (mmHg/sec) 5102±98* 7176±790 10506±352 10260±365

 -dP/dtmin (mmHg/sec) -4672±104* -6317±836 -9394±562 -9538±302

 SBP (mmHg) 81.76±1.18** 89.38±1.01 98.11±0.71 97.07±1.92

 DBP (mmHg) 54.68±1.78* 59.57±1.09 63.50±1.15 63.76±1.18

 MAP (mmHg) 63.07±1.38** 68.81±0.96 74.29±0.71 74.11±1.08

 HR (bpm) 544±13 557±18 506±16 549±17

Morphometry (HF)

 BW (g) 29.30±0.89 31.72±0.98 31.27±0.68 27.86±0.77

 HW (mg) 210±14.32* 164±14.09 118±2.18 122±4.25

 HW:BW (mg/g) 7.06±0.51* 5.08±0.32 3.78±0.05 4.18±0.11

 HW:TL (mg/mm) 10.53±0.72* 7.73±0.45 5.87±0.10 6.10±0.20

LV, left ventricle; LVIDd/s, LV internal dimensions at diastole/systole; %EF, % ejection fraction; %FS, % fractional shortening; HR, heart rate; 
LVESP, LV end systolic pressure; LVEDP, LV end diastolic pressure; LVESV, LV end systolic volume; LVEDV, LV end diastolic volume; 
dP/dtmax and dP/dtmin, maximum and minimum first derivative of LV pressure; SBP, systolic blood pressure (BP); DBP, diastolic BP; MAP, mean 

arterial pressure; BW, body weight; HW, heart weight; TL, tibia length. n=7 mice for morphometrics and hemodynamics. Both HF groups are 
different from Sham by ANOVA.

*
p<0.05 Disrupted-HF (3 weeks) vs. all other groups by two-way ANOVA, followed by a Tukey post-hoc test.

**
p<0.001 Disrupted-HF (3 weeks) vs. all other groups by two-way ANOVA, followed by a Tukey post-hoc test. Values are mean±SEM.
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Table 2.

Co-housing benefits long-term cardiac structure and function after pre-MI microbiome disruption.

Disrupted-HF Reconstituted-HF Normal-HF

Echocardiography (n) 7 7 7

1-week post-infarction

 LVIDd (mm) 5.16±0.06 4.88±0.18 4.89±0.17

 LVIDs (mm) 4.04±0.06* 3.58±0.21 3.57±0.18

 EF (%) 49.93±0.91* 58.91±2.65 59.38±2.02

 FS (%) 21.67±0.50* 27.04±1.61 27.27±1.21

 BW (g) 22.45±0.44 23.81±0.32 22.48±0.38

 HR (bpm) 463±13 459±9 467±6

4-weeks HF

 LVIDd (mm) 5.73±0.15* 5.13±0.22 5.19±0.18

 LVIDs (mm) 4.52±0.14* 3.87±0.22 3.86±0.19

 EF (%) 48.78±1.04* 55.47±2.06 57.24±2.15

 FS (%) 21.15±0.54* 24.93±1.18 26.00±1.23

 BW (g) 25.12±0.46 27.40±0.52 24.95±0.53

 HR (bpm) 475±8 455±12 457±11

8-weeks HF

 LVIDd (mm) 6.03±0.14* 5.30±0.23 5.42±0.21

 LVIDs (mm) 4.84±0.14* 4.02±0.24 4.14±0.21

 EF (%) 46.01±0.99** 54.55±2.13 53.41±2.12

 FS (%) 19.73±0.50** 24.42±1.21 23.75±1.18

 BW (g) 28.39±0.74 31.11±0.69 28.67±0.84

 HR (bpm) 471±9 479±10 452±10

Hemodynamics (HF)

 LVESP (mmHg) 83.28±1.74* 90.55±1.65 92.11±1.48

 LVEDP (mmHg) 2.65±0.82 2.71±1.94 1.08±0.49

 LVESV (μl) 35.84±3.61 29.34±1.40 32.02±2.08

 LVEDV (μl) 58.02±1.80 54.07±1.20 53.41±2.48

 +dP/dtmax(mmHg/sec) 5370±163* 7190±492 7304±467

 -dP/dtmin (mmHg/sec) -4562±151* -6138±486 -6179±326

 SBP (mmHg) 83.44±0.97* 92.05±0.94 90.39±1.14

 DBP (mmHg) 53.85±1.61 57.47±1.64 57.50±1.02

 MAP (mmHg) 63.08±1.13* 68.31±1.30 67.78±0.65

 HR (bpm) 508±29 474±23 504±23

LV, left ventricle; LVIDd/s, LV internal dimensions at diastole/systole; %EF, % ejection fraction; %FS, % fractional shortening; BW, body weight; 
HR, heart rate; LVESP, LV end systolic pressure; LVEDP, LV end diastolic pressure; LVESV, LV end systolic volume; LVEDV, LV end diastolic 
volume; dP/dtmax and dP/dtmin, maximum and minimum first derivative of LV pressure; SBP, systolic blood pressure (BP); DBP, diastolic BP; 

MAP, mean arterial pressure; HR, heart rate. n=6 mice for hemodynamics.
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*
p<0.05 Disrupted-HF(1 week) vs. Reconstituted-HF by Student’s t-test.

**
p<0.01 Disrupted-HF(1 week) vs. Reconstituted-HF by Student’s t-test. Values are mean±SEM.
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Table 3.

Time Restricted Feeding significantly improves post-MI cardiac structure and function.

Light-Restricted Feeding Dark-Restricted Feeding

Echocardiography (n) 7 9

Baseline

 LVIDd (mm) 3.95±0.03 3.98±0.02

 LVIDs (mm) 2.40±0.03 2.39±0.02

 EF (%) 76.64±0.33 77.06±0.19

 FS (%) 39.64±0.29 39.99±0.16

 BW (g) 22.25±0.33 22.16±0.32

 HR (bpm) 461±9 475±5

1-week post-infarction

 LVIDd (mm) 4.78±0.04* 4.57±0.06

 LVIDs (mm) 3.53±0.05** 3.22±0.07

 EF (%) 58.00±1.22** 63.45±1.16

 FS (%) 26.27±0.77** 29.75±0.77

 BW (g) 23.72±0.37 23.26±0.40

 HR (bpm) 463±9 468±9

4-weeks post-infarction

 LVIDd (mm) 5.01±0.06** 4.75±0.05

 LVIDs (mm) 3.81±0.08** 3.48±0.06

 EF (%) 54.04±1.27** 58.93±0.84

 FS (%) 23.95±0.73** 26.82±0.52

 BW (g) 26.16±0.60 25.40±0.49

 HR (bpm) 469±7 481±7

LV, left ventricle; LVIDd/s, LV internal dimensions at diastole/systole; %EF, % ejection fraction; %FS, % fractional shortening; BW, body weight; 
HR, heart rate.

*
p<0.05 Dark-Restricted Feeding (DF-HF) vs. Light-Restricted Feeding (LF-HF) by Student’s t-test. *p<0.01 Dark-Restricted Feeding (DF-HF) 

vs. Light-Restricted Feeding (LF-HF) by Student’s t-test. Mean ± SEM.

J Mol Cell Cardiol. Author manuscript; available in PMC 2024 April 19.


	Abstract
	Introduction
	Materials and Methods
	Experimental animals and protocol
	DNA extraction and 16S rRNA gene sequencing
	Antibiotic induced gut microbiome disruption
	Left anterior descending LAD coronary artery ligation
	Cardiac gene expression
	Echocardiography and in vivo hemodynamics
	Evans Blue and 2,3,5-Triphenyltetrazolium chloride (TTC) Staining
	Cardiac histopathology
	Enzyme-linked immunosorbent assays ELISA
	Flow cytometry analyses
	Myeloperoxidase MPO assay
	1H nuclear magnetic resonance spectroscopy
	Treatment to reconstitute gut microbiota
	Circadian System Influence on Gut Physiology and Benefits for Cardiac Repair
	Statistics

	Results
	Circadian Influence on the Gut Microbiome
	Gut Microbiome and Heart Failure HF Outcomes
	Intact Gut Microbiome Reduces Benefits Cardiac Remodeling
	Gut Microbial Derangement Leads to Exacerbated Cardiac Hemodynamics in HF
	Gut Microbial Derangement and Cardiac Morphometrics
	Aberrant Inflammatory Responses in the Early Remodeling Period
	Altered Gut Microbiome Metabolites and HF Outcomes
	Therapeutically Reconstituting the Microbiome Recapitulates Beneficial Healing and Improves HF Outcomes
	Circadian Influence on Gut Physiology to Improve HF Outcomes

	Discussion
	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Table 1.
	Table 2.
	Table 3.

