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Abstract
Understanding of the functional states and clonal dynamics of T cells after immune checkpoint blockade (ICB) is valuable for 
improving these therapeutic strategies. Here we performed Smart-seq2 single-cell RNA sequencing (scRNA-seq) analysis on 
3,110 peripheral T cells of non-small cell lung cancer (NSCLC) patients before and after the initiation of programmed cell 
death protein 1 (PD-1) blockade. We identified individual peripheral T cell clones based on the full-length T cell receptor 
(TCR) sequences and monitored their dynamics during immunotherapy. We found a higher cytotoxic activity in the tumor-
related CD4+ T cell clones than in the CD8+ T cell clones. Based on a large tumor-related CD4+ T cell clone, we observed 
a dramatically decreased abundance after progression, as well as a reduction in the percentage of PD-1+ T cells. We also 
detected 25 genes, such as CXCR4, DUSP2 and ZFP36, that were noticeably upregulated or downregulated following pro-
gression. In addition, the pseudotime trajectory of CD8+ T cell clones corresponded to the treatment time points, showing a 
decreased activity in the “cytokine and cytokine receptor interaction” pathway. These analyses provided an insight into the 
dynamics of peripheral T cell clones during PD-1 blockade in NSCLC.
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Abbreviations
DEG	� Differentially expressed gene
ICB	� Immune checkpoint blockade
NSCLC	� Non-small cell lung cancer

PD-1	� Programmed cell death protein 1
PD-L1	� Programmed death-ligand 1
scRNA-seq	� Single-cell RNA sequencing
TCR​	� T cell receptor

Introduction

The immune checkpoint blockade (ICB) that targets pro-
grammed cell death protein 1 (PD-1) has led to clinical 
success in treating many human tumor types [1]. Despite 
the unprecedented durable response rates, many patients 
do not benefit from the treatment (primary resistance), and 
some responders relapse after a period of initial response 
(acquired resistance). Identifying the influencing factors 
for response to PD-1 blockade, therefore, remains an urgent 
need for understanding and expanding the use of such cancer 
immunotherapy.

PD-1 blockade can overcome T cell dysfunction result-
ing from the suppressive tumor microenvironment. Multiple 
mechanisms of T cell biology have been linked to the dif-
ferent responses of individuals, and the predictive biomark-
ers of ICB have been investigated comprehensively. The 
first well-described T cell biomarker was the number of 
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infiltrating CD8+ T cells detected before [2] or during early 
treatment [3]. Subsequently, several studies have revealed 
a connection between ICB response and T cell states, such 
as T cell activation, exhaustion, cytotoxicity, and interferon 
responses [4–6]. Other identified biomarkers include the 
abundance of partially exhausted CD8+ T cells in respond-
ing tumors [7] and the magnitude of T cell reinvigoration in 
relation to pre-treatment tumor burden in blood [8].

Genomic analyses of bulk tumors have revealed the 
biological pathways for tumor cells to evade immune sur-
veillance, implicating multiple reliable response biomark-
ers [9–12]. While a deconvolution analysis of bulk RNA 
sequencing (RNA-seq) can infer the cell composition of 
the tumor [13], it cannot adequately illustrate the cancer-
immune interplay at single-cell resolution. Single-cell RNA 
sequencing (scRNA-seq) is able to overcome this limitation. 
Recently, scRNA-seq analysis has been demonstrated for 
its advantage in illustrating immune landscapes of multiple 
human tumor types at single-cell resolution [14–16].

An assessment of patients’ longitudinal data can pro-
vide an insight into acquired resistance to ICB [17]. Since 
tumor biopsy is hard to obtain and peripheral blood is 
the minimally invasive biopsy from progressed non-small 
cell lung cancer (NSCLC) patients, patients’ blood cells 
are ideal for searching potential biomarkers. Although 
researchers have analyzed the changes of peripheral T cells 
during anti-PD-1 treatment in NSCLC patients through 
bulk RNA-seq or T cell receptor (TCR) sequencing, they 
have not conducted a granular-level investigation on sin-
gle cells [18, 19]. Here we applied large-scale Smart-seq2 
scRNA-seq on longitudinal peripheral T cells of NSCLC 
patients with PD-1 blockade, identified individual periph-
eral T cell clones based on the full-length TCR sequences 
and monitored their dynamics during immunotherapy 
(Fig. 1a).

Fig. 1   The scheme of study design and sample collection. a Over-
view of the study design. Peripheral blood from NSCLC patients with 
anti-PD-1 treatment were collected at multiple time points during the 
treatment, including pre-treatment, on-treatment, and progression. 
Single-cell RNA sequencing was applied to individual T cells, and 
the output data were used for expression analysis and TCR profiling. 

b Computerized tomography (CT) scans of pleural in responder Pt1 
at pre-treatment, on-treatment and progression. CT scans of pleural 
in nonresponder Pt4 at pre-treatment and on-treatment. c Gating strat-
egy for single T cell sorting. CD8+ T cells and CD4+ T cells were 
enriched by sorting 7AAD−CD3+CD8+ and 7AAD−CD3+CD4+, 
respectively



2601Cancer Immunology, Immunotherapy (2020) 69:2599–2611	

1 3

Materials and methods

Study design

This study relies on a phase III, open-label, randomized, 
multiple centers study of Nivolumab compared to Docetaxel 
for patients with advanced or metastatic NSCLC, who had 
previously received conventional therapy (Check-Mate 078). 
The four eligible patients had histologically confirmed stage 
IV adenocarcinoma or squamous cell carcinoma, with East-
ern Corporation Oncology Group (ECOG) performance 
status of zero. Tumor response for patients was defined by 
Response Evaluation Criteria in Solid Tumors (RECIST 
v1.1). Partial response: target lesion reduction more than 
30%; progression disease: target lesion increase more than 
20%; stable disease: target lesion size change between par-
tial response and progressive disease. All patients received 
nivolumab at a dose of 3 mg/kg body weight every 3 weeks. 
Treatment beyond progression was permitted if protocol 
defined criteria were met, including investigator assessed 
clinical benefit, no rapid disease progression, no unaccepta-
ble toxicity and a stable performance status.

PD‑L1 expression detection 
by immunohistochemistry

The PD-L1 expression of formalin-fixed, paraffin-embed-
ded (FFPE) specimens were measured by PD-L1 IHC 22C3 
pharmDx analysis on the DAKO Autostainer Link 48 (Agi-
lent Technologies) and VENTANA PD-L1 (SP142) assays 
on Ventana BenchMark (Ventana Medical System).

Extraction, target capture and sequencing 
of plasma DNA

The peripheral blood was centrifuged in the Streck tubes 
at 1600 g for 20 min at room temperature to separate the 
plasma. The QIAamp Circulating Nucleic Acid Kit (Qiagen) 
was used to extract circulating tumor DNA (ctDNA) from 
the plasma. The ctDNA libraries were prepared by Accel-
NGS 2S Plus DNA Library Kit (SWIFT) with unique identi-
fiers to tag individual DNA molecules. The captured librar-
ies for plasma ctDNA were loaded into the NextSeq 500 
(Illumina) to run 75 bp paired-end sequencing according to 
the manufacturer’s instructions.

The details of our established pipeline based on the can-
cer gene panel NCC-GP150 can be found elsewhere [20]. 
The 150 genes for panel sequencing are listed in Supple-
mentary Table 1. The ctDNA variant-calling method was 
integrated with digital barcodes to tag the individual DNA 
molecules. All the raw variants were then filtered SNP by 

the population frequency > 0.015 in dbSNP, 1000Genome 
and ESP6500. Meanwhile, variants were seemed as germline 
and were removed if their allele frequencies were larger than 
30%.

Neoantigen prediction

The 4-digit HLA class I alleles of each patient were deter-
mined by OptiType [21]. For each non-synonymous muta-
tion, we predicted the binding affinity IC50 between the 
mutant peptides (9–11 amino acids) and HLA types using 
NetMHCpan (version 4.0) [22]. The binding affinity thresh-
old for neoantigens was IC50 ≤ 500 nM.

Single‑cell preparation and sequencing

The peripheral blood mononuclear cells were isolated using 
HISTOPAQUE-1077 (Sigma-Aldrich) solution as previ-
ously described [16]. We sorted CD8+ and CD4+ T cells by 
flow cytometry. Single-cell suspensions were stained with 
antibodies against CD3, CD4 and CD8 (anti-human CD3, 
UCHT1; anti-human CD4, OKT4; anti-human CD8, OKT8) 
for flow cytometry, performed on a BD Aria III instrument. 
CD8+ T cells and CD4+ T cells were enriched and sepa-
rated into 96-well plates by gating 7AAD−CD3+CD8+ and 
7AAD−CD3+CD4+ T cells, respectively.

Single-cell transcriptome amplifications were performed 
according to the Smart-seq2 protocol [23]. The ampli-
fied cDNA products were purified with 1 × Agencourt XP 
DNA beads (Beckman). A procedure of quality control was 
performed following the first round of purification, which 
included the detection of CD3D by quantitative PCR (for-
ward primer, 5′-TCA​TTG​CCA​CTC​TGC​TCC​-3′; reverse 
primer, 5′-GTT​CAC​TTG​TTC​CGA​GCC​-3′) and fragment 
analysis by analyzer AATI. For those single-cell cDNA 
pass quality control (cycle threshold < 30), the cDNA prod-
ucts were further purified with 0.5 × Agencourt XP DNA 
beads, and the concentration of each sample was quantified 
by Qubit HsDNA kits (Invitrogen). Multiplex libraries were 
constructed and amplified using the TruePrep DNA Library 
Prep Kit V2 for Illumina (Vazyme Biotech). The librar-
ies were then purified with Agencourt XP DNA beads and 
pooled for quality assessment by fragment analyzer. Finally, 
purified libraries were analyzed by an Illumina HiSeq 4000 
sequencer with 150-bp paired-end reads.

Quality control and preprocessing of scRNA‑seq 
data

Low-quality scRNA-seq read pairs were filtered out if at 
least one end of the read pair met one of the following 
criteria: (1) ‘N’ bases account for ≥ 10% read length; (2) 
bases with quality < 5 account for ≥ 50% read length; and 
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(3) the read contains adaptor sequence. The filtered read 
pairs were processed using Kallisto (version 0.43.0) [24] and 
human genome reference GRCh38 to obtain the gene expres-
sion matrix. Low-quality cells were filtered if the library 
size < 100,000 or the number of expressed genes < 1000 
(counts larger than zero). Furthermore, if the proportion of 
mitochondrial gene counts was larger than 10%, these cells 
were discarded. After discarding genes with average counts 
of fewer than one, a total of 11,535 genes and 3,042 cells 
were retained in the final expression table.

Unsupervised clustering analysis

The expression tables of CD8+ T cells and CD4+ T cells 
were fed into the unsupervised clustering pipeline separately. 
The top 1000 genes with the largest variance were selected 
for single-cell consensus clustering (SC3) [25]. Hierarchical 
clustering with complete agglomeration was performed on 
the SC3 consensus matrix and 2 clusters were inferred. The 
t-SNE method implemented in R package Rtsne was used 
for clustering visualization.

When the clustering results were obtained, one-way 
ANOVA implemented by R function ‘aov’ was performed 
to identify the signature genes among the clusters. R func-
tion TukeyHSD was used to identify which cluster pairs 
showed a significant difference. A gene was defined as being 
significantly differentially expressed based on the follow-
ing criteria: (1) adjusted P value of F test < 0.05 (Benja-
mini–Hochberg method); (2) the absolute difference of any 
one significant cluster pair > 1 (P value of Tukey’s honest 
significant difference method).

T cell receptor analysis

TraCeR was used to determine the T cell receptor (TCR) 
sequences of each T cell [26]. The outputs of TraCeR include 
the assembled nucleotide sequences for both α- and β-chains, 
the coding potential of the nucleotide sequences (that is, 
productive or not), the translated amino acid sequence, the 
complementarity-determining region 3 (CDR3) sequences 
and the estimated TPM value of α- or β-chains. Only cells 
with TPM values larger than 10 for the α- and β-chains were 
kept. For cells with two or more α- or β-chains assembled, 
the αβ-pair that was productive and of the highest expres-
sion level was defined as the dominant αβ-pair in the cor-
responding cell. If two cells had identical α–β pairs, those 
were identified as clonal T cells.

Bulk TCR β‑chain sequencing

Bulk TCR β-chain sequencing was performed on pre-treat-
ment tumor biopsies. Genomic DNA from tumor formalin-
fixed, paraffin-embedded (FFPE) tissues was extracted by 

the DNeasy Tissue Kit (Qiagen) following the standard 
protocols. Generally, the CDR3 libraries were constructed 
by two-round PCRs. During the first round of amplifica-
tion, only ten cycles were used to amplify CDR3 fragments 
using the primers specific against each V and J genes, and 
600 ng of DNA was used as template for each sample. The 
target fragments of multiplex-PCR products were purified 
on magnetic beads (Agencourt, Beckman). In the second 
round, amplification was performed using universal primers. 
Size selection was run by agar gel electrophoresis and target 
fragments between 200–350 bp was retrieved and purified by 
QIAquick Gel Purification Kit (Qiagen). After gel purifica-
tion, the PCR product was subjected to sequencing using the 
NextSeq500 (Illumina).

Differential gene expression analysis

Differentially expressed gene (DEGs) among samples at 
multiple treatment stages were detected by the linear model 
and the empirical Bayes method with R package limma (ver-
sion 3.36.3). We used stringent significance thresholds for 
adjusted P < 0.01 (Benjamini–Hochberg multiple testing 
correction) and absolute log2 (fold change) > 2.

Trajectory analysis

To characterize the potential process of T cell state changes 
and determine the pseudotime trajectory of the expanded T 
cell clone, we applied the Monocle algorithm (version 2) 
[27] with the top 500 signature genes based on the rank of F 
statistic generated by ANOVA. Cells were ordered through 
the inferred pseudotime to indicate their differentiation 
progress. Then the trajectory was inferred after dimension 
reduction and cell ordering with the default parameters of 
R package Monocle. Gene set enrichment analysis (GSEA) 
was performed by R package fgsea.

Results

Patient enrollment and single T cell sequencing

Four patients (Pt1, Pt2, Pt3 and Pt4) with stage IV NSCLC 
were enrolled in this study and received PD-1 blockade 
nivolumab as the second-line treatment (Table 1). Pt1, Pt2 
and Pt4 were diagnosed with adenocarcinoma, and Pt3 
with squamous cell carcinoma. Pt1, Pt2 and Pt3 initially 
responded to the immunotherapy, but progressed later. Pt1 
achieved partial response after 12 weeks (four cycles of PD-1 
blockade), while Pt2 and Pt3 only achieved stable disease 
during the treatment. The progression-free survival of Pt1, 
Pt2 and Pt3 were 4.3 months, 8.5 months and 11 months, 
respectively. Pt4 was a nonresponder and did not benefit 
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from the immunotherapy (Fig. 1b). Their pre-treatment biop-
sies showed programmed death-ligand 1 (PD-L1) expres-
sion from 5 to 40% by immunohistochemistry (Table 1). In 
contrast, the pre-treatment biopsy of Pt4 showed no PD-L1 
expression, consistent with its non-responsiveness [28].

We identified the genotypes of Human Leukocyte Antigen 
class I (HLA-I) genes for each patient based on the RNA-
seq data, and detected somatic mutations by 150-gene 
panel sequencing on the pre-treatment circulating tumor 
DNA (ctDNA). Combining the HLA-I and mutation data, 
we predicted the personalized neoantigens for each patient 
(Table 1). At least one neoantigen was identified in the three 
responders, such as frequent driver mutations ERBB4R1250Q, 
KRASG12D, NFE2L2G31A, KRASG12V and TP53R158L. No neo-
antigen, however, was found in Pt4, consistent with the fact 
that Pt4 was a nonresponder [29].

To monitor the T cell response to the immunotherapy, we 
collected blood samples from each responder before treat-
ment (pre-treatment) and every 6 weeks (two cycles of PD-1 
blockade) during treatment (on-treatment), until the tumor 
progressed (progression) (Fig. 1c). For the nonresponder, 
we only collected the pre-treatment blood sample. In total, 
we obtained Smart-seq2 [23] scRNA-seq data of 3,110 indi-
vidual CD8+ and CD4+ T cells. After quality control and 
filtering, we kept 3,042 (97.8%) cells for the subsequent 
analyses, including 1,624 CD8+ and 1,418 CD4+ T cells.

Clustering T cells based on gene expression profiles

To reveal the functional subtypes of the T cell population, 
we performed unsupervised clustering analysis on CD8+ and 
CD4+ T cells separately. Four stable clusters were obtained, 
including CD8-naïve, CD8-effector, CD4-naïve and CD4-
effector, which contained 237, 1,387, 902 and 516 cells, 
respectively (Fig. 2a). The cells in the CD8-naïve and CD4-
naïve clusters specifically expressed “naïve” marker genes, 
such as SELL, LEF1 and CCR7 (Fig. 2b, c); while the CD8-
effector and CD4-effector clusters were characterized by the 
high expression of GZMA, GNLY, PRF1 and GZMB, which 
are known to be associated with cytotoxic function [30]. 
Notably, the percentage of the CD8-effector and CD4-effec-
tor T cells decreased in the responders along the anti-PD-1 
treatment course (Fig. 2d).

In our dataset, 6.0% (97/1,624) of CD8+ and 10.5% (149 
/ 1,418) of CD4+ T cells were PD-1 positive, which was 
consistent with the previous report [31]. The CD4-effector 
cluster enriched PD-1+ T cells compared with the CD8-
effector cluster (P = 0.04, two-sided Student’s t test, Fig. 2e). 
In all of the three responders, we detected an increase of 
PD-1+ T cells in the CD8-effector cluster following the 
tumor progression (Fig.  2f). After the anti-PD-1 treat-
ment, the percentage of PD-1+ T cells in the CD4-effector 
cluster increased in Pt2 and Pt3. After the progression, the Ta
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percentages of PD-1+ T cells in the CD4-effector cluster 
decreased in Pt1 and Pt2, while it increased in Pt3.

As an essential proliferation marker, Ki-67 positivity has 
been reported to decrease in T cells of ICB-treated NSCLC 
patients after the tumor progression [32]. In our dataset, 
however, only 1.8% (29/1,624) of CD8+ and 2.6% (36/1,418) 
of CD4+ T cells expressed Ki-67, and we did not observe a 
decreasing pattern.

Identifying T cell clones based on TCR sequences

TCRs can be used to define T cell lineages. We used TraCeR 
[26] to assemble the full-length sequences of TCR α- and 
β-chains, and determined the TCR sequences for 98.2% 
(2,988/3,042) of the peripheral T cells. The T cells with 
identical paired αβ-chains were regarded as an identical 
clone from the same ancestry. In total, 78.0% (2,373/3,042) 
of the T cells had paired TCR αβ-chains, belonging to 1,379 
clones.

Overall, we detected 113 clonally-expanded T cell clones, 
containing at least two cells (Fig.  3a). Large expanded 
clones, with at least 6 cells, were all comprised the effector 
T cells (Fig. 3b). Different T cell clusters exhibited distinct 
fractions of clonal T cells. The CD8-effector and CD4-effec-
tor clusters had 56.5% (784/1,387) and 58.9% (304/516) of 
clonal T cells, respectively; while the CD8-naive and CD4-
naive clusters had only 2.1% (5/237) and 0.7% (6/902) of 
clonal T cells, respectively (Fig. 3c). After the anti-PD-1 
treatment, the percentage of clonal T cells in the CD4-effec-
tor cluster increased from 5.8% (3/52) to 62.5% (5/8) in Pt2 
and from 10.0% (1/10) to 51.3% (40/78) in Pt3. Following 
the tumor progression, we observed decreased fractions of 
clonal T cells in the CD8-effector and CD4-effector clusters 
in Pt1, but increased fractions in Pt2 and Pt3 (Fig. 3d).

There exists clonal overlap between peripheral T cells and 
tumor-infiltrating T cells, and it has been reported that cer-
tain T cells in both peripheral blood and tumor tissue could 
recognize some specific tumor antigens [33]. Therefore, we 
performed TCR β-chain sequencing on pre-treatment tumor 
biopsies of Pt1 and Pt4. The T cells in peripheral blood were 
defined as tumor-related, if their TCR β-sequences could be 
detected in the tumor tissue of a given patient. In responder 
Pt1, 32.4% (196/605) of CD8+ and 34.0% (180/530) of 
CD4+ T cells in blood were tumor-related; while in nonre-
sponder Pt4, only 4.4% (2/46) of CD8+ and 2.0% (1/51) of 
CD4+ T cells in blood were tumor-related (Fig. 3e). These 
results indicated that blood T cells from the responder were 
more likely to be mobilized to the tumor tissue than those 
from the nonresponder.

Pt1 was a responder whose on-treatment and progression 
samples were all collected, so we examined this patient in 
particular. We found that the effector T cells in the peripheral 
blood of Pt1, compared with naïve T cells, were associated 

with tumor-infiltrating T cells to a greater extent (Fig. 3e). 
Among the top ten clones in the peripheral blood of Pt1, 
three of the six CD8+ and all of the four CD4+ T cell clones 
were tumor-related (Fig. 3b). After the tumor progression in 
Pt1, we observed a dramatic decrease in the fraction of CD4-
effector T cells that were tumor-related (Fig. 3f). However, 
we only observed a slight increase in the fraction of tumor-
related CD8-effector T cells. We then defined the cytotoxic 
activity in terms of the log-average (geometric mean) of the 
expression of four cytotoxic genes, GZMA, GNLY, PRF1 and 
GZMB. Notably, among the large tumor-related T cell clones 
with at least six cells, we found a higher cytotoxic activity in 
the CD4+ T cell clones than that in the CD8+ T cell clones 
(P < 0.001, two-sided Student’s t test, Fig. 3g). These results 
suggested that tumor-related CD4+ rather than CD8+ T cell 
clones played a more important role in killing the tumor.

Dynamics of individual T cell clones 
during anti‑PD‑1 treatment

We subsequently investigated the changes in individual 
T cell clones in peripheral blood during the anti-PD-1 
immunotherapy. For the expanded T cell clones occupying 
more than 1% of the entire cell population, we character-
ized their abundances along the treatment. In Pt1, all such 
CD4+ T cell clones could be detected in the tumor tissue 
(Fig. 4a). The largest CD4+ T cell clone TCR2 showed a 
dramatic decrease of the abundance from 25.1% (104/414) 
at on-treatment to 6.9% (8/116) at progression. Of note, the 
clone TCR2 had 33.0% (37/112) of PD-1+ T cells, which 
was the highest percentage among all clones. The percent-
age of PD-1+ T cells in the clone TCR2 decreased from 
34.6% (36/104) at on-treatment to 12.5% (1/8) at progres-
sion. Because the mechanism of anti-PD-1 therapy requires 
PD-1 as the binding target, we suggested that the CD4+ T 
cell clone TCR2 might directly respond to the PD-1 block-
ade and its decreased fraction at progression hampered the 
efficacy of the treatment. In Pt2, most of CD8+ T cell clones 
were present in the pre-treatment blood (Fig. 4b). The per-
centage of the CD4-effector cells was reduced sharply at 
on-treatment and progression in Pt2, and clonal CD4+ T 
cells also decreased. In Pt3, the CD8+ T cell clone TCR1 
was the largest clone with 113 cells. Although the fraction 
of the clone TCR1 decreased slightly after progression, it 
remained the dominant clone in peripheral blood (Fig. 4c). 
We also observed six newly-emerging CD4+ T cell clones 
after the treatment in Pt3.

We next compared gene expression profiles between 
on-treatment and progression samples to explore the 
dynamic changes in each peripheral T cell clone (Fig. 4d, 
e). We conducted differential gene expression analyses 
on 27 T cell clones from the three responders, including 
18 CD8+ and 9 CD4+ T cell clones. In total, we detected 
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524 differentially expressed genes (DEGs), including 178 
upregulated and 346 downregulated genes (Fig. 4f, g). The 
heatmap of changes for the 25 most frequently upregulated 

and downregulated genes showed distinct patterns between 
T cell clones from different patients. Several well-known T 
cell functional genes, such as CXCR4, DUSP2 and ZFP36, 
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were upregulated after progression in multiple T cell clones 
(Fig. 4e, f). Meanwhile, we observed decreased GZMA and 
GZMB expression in T cell clones of Pt1 (Fig. 4f).

The abundance of the T cell clone TCR1, which was the 
dominant clone in the peripheral blood of Pt3 (Fig. 5a), 
decreased from 25.6% (10/39) at pre-treatment to 18.9% 
(60/317) at on-treatment to 18.1% (43/237) at progres-
sion. We subsequently evaluated how the gene expression 
landscape was altered in this clone during the anti-PD-1 
immunotherapy. We used Monocle [27] to order these 
cells along a pseudotime trajectory on the basis of simi-
larities in their expression patterns (Fig. 5b). The inferred 
developmental trajectory suggested a continuous structure, 
with progression cells positioned at the opposite direc-
tion of pre-treatment cells. The pseudotime trajectory 

corresponded to the real time points, from pre-treatment 
to on-treatment to progression (Fig. 5c). We next identified 
pseudotime-dependent genes, which were the differentially 
expressed genes on the different paths along the pseudo-
time trajectory (Fig. 5d). Based on the pseudo-temporal 
expression profiles of these pseudotime-dependent genes, 
we conducted gene set enrichment analysis (GSEA). The 
genes involved in the “leukocyte transendothelial migra-
tion” pathway were upregulated and the genes involved in 
the “cytokine and cytokine receptor interaction” pathway 
were downregulated along the pseudotime (Fig. 5e). These 
results suggested that downregulation of cytokine in the 
clone TCR1 might lead to dysfunction after progression, 
although the abundance of this clone remained relatively 
high in peripheral blood.
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Discussion

In summary, we applied Smart-seq2 scRNA-seq to study 
longitudinal peripheral T cells throughout the course of 
anti-PD-1 treatment. T cells, as the direct target of PD-1 
blockade, are highly heterogeneous, and only a subset of 
T cell clones are responsive to the tumor-related antigens 
[33]. Recently, Wu et al. observed that expanded clono-
types in the tumor can also typically be detected in periph-
eral blood, suggesting that the identification of expanded 
clones in blood may characterize the TCR composition 
of clinically relevant intratumoral T cells [34]. Fairfax 
et al. also found that post-ICB peripheral CD8+ clonality 
can provide information regarding long-term treatment 
response in metastatic melanoma patients [35]. Conse-
quently, it is necessary to divide T cells into different 
clones based on their TCR sequences. Traditional TCR 
sequencing uses only TCR β-chains to define the clones. 
By taking advantage of Smart-seq2 scRNA-seq, we assem-
bled the full-length TCR sequences with paired αβ-chains 
and tracked the individual T cell clones. Moreover, we 
defined tumor-related T cells in peripheral blood by com-
paring TCR β-sequences of peripheral T cells and tumor-
infiltrating T cells. In this study, we observed distinct pat-
terns in T cell clone dynamics among the three responders. 
The fraction of tumor-related CD4+ T cell clones was 
reduced after progression in Pt1, while the fraction of 
expanded CD4+ T cell clones increased slightly in Pt2 
and Pt3. T cell clones from the individual patient had simi-
lar DEGs between on-treatment and progression samples, 
while T cell clones from the different patients had distinct 
gene expression profiling. Based on the observations from 
Pt1, who exhibited partial response to the initial immuno-
therapy, we hypothesized that the dominant PD-1+CD4+ T 
cell clone in peripheral blood indicated a better response 
to anti-PD-1 treatment. Meanwhile, a decreased abundance 
of the dominant PD-1+CD4+ T cell clone in peripheral 
blood might be a potential biomarker of acquired resist-
ance to PD-1 blockade. In addition, we developed an 
interactive website (https​://118.190.148.166:3838/lcpd) 
for analyzing and visualizing dynamic changes in each T 
cell clone.

Through scRNA-seq, several T cell functional genes 
were identified, showing differential expression between 
on-treatment and progression samples. CXCR4 is a key 
receptor in the crosstalk between tumor cells and their 
microenvironment [36]. It has been previously reported 
that tumor-infiltrating T cells expressed an abundance of 
CXCR4, and CXCL12-CXCR4 chemotaxis has been impli-
cated in the migration of T cells in the tumor microenvi-
ronment [37]. In mice, CXCR4 blockade greatly increased 
T cell-mediated anti-tumor immune responses, conferring 

a significant survival advantage to CXCR4 antagonist-
treated mice [38]. Previous evidence has shown the poten-
tial of CXCR4 blockade as the combination therapy to 
overcome resistance to anti-PD-1 immunotherapy [39], 
thus the combination therapy targeting both CXCR4 and 
PD-1 should be carefully evaluated in the future. DUSP2, 
also called PAC-1, is a member of the dual specificity pro-
tein phosphatase subfamily and has been demonstrated to 
be closely associated with the T cell function [40]. Previ-
ous genome-wide mRNA expression profiling has shown 
that DUSP2 was upregulated in the tolerant T cells but 
was downregulated in the rescued T cells [41]. ZFP36, 
also known as tristetraprolin, is an AU-rich elements 
(ARE)-binding factor and is expressed in hematopoietic 
cell lineages [42, 43]. Previous research has revealed that 
ZFP36 played a critical role in restraining T cell expansion 
and effector functions [44]. These DEGs upon progres-
sion might serve as biomarkers to monitor the progres-
sion status in NSCLC patients with anti-PD-1 treatment, 
and such upregulated genes could be potential targets for 
combination therapy to overcome the acquired resistance 
to anti-PD-1 treatment.

Our study also has several limitations. The high cost of 
Smart-seq2 method prevents us from obtaining a large sam-
ple of cases. Although the new 10× Genomics approach 
significantly reduces the cost of single cell sequencing, its 
gene detection sensitivity is much lower [45]. Therefore, 
we feel that we should still focus on using the most sen-
sitive method to take the most advantage of the valuable 
sample of patients. Although the sample size was limited in 
this study, we provided a comprehensive dataset concern-
ing HLA types, personalized neoantigens, cell clusters, TCR 
repertoires and T cell expression profiles for all patients. 
Future study with large sample size is likely to uncover the 
regulatory association between these molecular factors in 
relation to ICB response. Another potential weakness is that 
we did not observe consistent patterns of peripheral T cell 
dynamics across the three responders, which highlight the 
patient heterogeneity. Large cohort studies are thus needed 
to replicate our research and validate the findings on the 
biomarkers regarding anti-PD-1 treatment. With a large 
NSCLC cohort, a consistent dynamic pattern of peripheral 
T cell clones is likely to emerge, and there is a high chance 
of discovering more reliable biomarkers in peripheral blood. 
Although this study cannot definitely and comprehensively 
define the T cell dynamic patterns post treatment, we none-
theless feel that our study paved the road for further such 
studies at much larger scale, which are expected to emerge 
in the coming years.
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