Skip to main content
. 2024 Apr 5;18:1385778. doi: 10.3389/fnbot.2024.1385778

Table 1.

Graph lifelong learning method comparison.

Methods Approach
Architectural Rehearsal Regularization Reference
Feature Graph Networks Yes No No Sarlin et al. (2020) and Zhou et al. (2022)
Hierarchical Prototype Networks Yes No No Li et al. (2023) and Zhang et al. (2023a)
Experience Replay GNN Frame work No Yes No Ahrabian et al. (2021a) and Zhou and Cao (2021b)
Lifelong Open-world Node Classification No Yes No Galke et al. (2021) and Zhang et al. (2022)
Disentangle-based Continual Graph Representation Learning No No Yes Kou et al. (2020) and Zhang et al. (2023b)
Graph Pseudo Incremental Learning No No Yes Tan et al. (2022) and Su et al. (2023)
Topology-aware Weight Preserving No No Yes Natali et al. (2020) and Liu et al. (2021)
Translation-based Knowledge Graph Embedding No No Yes Yoon et al. (2016) and Li et al. (2023)
Continual GNN No Yes Yes Han et al. (2020) and Wang et al. (2020)
Lifelong Dynamic Attributed Network Embedding Yes Yes Yes Li et al., 2017, Yoon et al. (2017), and Liu et al. (2021)